• No results found

Effect of Au nano-particles on TiO nanorod electrode in dye-sensitized solar cells Electrochimica Acta

N/A
N/A
Protected

Academic year: 2022

Share "Effect of Au nano-particles on TiO nanorod electrode in dye-sensitized solar cells Electrochimica Acta"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatSciVerseScienceDirect

Electrochimica Acta

jo u r n al h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / e l e c t a c t a

Effect of Au nano-particles on TiO 2 nanorod electrode in dye-sensitized solar cells

M. Ghaffari

a,b,∗

, M. Burak Cosar

c,d

, Halil I. Yavuz

c,d

, M. Ozenbas

c,d

, Ali K. Okyay

a,b,∗

aUNAMInstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Ankara06800,Turkey

bDepartmentofElectricalandElectronicsEngineering,BilkentUniversity,Ankara06800,Turkey

cDepartmentofMetallurgicalandMaterialsEngineering,MiddleEastTechnicalUniversity,Ankara06800,Turkey

dCenterforSolarEnergyResearchandApplications(GUNAM),MiddleEastTechnicalUniversity,Ankara06800,Turkey

a r t i c l e i n f o

Articlehistory:

Received9March2012

Receivedinrevisedform4May2012 Accepted17May2012

Available online 26 May 2012

Keywords:

Dye-sensitizedsolarcell Hydrothermal TiO2nanorods Photoreduction

a b s t r a c t

Aunanoparticles(NPs)weredepositedonverticallygrownTiO2nanorodarraysonFTOsubstrateby hydrothermalprocess.MetalnanoparticleswereloadedontothesurfaceofTiO2nanorodsviaphoto- chemicalreductionprocessunderultravioletirradiation.X-raydiffraction(XRD),electronmicroscopy (FESEM),transmissionelectronmicroscopy(TEM)andX-rayphotoelectronspectroscopy(XPS)analysis wereusedtocharacterizetheas-preparedAu/TiO2nanorodcomposites.Currentdensity–voltage(J–V) measurementswereobtainedfromatwo-electrodesandwichtypecell.ThepresenceofAunanoparticles canhelptheelectron–holeseparationbyattractingphotoelectrons.AdditionofAunanoparticlestothe TiO2nanorodsignificantlyincreasedthefillfactorandJSC(shortcircuitcurrentdensity).Theapplication ofAuNPsTiO2nanorodsinimprovingtheperformanceofDSSCsispromising.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

SincethefirstreportbyGratzeletal.in1991,dyesensitized solarcells (DSSC)haveattractedextraordinaryattention.DSSCs couldbeviable lowcostalternativestosilicon-based solarcells [1,2].InitialdemonstrationsofDSSCswerebasedondyesensitiza- tionofporousnanocrystallinesemiconductorslikeTiO2.Thereare numerousstudiesonthepotentialsofimprovingtheefficiencyof DSSCsbyusingothersemiconductingmetaloxides,suchasNb2O5

[3],CeO2[4],ZnO[5,6],andSnO2[7]andcompositeoxidematerials [8,9].

Synthesis of aligned single-crystalline TiO2 nanorods or nanowires has attracted extensive attention because of their excellentanduniquepotentialapplicationsinelectronics,photo- chemistry,biologyandoptics,aswellastheirapplicationsingas sensors[10],dye-sensitizedsolarcells[11],lithiumionbatteries [12],photovoltaicdevices[2],andasphotocatalysts[13].

Recently,numerousmethodsforfabricatingone-dimensional nanostructuredTiO2havebeenreported,suchastemplate-assisted synthesis[14],sol–gel[15],chemicalvapordeposition[16],elec- trochemicaletching[17],andhydrothermal[18–20].Amongthese techniques,thehydrothermalmethodofTiO2nanorodarraysisa promisingtechniqueowingtoitsscalability,simpleprocess,and

∗ Correspondingauthorsat:UNAMInstituteofMaterialsScienceandNanotech- nology,BilkentUniversity,Ankara06800,Turkey.Tel.:+905443839429.

E-mailaddresses:ghaffari@unam.bilkent.edu.tr,moha0094@e.ntu.edu.sg (M.Ghaffari),aokyay@ee.bilkent.edu.tr(A.K.Okyay).

low cost.Thepotentialadvantages ofthehydrothermal growth methodmaybepartiallyhinderedbythegrowthofrutilephase TiO2nanorods.InordertoachievehighefficiencyDSSCs,TiO2in anateseformisdesirable,whichmaybeobtainedbyapost-growth- coatingmethodsuchasatomiclayerdepositiontechnique.

DSSCefficienciescouldbeimprovedsignificantlybyusingsingle crystalnanorodsofTiO2insteadofnanoparticleswhichcouldpro- motetheefficienttransportofphotogeneratedelectrons[21–23].

Thecrystal structure ofTiO2 also playsa factorin efficiencyof DSSCs[24–27].Thedifferencebetweentheconductionbandlev- elsofanataseandrutileforms,howeverduetothelowdifference between the conduction bandlevels of anataseand rutile, the higherdiffusioncoefficientofanataseplaymoreimportantrolefor theefficientelectrontransportinanatase[28]andtherefore,favors theuseofpureanataseforDSSCapplications[24].Therearereports, however,thatsynergisticuseofrutileandanatasepolymorphsof TiO2nanoparticlescouldincreaseDSSCefficiency[24,25,27].Such aneffectisalsoobservedinphotocatalyticactivityofanataseTiO2

nanocrystals,whichsignificantlyincreasesuponmixingwithapor- tionoflesseractiverutilenanocrystals[29,30].Onthecontrary, therearesomereportsclaimingbetterefficiencyDSSCswithpure anataseform[31],however,aconclusivecomparison cannotbe obtainedbecausesizeandmorphologyoftheparticleswerealso variedinthosestudies.

InDSSCs,atthesemiconductor/electrolyteinterface,therecom- binationofaportionoftheelectronsisstillinevitable.Thereare severalstudiestodecreasethisundesiredreactionattheinterface ofsemiconductor/electrolytebyusingcore-shellstructureofvar- iousmetaloxides[6,32,33]orbyusingdifferentadditivesinthe 0013-4686/$seefrontmatter © 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.electacta.2012.05.058

(2)

electrolytetopassivetheelectrolyte-exposed[34–37].Moreover thereareanumberofearlierreportsshowingthatadditionofmetal nanoparticlesimprovesDSSCenergyconversionefficiency[38–41].

Inthisstudy,AuNPsacttopreventchargecarrierrecombination byforminga Schottkyenergybarrier thatpromotesthephoto- injectedelectronsintothenanorod,awayfromthesurfacewhich improvestheoverallconversionefficiencyoftheDSSCswithAu NPs/TiO2nanorodstructure.ShiiChouetal.[41]havereporteddye sensitizedsolarcellbasedontheTiO2/nano-metalcompositeparti- clesusingthedrycoatingprocessinamechano-fusionsystem,and studiedtheeffectofnano-metallicparticlesontheperformanceof thecellandobtainedalowerefficiencyof0.29%.Inourresearch, AuNPsweredepositedonTiO2nanorodarraysbyphotoreduction beforedyeabsorption,andanoverallconversionefficiencyof0.93%

wasobtainedforAuNPs/TiO2structurewhichisathreefoldhigher relativetodeviceswithoutAuNPs.

Thereareseveralparametersthatcanaffecttheefficiencyof DSSCsbasedonhydrothermal-grownTiO2 nanorod arrayssuch asgrowthtime, growthtemperature,substrates,initialreactant concentration,acidity,titaniumprecursorsandTiCl4treatment.By optimizingtheseparameters,itispossibletoobtainhighefficiency DSSCs[22,42].Inthisstudy,wecomparativelystudytheeffectof AuNPsonDSSCefficiencybydefiningabaseline(withnoAuNPs) deviceasreference.

2. Experimentalprocedure 2.1. Chemical

FTOglass substrate (F:SnO2,Tec 15/sq.) witha thickness of4mm waspurchasedfromPilkington,England. Ethanol,ace- tone, titanium butoxide (Ti(OCH2CH2CH2CH3)4) (97%), HAuCl4 (Mw=339.79), and HCl (36%) werefrom Sigma–Aldrich Co. All chemicalswere of analytical grade and were used asreceived.

Hydrothermalgrowthwascarriedoutina45mlteflon-linedauto- clave.Deionizedwaterwasusedtoprepareallthesolutions.

2.2. GrowthofTiO2nanorodarray

ThedimensionofFTOglasssubstratewas10mm× 50mmand wascleanedanddegreasedpriortouse,firstbywashingwithdeter- gent anddistilled water, then wereultrasonically cleanedwith ethanolandthenbysonicatinginethanol,acetoneanddeionized waterinsequenceforabout30min,andfinallydriedundernitro- genflow.20mLconcentratedhydrochloricacid(36%byweight) wasmixedwith20mLdeionizedwaterinateflon-linedstainless steel autoclave (45mL vol.). The mixture was stirred at ambi- entconditionsfor10min,andthen0.8mLtitaniumbutoxidewas addedintotheabovementionedsolutionandstirredfor30min.

ConductingsideofFTOsubstratewasfaceddownwithanangle againstthewalloftheteflonvessel.Samplewaskeptat140Cfor 4hinanelectricaloven.Thesampleandteflonvesselwasunloaded andlettocooltoroomtemperature.TheFTOsubstraterinsedwith deionizedwaterandethanol,andthendriedinair.

2.3. DepositionofAunanoparticlesonTiO2nanorodsby photoreduction

20␮L(2.5mmol/L)HAuCl4ofaqueousAusaltsolutionweredis- persedwith15mLofdeionizedwaterinapyrexpetridishwith capacityofabout20mL.ThentheTiO2 nanorodsgrownonFTO substratewerefloated inthepetri dish and exposedunder UV light(254nm)fromaUVPcompany,ELseries(8W,UVLMS-38EL, 376mm×96mm×64mm).Thereactionswerecarriedfor3and

Fig.1. Schematicsketchofassembleddyesensitizedsolarcell.

9h.Thenthesamplewaswashedbydeionizedwaterandethanol.

Finally,thesamplesweredriedatroomtemperature.

2.4. Materialscharacterization

Thephasestructuresoftheobtainedsampleswereidentified using a Pananalytical (X’pert Pro MPD) instrument. XRD pat- ternswerecollectedoverthe2 angularrange of10–80 using Bragg–Brentanogeometry(CuK␣source,primaryandsecondary Sollerslits,0.1mmdivergenceslits,0.3mmreceivingslit,andsec- ondarygraphitemonochromator).Themorphologyandstructural characteristicsoftheobtainedsampleswerestudiedbyscanning electronmicroscopy(FESEM,FEI–NovaNanosem430),andtrans- missionelectronmicroscopy(TEM,FEI–TecnaiG2F30).Thesurface chemicalcompositionoftheAu/TiO2nanorodswasmonitoredby X-rayphotoelectronspectroscopy(XPS)measurements,performed withaThermo(K-Alpha–MonochromatedHigh-performanceXPS Spectrometer)instrument.

2.5. Electrodefabricationandcharacterizationtechniques

A schematic diagram of assembled dye sensitized solar cell ispresentedinFig.1.Theactiveareaofelectrode was0.25cm2 (i.e. 5mm×5mm). Synthesized TiO2 electrodes were soaked in 0.5mmol/l ruthenium sensitizer dye [cis-di(thiocyanato)- N-N-bis(2,2-bipyridyl-4-carboxylicacid-4-tetrabutylammonium carboxylate) ruthenium(II)] dye(known asN719,Solaronix)in a t-butanol/acetonitrile(1:1, in volumeratio)solution,for24h.

Thesensitizedelectrodeswererinsedwithacetonitrile,driedin roomtemperature,and immediatelyusedfor measuringphoto- voltaic properties. The platinum coated FTO glass wasused as counterelectrodesbondedtoTiO2nanorodsasworkingelectrode by 25-␮m-thick hot-melt spacers made of theionomer Surlyn 1702(Dupont).Theinternalspaceofeachcellwasfilledwitha liquidelectrolyte.Theelectrolytewascomposedof0.1Mguani- diniumthiocyanate(GuSCN),0.03MI2,0.5M4-tert-butylpyridine (TBP)and0.6Mbutylmethylimidazoliumiodide(BMII)inthemix- tureofacetonitrileandvaleronitrile(85:15,invol.%).Thedevices werecharacterizedbyaKeithley2440sourcemeterunderstan- dardAM1.5G-filteredirradiation(100mW/cm2)fromaNewport 91192solarsimulatorequippedwith300Wxenonarc.Thespectral measurementsareobtainedbyamechanicallychoppedmonochro- mated(NewportCornerstone1301/8m,1200L/mm)white-light sourceand alock-in amplifier(SRS 830).The spectralintensity ofthelightsourceisalsoseparatelycharacterizedandisusedto normalizethemeasuredcurrent.

(3)

3. Resultsanddiscussion

To identify the crystalline structure and orientation of the nanorodsgrown,XRDanalysiswasperformedontheobtainedsam- ples.TheXRDpatternoftheas-preparedTiO2nanorodarrayand thestandarddiffractionpatternofrutilestructureofTiO2(JCPDS, 82-0514) is presented in Fig. 2. All diffraction peaks can be indexedtotheFTOsubstrateandrutilephaseofTiO2(tetragonal, P42/MNM).IncomparisonwiththeICSDstandard XRDpattern, XRDpatternofthealignedrutileTiO2 grownonFTOshowsthe preferable orientation of the nanostructures along TiO2 [101]

(2∼26.4).

The FESEM micrographs (Fig. 3(a) and (b)) presents highly orderedTiO2nanorodsgrownontheFTOsubstrates.Theseresults confirmthatwell-alignedTiO2 nanorodsuniformlygrewinlarge area.Cross-sectionalFESEMimageofTiO2 nanorodarrayshown inFig.3(b) indicatesthatlengthof nanorodsareabout2.1␮m.

ThenanoroddiameterdistributionwasobtainedfromtheFESEM images,whichrangesfromabout135to150nm(Fig.3(a)).Fig.3(c) and(d)presentstheTiO2nanorodsampleswithdifferentamount ofgolddepositionthatclearlyshows theeffectdepositiontime, 3hand9h,respectively.InsetFig.3(c)and(d)showsthattheAu NPspreferentiallydepositonthetipsofrodsandtopactivepartof nanorodsarecoveredbyAuNPs.

Fig.4(a)shows theTEMimageofasingleTiO2 nanorodand correspondingselectedareaelectrondiffractionpattern(SAED).

TheTEMmicrographshows that thediameterof TiO2 nanorod is 148nm. The SAED and HRTEM results further confirm that eachindividualTiO2 nanorodissinglecrystal.Thelatticefringe

Intensity(au)

20 15

Intensity(a.u)

30 25

*

(

*

(110)

40

35 45

R

(111) (101)

*

R

*

R

50 (21

*

R TiO2nan

JCPDS 8

2 Theta

55 60 65 1)

(002)

*

RR norods 820514 Sta

75 70 )(112)

*

RR andard Card

R= Ru

*

= FT

80

*

utile

TO

Fig.2.XRDpatternofTiO2nanorodarraysonFTOsubstrate(*),andthestandard diffractionpatternofrutilestructureofTiO2(JCPDS-82-0514standardcard).

spacing in the HRTEMimage is 0.32nm which corresponds to theinterspacingofthe(110)planesoftetragonalrutilestructure ofTiO2 andindicatesthatthegrowthoccurredalongthe[101]

direction.

TEMmicrographsoftheAuNPsdepositedonTiO2nanorodsare showninFig.5(a)and(b)whichconfirmthatAuNPsdeposited

Fig.3. SEMmicrographsofwell-alignedTiO2nanorodarrays:(a)topviewand(b)sideview(c)with1.54at%Au(d)with3.4at%Au.

(4)

Fig.4.TEMmicrographsofrutileTiO2(110)(a)low-magnificationimage,andcorrespondingselectedareaelectrondiffractionpattern(SAED)and(b)high-resolutionTEM micrograph.

onthesurfaceofTiO2nanorods.Thisisattributedtoatopillumi- nationandlowpenetrationofUVlightintotherodsalongtheir growthaxishencemostof thereduction reactionoccurringon thetipareaofnanorods.Fig.5(b)alsoshowsthatthesizeofAu

NPsisabout8–12nm.Fig.5(d)showsthecorrespondingSAEDof AuNPsdepositedonTiO2nanorods.Theringdiffractionpattern clearlyconfirmedthatstructureofdepositedAunanoparticlesare polycrystalline.

Fig.5.TEMmicrographsofAuNPsdepositedonTiO2nanorods(a)low-magnificationimageof1.54at.%Audeposition,(b)low-magnificationimageof3.4at.%Audeposition, (c)high-magnificationimageof3.4at.%Audeposition,and(d)correspondingselectedareaelectrondiffractionpattern(SAED).

(5)

0 200 400

600 800

1000 1200

C 1S

Au 4d Au 4f

O 1S Ti 2p

Intensity (a.u)

Binding energy (eV) Au/TiO2 nanorods

TiO2 nanorods

C 1S

(a)

(a)

Fig.6. WidescansurveyXPSspectrumof(a)TiO2nanorodarrays,and(b)Au/TiO2

nanorodarrays.

Thesurfacecompositionoftheobtainedsampleswascharac- terizedbyX-rayphotoelectronspectroscopy(XPS)technique.XPS survey-scanspectrumofTiO2nanorodsandAu-NPdecoratedTiO2 nanorodsareshowninFig.5(a).AllXPSspectralpeakswerefitted withThermoScientificAvantagesoftware.Asrequiredbytheory, theTi2pandAu4fspectrumconsistoftwopeaks,aspin–orbitdou- bletwhereasO1sandC1sspectrallinesconsistofasinglepeak(a singlet).TheC1sspectrallinewasstandardizedto285.0eVand theO1s,Ti2pandAu4f spectrawereadjustedtothis energy.

Thedataanalysisinvolvedcurve-fittingLorentzian–Gaussian(30%

Lorentzian)lineshapes,spectranormalization,andShirleyback- groundsubtraction[43].InallfitstonarrowscanspectraShirley backgroundswereused[44,45].

Fig.6presentsthesurveyscanofpreparedsamples.TheXPS peakswithbindingenergiesof84.03,458.501and529.96eVcor- respondtoAu4f,Ti2p3/2andO1s,respectively.TheAu4fspectra serveasevidencefortheformationofAuNPsontheTiO2nanorods.

Fig.7showsO1sXPSspectrafortheAu/TiO2nanorods(Fig.7(a)) andTiO2nanorods(Fig.7(b))samples.DeconvolutionoftheO1s

Fig.8.Schematicdiagramoftheprincipleof(a)theconventionalDSSC,and(b) theDSSCwithAuNPsdepositedonTiO2nanorodsDSSC.(Forinterpretationofthe referencestocolorinthetext,thereaderisreferredtothewebversionofthisarticle.)

Fig.7. XPSspectrumintheO1sregionfor(a)TiO2nanorodand(b)Au/TiO2nanorod,and(c)narowscanofAu4f.

(6)

0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8

(a)

(A) 1.54 (at.%) Au NPs (B) 3.4 (at.%) Au NPs (C) 0.81 (at.%) Au NPs (D) Reference (TiO2 nanorods)

J (mA/cm2 )

V(volt)

3.4 1.54

0.81 0

0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68

Voc FF

Au content (atomic percentage) Voc (V)

(b)

0.40 0.45 0.50 0.55 0.60

FF

300 350 400 450 500 550 600 650 700

Current (a.u)

ShortCircuitCurrent measurement

Wavelength

1.54 (at.%) Au NPs 3.5 (at.%) Au NPs Reference (TiO2 nanorods)

(d)

0 0.81 1.54 3.4

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

2.8 Jsc

Efficency (%)

Au content (atomic percentage) Jsc (mA/cm2 )

(c)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Efficency (%)

Fig.9.(a)Current–voltagecharacteristicsoftheDSSCsassembledusingtheTiO2nanorodarrays,andtheAu/TiO2nanorodwithdifferentgoldcontent;(b)dependenceoffill factorandVOContheamountofAuNPscontentdeposition;(c)dependenceofcellefficiencyandJSContheamountofAuNPscontentdepositionoftheTiO2nanorodcells;

and(d)shortcircuitcurrentmeasurementvs.wavelength.

spectrayieldsthreeindividualpeaksat529.7,531.58and532.64eV.

Regardingtheliteraturetheoxygenpeak locatedat 529.7eV is relatedtotheO1sbandpositionofTiO2 [46,47].Fig.7(c)shows thedetailed peakscanofAu4fwhich confirmsthepresenceof peakswithabindingenergyof83.35eVand87.14eVcorrespond- ingtoAu4f5/2andAu4f3/2,respectively[9,45].ShamandLazarus explained that ambient TiO2 samplesare always covered with physisorbedmoistureandchemisorbedandtheO1sbindingener- giesforthissurfaceshiftstohigherbindingenergy.ThusO1speak at531.5eVcanbeassigned tooxygenspeciesinH2Omolecules andTi OHwhilethepeakat533.7eVisattributedtothewater, hydroxideabsorbedonthesurfaceand(C O CorC OHgroups) fromtheoxidizedcarbon species ofadventitious carbon [9,45].

TheXPSresultsrevealthatwithdepositionofAuNPstheamount ofmoistureandcarbonspeciesonsurfaceofsamplesdecreased dramatically.

IntheAu/TiO2nanorodsystem,duetothelargerworkfunction ofAu(5.1eV)comparedtotheelectronaffinityofTiO2(3.2eV),a Schottkybarrierexistsattheirinterface.Fig.8showstheschematic diagramofthepossibleelectron-transferpathintheAuNPsTiO2

nanorodsDSSC and formation of theSchottky barrier between theAuNPsandTiO2nanorods.By(after)growingtheAuNPson thesurfaceofTiO2nanorods,Fermi-leveloftheAu/TiO2nanorods attainsastablebalanceinequilibriumcondition(orangedashed lineinFig.8(b).Generatedelectronandholepairsasaresultof photoexcitationprocess,createelectriccurrentwhichbenddown theconductionandvalencebandsofAu/TiO2nanorods(thegreen curveinFig.8(b).ConsequentlytheAu/TiO2nanorodsFermilevel ispusheddownward(thebluedashedlineinFig.8(b).Moreover

someofexcitedelectronscanalsobedirectlyinjectedfromthedye intotheCBoftheTiO2nanorods.Therefore,duetotheexistence oftheSchottkybarrierattheAuNPsandTiO2nanorodsinterface, electronsattheCBofTiO2nanorodscannotreversetheirpath,and flowtowardstheoxidizeddyemoleculesortheredoxelectrolyte, thusleadingtoanimprovementinthephotocurrent[36,41].

Fig.9(a)compares the TiO2 nanorod solar cell and Au/TiO2

nanorodsolarcells.ItcomparesJ–VdatafromsamplesofAuNPs depositedwithdifferentgoldconcentration.Intheplots aTiO2 nanorodcellisincludedasreference.DepositionofAuNPstoTiO2

nanorodcellscausedsignificantimprovementinefficiency,fillfac- tor,andJSC(Table1).Fig.9(b)presentsthatwithincreasingtheAu NPs,theopen-circuitvoltage,VOC,ofobtainedsamplesdoesnot changesignificantly,whichconfirmsthatpreparedcellsarequite stableandnocorrosivereactionoccursbetweenAuNPsandthe electrolyte[41].Onthecontrary,short-circuitcurrentJSCoftheAu NPsTiO2nanorodsexceedsthatofDSSCwithnoAuNPs(Fig.9(c)).

Table1

Efficiency(),fillfactor(FF),opencircuitvoltage(VOC)andshortcircuitcurrent density(JSC)ofdye-sensitizedsolarcellsbasedonAuNPsdepositedTiO2structure, andbareTiO2nanorodarrays.

Sample AuNPscontent (atomic percentage)

JSC(mA/cm2) VOC(V) FF (%)

(A) 1.54 2.75 0.63 0.56 0.94

(B) 3.4 1.97 0.61 0.48 0.56

(C) 0.81 1.50 0.62 0.57 0.46

(D) 0 1.07 0.67 0.43 0.31

(7)

ThesedifferencesareattributedtothefactthattheVOCisrelated tothedifferencebetweentheNernstpotentialoftheredoxandthe Femi-level[41,48].SincetheTEMandSEMimagesconfirmed,with furtherAuNPsdeposition,ahigherportionofthetipsurfaceofTiO2 nanorodsiscoveredbyAuNPsandtheactivepartofDSSCsamples andconsequentlyoverallefficiencyofcellsdecreased.Though,due tothefactthattherateofincreaseinJSCisgreaterthanthatof decreasingVOCintheAuNPsTiO2nanorodsDSSC,efficiencyofAu NPsTiO2nanorodsDSSCandthefillfactorimproved.

Fig.9(d)showstheeffectofAuNPsdepositiononshortcircuit currentatdifferentwavelengthsoflight.Thisfigureillustratesthat withincreasingtheAuNPstheshortcircuitcurrentincreasedand mostofthecurrentintheobtainedcellisgeneratedbetween325 and425nm.Thephotocurrentincreasecouldbepartiallyattributed toresonantabsorptionduetolocalizedplasmonmodesofAuNPs, however,nodistinctresonantabsorptionpeakisobservedinthe spectralresponse.Inaddition,aslightreductioninthephotocur- rent,henceabsorption,inthe500–550nmbandcouldberelatedto ohmiclossesassociatedwithresonantAuNPabsorption(8–12nm particlesize)[49,50].

Table1indicatesthatthecell with1.54at.%AuNPshasthe maximumefficiency,butwithfurtherAuNPsdepositionbecause ofa decreasingfill factorand JSC overallefficiencyreduced and VOCshowsonlyslightimprovement.Moreovertheobtainedresults showthatoverallcellefficiencyforthecellwith1.54at.%AuNPs, jumpedfrom0.31to0.94%whichincreasedbymorethantwice, andthefillfactorincreasedfrom0.43to0.56.

4. Conclusions

VerticallyalignedTiO2nanorodarraysweregrownonFTOsub- stratesbyhydrothermalmethod.DifferentamountsofAuNPswere depositedontheTiO2nanorodsbyphotoreductionmethod.AuNPs depositedTiO2nanoroddyesensitizedsolarcellshavebeenfab- ricatedandcomparedtocellsbuiltfromTiO2 nanorodswithout AuNPs.TheeffectsofAuNPswereinvestigatedonsolarcelleffi- ciency.ResultsshowedthatAuNPsdepositedTiO2havepresented significantimprovementsinfillfactor andshortcircuitcurrent, resultinginasmuchasdoubledoverallconversionefficiencies.Au NPshelppreventrecombinationbyformingaSchottkyenergybar- rierthatpreventsphotoinjectedelectronsfromapproachingthe surfaceofnanorodandimprovetheoverallconversionefficiency oftheDSSCs.Theoverallconversionefficiencywasincreasedfrom 0.31%forbareTiO2nanorodarrayto0.94%foranAuNPsdeposited onTiO2nanorod.Moreover,measuredVOCresultsconfirmedthat obtainedsamplesarequitestableandnocorrosionoccursbetween metalNPsandtheelectrolyte.Mostimportantly,thisstudysup- portstheapplicationofAuNPsTiO2 nanorodsinimprovingthe performanceofaDSSC.

Acknowledgments

Thiswork wassupported byEU FP7Marie Curie IRG Grant 239444, COST NanoTP, TUBITAK EEEAG Grants 108E163 and 109E044andTUBITAKBIDEB.

References

[1]B.O’regan,M.Gratzel,Nature353(1991)737.

[2]M.Gratzel,JournalofPhotochemistryandPhotobiology A:Chemistry164 (2004)3.

[3]A.LeViet,R.Jose,M.V.Reddy,B.V.R.Chowdari,S.Ramakrishna,TheJournalof PhysicalChemistryC114(2010)21795.

[4] S.Ueno,S.Fujihara,ElectrochimicaActa56(2011)2906.

[5] K.Keis,E.Magnusson,H.Lindström,S.E.Lindquist,A.Hagfeldt,SolarEnergy MaterialsandSolarCells73(2002)51.

[6]A.Irannejad,K.Janghorban,O.K.Tan,H.Huang,C.K.Lim,P.Y.Tan,X.Fang,C.S.

Chua,S.Maleksaeedi,S.M.H.Hejazi,M.M.Shahjamali,M.Ghaffari,Electrochim- icaActa58(2011)19–24.

[7]S.Gubbala,V.Chakrapani,V.Kumar,M.K.Sunkara,AdvancedFunctionalMate- rials18(2008)2411.

[8]K.A.T.A.Perera,S.G.Anuradha,G.R.A.Kumara,M.L.Paranawitharana,R.M.G.

Rajapakse,H.M.N.Bandara,ElectrochimicaActa56(2011)4135.

[9] J.Li,H.C.Zeng,ChemistryofMaterials18(2006)4270.

[10]Y.Zhu,J.Shi,Z.Zhang,C.Zhang,X.Zhang,AnalyticalChemistry74(2002)120.

[11] P.Charoensirithavorn,Y.Ogomi,T.Sagawa,S.Hayase,S.Yoshikawa,Journalof CrystalGrowth311(2009)757.

[12] M.Inaba,Y.Oba,F.Niina,Y.Murota,Y.Ogino,A.Tasaka,K.Hirota,Journalof PowerSources189(2009)580.

[13] M.Ghaffari,P.Y.Tan,M.E.Oruc,O.K.Tan,M.S.Tse,M.Shannon,CatalysisToday 161(2011)70–77.

[14] A.Michailowski,D.AlMawlawi,G.Cheng,M.Moskovits,ChemicalPhysicsLet- ters349(2001)1.

[15]B.Mukherjee,C.Karthik,N.Ravishankar,TheJournalofPhysicalChemistryC 113(2009)18204.

[16] D.A.Boyd,L.Greengard,M.Brongersma,M.Y.El-Naggar,D.G.Goodwin,Nano Letters6(2006)2592.

[17] Y.Tian,C.Hu,X.He,C.Cao,G.Huang,K.Zhang,SensorsandActuatorsB:

Chemical144(2010)203.

[18] C.Cao,C.Hu,X.Wang,S.Wang,Y.Tian,H.Zhang,SensorsandActuatorsB:

Chemical156(2011)114–119.

[19]M.Paulose,K.Shankar,S.Yoriya,H.E.Prakasam,O.K.Varghese,G.K.Mor,T.A.

Latempa,A.Fitzgerald,C.A.Grimes,TheJournalofPhysicalChemistryB110 (2006)16179.

[20]A.Zaban,S.T.Aruna,S.Tirosh,B.A.Gregg,Y.Mastai,TheJournalofPhysical ChemistryB104(2000)4130.

[21]M.Adachi,Y.Murata,J.Takao,J.Jiu,M.Sakamoto,F.Wang,Journalofthe AmericanChemicalSociety126(2004)14943.

[22]B.Liu,E.S.Aydil,JournaloftheAmericanChemicalSociety131(2009)3985.

[23]M.Law,L.E.Greene,A.Radenovic,T.Kuykendall,J.Liphardt,P.Yang,TheJournal ofPhysicalChemistryB110(2006)22652.

[24] G.Li,C.P.Richter,R.L.Milot,L.Cai,C.A.Schmuttenmaer,R.H.Crabtree,G.W.

Brudvig,V.S.Batista,DaltonTransactions(2009)10078.

[25]S.Kambe,S.Nakade,Y.Wada,T.Kitamura,S.Yanagida,JournalofMaterial Chemistry12(2002)723.

[26] N.G.Park,J.VandeLagemaat,A.Frank,TheJournalofPhysicalChemistryB104 (2000)8989.

[27]B.Koo,J.Park,Y.Kim,S.H.Choi,Y.E.Sung,T.Hyeon,TheJournalofPhysical ChemistryB110(2006)24318.

[28] P.T.Hsiao,Y.L.Tung,H.Teng,TheJournalofPhysicalChemistryC114(2010) 6762.

[29]T.Ohno,K.Sarukawa,K.Tokieda,M.Matsumura,JournalofCatalysis203(2001) 82.

[30] T.Kawahara,Y.Konishi,H.Tada,N.Tohge,J.Nishii,S.Ito,AngewandteChemie 114(2002)2935.

[31]C.Karthikeyan,M.Thelakkat,M.Willert-Porada,ThinSolidFilms511(2006) 187.

[32] E.Palomares,J.N.Clifford,S.A.Haque,T.Lutz,J.R.Durrant,JournaloftheAmer- icanChemicalSociety125(2003)475.

[33]L.E.Greene,M.Law,B.D.Yuhas,P.Yang,TheJournalofPhysicalChemistryC 111(2007)18451.

[34]M.K.Nazeeruddin,A.Kay,I.Rodicio,R.Humphry-Baker,E.Müller,P.Liska,N.

Vlachopoulos,M.Grätzel,JournaloftheAmericanChemicalSociety115(1993) 6382.

[35]S.A.Haque,Y.Tachibana,R.L.Willis,J.E.Moser,M.Grätzel,D.R.Klug,J.R.Durrant, TheJournalofPhysicalChemistryB104(2000)538.

[36]T.Bora,H.H.Kyaw,S.Sarkar,S.K.Pal,J.Dutta,BeilsteinJournalofNanotechnol- ogy2(2011)681.

[37]B.A.Gregg,F.Pichot,S.Ferrere,C.L.Fields,TheJournalofPhysicalChemistryB 105(2001)1422.

[38]V.Dhas,S.Muduli,W.Lee,S.H.Han,S.Ogale,AppliedPhysicsLetters93(2008) 243108.

[39]P.Roy,D.Kim,I.Paramasivam,P.Schmuki,ElectrochemistryCommunications 11(2009)1001.

[40]C.Wen,K.Ishikawa,M.Kishima,K.Yamada,SolarEnergyMaterialsandSolar Cells61(2000)339.

[41]C.-S.Chou,R.-Y.Yang,C.-K.Yeh,Y.-J.Lin,PowderTechnology194(2009) 95.

[42]H.Wang,Y.Bai,Q.Wu,W.Zhou,H.Zhang,J.Li,L.Guo,PhysicalChemistry ChemicalPhysics13(2011)7008.

[43]V.Zakaznova-Herzog,H.Nesbitt,G.Bancroft,J.Tse,SurfaceScience600(2006) 3175.

[44] D.Shirley,PhysicalReviewB5(1972)4709.

[45]M.Ghaffari,M.Shannon,H.Hui,O.K.Tan,A.Irannejad,SurfaceScience606 (2012)670–677.

[46]T.K.Sham,M.S.Lazarus,ChemicalPhysicsLetters68(1979)426.

[47]H.Perron,J.Vandenborre,C.Domain,R.Drot,J.Roques,E.Simoni,J.J.Ehrhardt, H.Catalette,SurfaceScience601(2007)518.

[48]A.Zaban,S.Ferrere,B.A.Gregg,TheJournalofPhysicalChemistryB102(1998) 452.

[49] S.Link,M.A.El-Sayed,TheJournalofPhysicalChemistryB103(1999)4212.

[50]G.W.Bryant,F.J.G.deAbajo,J.Aizpurua,NanoLetters8(2008)631.

Referenties

GERELATEERDE DOCUMENTEN

Problem Statement: From a sustainability point of view, hospitals offer their services without taking into consideration their impact on the environment, the interplay

Oxidative Stress: Nano-TiO 2 at high concentrations (>100 µg L −1 ) can induce oxidative stress in fish, as was shown during exposure of the juvenile olive flounder

De bodem van het meer bestaat uit poreuze klei, dat veel calciet ( CaCO 3 ) bevat.. Het bodemvocht in de poriën van de klei heeft een pH van rond

supplemental/10.1103/PhysRevLett.107.037401 for de- tails of experimental methods, scattering spectra of mul- tiple trapped gold nanorods, a study of the reshaping of rods in the

Figure 2.2 shows the one-photon luminescence spectra of a gold nanorod immersed in 20 µM KCN at intervals of 70s. We clearly observe a gradual red shift of the nanorod’s

For the different plasmon resonance modes the extinction and torque spectra are computed and the electric field is visualised together with the charge distribution.. We found that

Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod.. Zijlstra, P.; Paulo, P.M.R.;

The effective carrier generation in the nano-3D geometry results in a higher efficiency in the nano- rod devices even though the absorber layer is three times thinner than that in