• No results found

3D large scale simulation of a stented aortic heart valve

N/A
N/A
Protected

Academic year: 2021

Share "3D large scale simulation of a stented aortic heart valve"

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

3D large scale simulation of a stented aortic heart valve

Citation for published version (APA):

Dimakopoulos, I., Bogaerds, A. C. B., Anderson, P. D., Hulsen, M. A., & Baaijens, F. P. T. (2009). 3D large scale simulation of a stented aortic heart valve. Poster session presented at Mate Poster Award 2009 : 14th Annual Poster Contest.

Document status and date: Published: 01/01/2009 Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne Take down policy

If you believe that this document breaches copyright please contact us at: openaccess@tue.nl

providing details and we will investigate your claim.

(2)

The pressure on top & bottom sides of leaflets forms thin boundary layer

along the fixed

edges (Fig.4),

while on the belly

region it takes

moderate values.

Numerical approximation

New numerical techniques are developed to alleviate reported difficulties [1] associated with the accuracy and the stability of calculations at high Reynolds number in three dimensions:

● open inflow/outflow boundary conditions

● second order time integration scheme with automatic adaptation of the time step

● discontinuous Lagrange multipliers for matching the meshes of leaflets and blood & regions with different

discretizations (typically 106number of unknowns).

3D large scale simulation

of a stented aortic heart valve

Y. Dimakopoulos1, A.C.B. Bogaerds1, P.D. Anderson2, M.A. Hulsen2 and F.P.T. Baaijens1 1Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands 2Department of Mechanical Engineering, Eindhoven University of Technology, The Netherlands

/ Department of Biomedical Engineering

Objective of current work

To develop a new, efficient and robust finite element algorithm for the simulation of AHV, which can be used as:

● design tool for tissue engineering heart valves ● diagnostic tool for clinical applications

Results

A global assessment of the blood-leaflets interaction is given in Fig. 3. The aortic leaflets move in response to blood flow. The opening procedure takes place in a symmetric manner, though the model is fully 3D. The aortic heart valve (AHV)

ensures unidirectional blood flow from the left ventricle to the aorta during the cardiac cycle (Fig. 1), while its proper function is essentially controlled by the

surrounding heamodynamic

environment (HE). Computational fluid dynamics (CFD) permit the Resolution of HE at the

microscale, overcoming some of

the inherent limitations of experimental techniques.

Introduction to the physical problem

Physical model

Blood flows through a 3D stented AHV (Fig. 2) of mean diameter w=24 mm and total length H=4w, due to a time-varying pressure gradient. It also exhibits non-Newtonian behavior that is described with the Carreau-Yasuda

References

[1]. J. De Hart, G.W.M. Peters, P.J.G. Schreurs, F.P.T. Baaijens, J. Biomech. 36 (2003), 103-112. [2]. F.N. van de Vosse, J. de Hart, C.H.G.A. Van Oijen, D. Bessems, T.W.M. Gunther, A. Segal, B.J.B.M. Wolters, J.M.A. Stijnen, F.P.T. Baaijens, J. Engrg. Math. 47 (2003), 335-368.

Fig 2. Schematic drawings of the model of the aortic valve

Fig 1. A human heart and its semilunar valves

Soft Tissue Biomechanics and Engineering

Fig 3. Snapshots from the deformation of the mesh due to the motion of the leaflets during the systolic phase

model [2]. All leaflets are assumed to behave as incompressible neo-Hookean solids with constant density.

Fig 4. Distribution of the pressure on the aortic side of the leaflets during the systolic phase

Max:+1.6 kPa Min: -0.7 kPa Max:+9.8 kPa Min: -2.0 kPa Max:+9.4 kPa Min: -2.9 kPa Max: +8.6 kPa Min: -2.2 kPa Max:+10.8 kPa Min:-2.9 kPa Max:+7.5 kPa Min: -2.4 kPa

Thin boundary layers are also appeared in the velocity & the pressure of blood (Fig. 5) , which now can be accurately resolved.

Conclusions

● A new fully 3D algorithm has been developed for the simulation of the motion of the leaflets of the aortic

valve at nearly physiological conditions (Repeak≈2,000).

● For first time, the true rheological behavior of the blood is taken into consideration.

Fig 5. Distribution of the streamwize (vx), radial (vr), azimuthal (vθ)

velocity components and the pressure of the blood across the outlet of the aortic root (Fig. 2)

Max:0.945 m/s Min: 0 m/s Max: 2.5x10-2m/s Min: -2.2x10-1m/s Max:7.3x10-2m/s Min:-7.6x10-2m/s Max:+ 21.1 kPa Min:+ 20.9 kPa

Referenties

GERELATEERDE DOCUMENTEN

In de aardappelteelt komt een nieuwe Dickeya-soort voor (D. solani) die sterk virulent is. Stammen van verschillende Dickeya-soorten zijn gemerkt met een groen fluorescent

Er is hier ook veel water, waar de ganzen zich veilig terug kunnen trekken?. In maart en april trekken ze weer terug naar hun broedgebieden rond

Uit de resultaten van de incubatie bleek dat zowel bij Meloidogyne als Pratylenchus in respectie- velijk 5,2% en 1,8% van de besmette monsters de aaltjes wel in de

Block copolymers, containing blocks with different physical properties have found high value applications like nano-patterning and drug delivery. By gaining control over the

Voor de belangrijkste bladluissoorten die PVY kunnen overbrengen is in het verleden bepaald hoe efficiënt deze bladluizen PVY kunnen overbrengen.. De mate van efficiëntie wordt

Dus door het TAN om te zetten tot nitraat kan men uit met minder water- verversing, echter er wordt nog steeds een vergelijkbare hoeveelheid stikstof geloosd als

Voor het monitoren van zuurgraad in habitatgebieden zou de volgende procedure gebruikt kunnen worden: - vaststellen welke habitattypen in principe gevoelig zijn voor bodemverzuring

Die veranderingen van normen en waarden begrijpen we niet of nauwelijks, maar die bepalen straks het succes van de heront - worpen veehouderij.. In dat onbegrip schuilt wel