• No results found

Ultrafast spectroscopy of model biological membranes Ghosh, A.

N/A
N/A
Protected

Academic year: 2021

Share "Ultrafast spectroscopy of model biological membranes Ghosh, A."

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Ultrafast spectroscopy of model biological membranes

Ghosh, A.

Citation

Ghosh, A. (2009, September 2). Ultrafast spectroscopy of model biological membranes.

Retrieved from https://hdl.handle.net/1887/13945

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13945

Note: To cite this publication please use the final published version (if applicable).

(2)

Ultrafast Spectroscopy of Model Biological

Membranes

(3)

Ultrafast Spectroscopy of Model Biological Membranes

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus, Prof. Mr. Dr. Paul F. van der Heijden, volgens besluit van het College voor Promoties

in het openbaar te verdedigen op Woensdag 2 September 2009

klokke 13.45 uur

door

Avishek Ghosh

geboren op 20 Augustus 1979 te London, U.K.

(4)

Promotiecommissie

Promotor: Prof. Dr. Mischa Bonn

Overige leden: Prof. Dr. Aart Kleyn Prof. Dr. Huib J Bakker Prof. Dr. Marc Koper Dr. Jens Bredenbeck Dr. Sander Woutersen Prof. Dr. Jaap Brouwer Prof. Dr. Geert-Jan Kroes Prof. dr. Marc C. van Hemert

(5)

This thesis is based on the following publications:

1. Avishek Ghosh, Marc Smits, Jens Bredenbeck, Niels Dijkhuizen and Mischa Bonn.

Femtosecond time-resolved and 2D vibrational sum frequency spectroscopy to study structural dynamics at interfaces. Rev. Sci. Instrum. 79, 093907 (2008)

2. Marc Smits, Avishek Ghosh, Martin Sterrer, Michiel Muller, Mischa Bonn.

Ultrafast Vibrational Energy Transfer between Surface and Bulk Water at the Air-Water Interface.

Phys. Rev. Lett. 98, 098302 (2007)

3. Avishek Ghosh, Marc Smits, Jens Bredenbeck, Mischa Bonn.

Membrane-bound water is energetically decoupled from nearby bulk water: An ultrafast surface- specific investigation. J. Am. Chem. Soc. 129, (31), 9608-9609 (2007)

4. Avishek Ghosh, Marc Smits, Maria Sovago, Jens Bredenbeck, Michiel Muller, Mischa Bonn.

Ultrafast vibrational dynamics of interfacial water. Chem. Phys. 350, (1-3), 23-30 (2008) 5. Avishek Ghosh, Maria Sovago, R. Kramer Campen and Mischa Bonn.

Structure and dynamics of interfacial water in model lung surfactants. Faraday Discuss. 141, 1-15 (2008)

6. Marc Smits, Avishek Ghosh, Jens Bredenbeck, Susumu Yamamoto, Michiel Mller and Mischa Bonn. Ultrafast energy flow in model biological membranes. New J. Phys. 9, 390 (2007) 7. Avishek Ghosh, R.K. Campen and Mischa Bonn.

Ultrafast vibrational dynamics of water at various lipid-water interfaces. (in preparation)

Other Publications:

• Jens Bredenbeck, Avishek Ghosh, Marc Smits, Mischa Bonn.

Ultrafast Two Dimensional-Infrared Spectroscopy of a Molecular Monolayer. J. Am. Chem. Soc.

130 (7), 2152-2153 (2008)

• Jens Bredenbeck, Avishek Ghosh, Marc Smits, Han-Kwang Nienhuys and Mischa Bonn.

Interface-Specific Ultrafast Two-Dimensional Vibrational Spectroscopy. Acc. Chem. Res. (in press) (Web published: May 14, 2009).

contributed equally to this work

(6)

Contents

Chapter 1

Introduction 1

1.1 Interfaces - A General Perspective . . . 1

1.2 Interfaces in Biology . . . 3

1.3 Membranes and Interfacial Water . . . 4

1.4 Challenges in probing interfacial water . . . 6

1.5 Vibrational Sum Frequency Generation (VSFG) Spectroscopy - The Surface Probe . 7 1.5.1 Concepts in Nonlinear Polarization . . . 7

1.5.2 Sum Frequency Generation . . . 8

1.5.3 Vibrational Sum Frequency Generation at Interfaces . . . 9

1.5.3.1 Properties ofχ(2) and surface-sensitivity of VSFG . . . 11

1.5.3.2 VSFG - A surface-specific IR probe . . . 12

1.6 Time-Resolved SFG Spectroscopy . . . 13

1.7 Thesis Outline . . . 15

Chapter 2 Experimental Technique 16 2.1 Introduction . . . 17

2.2 Generation of Mid-IR and Visible upconversion pulses for VSFG . . . 17

2.3 Instrumentation at Sample . . . 23

2.4 Detection Schemes and Data Acquisition . . . 24

2.5 Software and Electronics . . . 27

2.6 Getting Started . . . 29

Chapter 3 Ultrafast Energy Transfer between Interfacial and Bulk Water at the Air-Water Interface 31 3.1 Introduction . . . 32

3.2 Static and Time-resolved VSFG experiments . . . 33

3.3 Results and Discussion . . . 36

3.3.1 Static SFG Results . . . 36

3.3.2 Time-resolved SFG Results . . . 37

3.4 Conclusions . . . 42

Chapter 4 Ultrafast Dynamics of Water at various lipid-water interfaces 43 4.1 Introduction . . . 44

4.2 Surface-specific Vibrational Spectroscopy: Frequency- and Time-Resolved Sum Fre- quency Generation . . . 44

(7)

Contents

4.3 Experimental Section . . . 46

4.4 Results and Discussion . . . 47

4.4.1 Frequency-resolved SFG experiments . . . 47

4.4.2 Time-resolved SFG experiments . . . 49

4.4.2.1 DPTAP/H2O Interface . . . 51

4.4.2.2 DMPS/H2O Interface . . . 54

4.4.2.3 DPPC/H2O and DPPE/H2O Interface . . . 55

4.5 Conclusion . . . 59

Chapter 5 Structure and Dynamics of Water at Model Human Lung Surfactant interfaces 61 5.1 Introduction . . . 62

5.1.1 Lung Surfactants and Interfacial Water . . . 62

5.1.2 Frequency- and Time-Resolved SFG on model lung surfactant monolayers on water . . . 63

5.2 Results and Analysis . . . 65

5.2.1 Frequency-resolved VSFG measurements . . . 65

5.2.2 Time-resolved SFG measurements . . . 67

5.3 Discussion . . . 70

5.3.1 Frequency-resolved SFG measurements . . . 70

5.3.2 Time-resolved SFG measurements . . . 70

5.4 Conclusions . . . 72

Chapter 6 Ultrafast energy flow in model biological membranes 74 6.1 Introduction . . . 75

6.2 Time-resolved Surface Spectroscopy . . . 77

6.2.1 Steady-state Sum Frequency Generation . . . 77

6.2.2 Time-resolved Sum Frequency Generation . . . 78

6.3 Experiment . . . 79

6.3.1 Sample preparation . . . 79

6.4 Results . . . 80

6.4.1 Static SFG Spectra . . . 80

6.4.2 Time Resolved SFG Spectra . . . 82

6.4.2.1 DPPC . . . 83

6.4.2.2 DOPC . . . 85

6.4.2.3 Heat transfer across the monolayer . . . 85

6.4.3 Data Analysis . . . 87

6.5 Discussion . . . 89

6.6 Conclusions and Outlook . . . 90

Bibliography 91

Summary 104

Samenvatting 108

Dankwoord 112

Curriculum Vitae 114

Referenties

GERELATEERDE DOCUMENTEN

In this thesis, the nonlinear optical technique of vibrational sum frequency generation (VSFG) spectroscopy is used to directly probe the structure of interfacial water and

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden. Downloaded

In this thesis I present briefly, the vibrationally-resonant sum frequency generation (VSFG) tech- nique that we use to to probe molecular processes at liquid-vapor interfaces

The first section describes the scheme for generating high intensity mid-IR pulses (2900-3500 cm −1 ) and the home-built pulse shaper for generating the narrowband visible

Although the rigid silica surface (required for TIR-SFG) has been shown to induce order in the interfacial water compared to water at the water/air interface [[107]], the effect of

This suggests a similar mechanism of energy flow dynamics being operative at the DMPS/water interface as at the DPTAP/water interface, showing signatures of strongly bound

It is the main goal of this Letter to demonstrate the validity of the naı¨ve conjecture from quantum-mechanical principles; i.e., we directly relate (i) the relaxation

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is