• No results found

University of Groningen Spatio-temporal integration properties of the human visual system Grillini, Alessandro

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Spatio-temporal integration properties of the human visual system Grillini, Alessandro"

Copied!
17
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Spatio-temporal integration properties of the human visual system

Grillini, Alessandro

DOI:

10.33612/diss.136424282

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Grillini, A. (2020). Spatio-temporal integration properties of the human visual system: Theoretical models and clinical applications. University of Groningen. https://doi.org/10.33612/diss.136424282

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Bibliography

1. Mulligan, J. B. Sensory processing delays measured with the eye-movement correlogram. en. Ann. N. Y. Acad. Sci. 956, 476–478 (Apr. 2002).

2. Mulligan, J. B., Stevenson, S. B. & Cormack, L. K. Reflexive and voluntary control of smooth eye movements 2013.

3. Bouma, H. Interaction effects in parafoveal letter recognition. en. Nature 226, 177–178 (Apr. 1970).

4. Kandel, E. Principles of Neural Science, Fifth Edition en (McGraw Hill Professional, 2013).

5. Yarbus, A. L. Eye movements during the examination of complicated objects. en. Biofizika 6(2), 52–56 (1961).

6. Miles, F & Fuller, J. Visual tracking and the primate flocculus 1975.

7. Van Gisbergen, J. A., Robinson, D. A. & Gielen, S. A quantitative analysis of generation of saccadic eye movements by burst neurons. en. J. Neurophysiol. 45, 417–442 (Mar. 1981).

8. Waespe, W & Henn, V. Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. en. Exp. Brain Res. 27, 523–538 (Apr. 1977).

9. Leigh, R. J. & Zee, D. S. The Neurology of Eye Movements 2015.

10. Levi, D. M. Crowding–an essential bottleneck for object recognition: a mini-review. en. Vision Res. 48, 635–654 (Feb. 2008).

11. Harrison, W. J. & Bex, P. J. A Unifying Model of Orientation Crowding in Peripheral Vision. en. Curr. Biol. 25, 3213–3219 (Dec. 2015).

12. Van den Berg, R., Roerdink, J. B.T. M. & Cornelissen, F. W. A neurophysiologi-cally plausible population code model for feature integration explains visual crowding. en. PLoS Comput. Biol. 6, e1000646 (Jan. 2010).

(3)

13. Pelli, D. G. & Tillman, K. A. The uncrowded window of object recognition. en. Nat. Neurosci. 11, 1129–1135 (Oct. 2008).

14. He, S, Cavanagh, P & Intriligator, J. Attentional resolution and the locus of visual awareness. en. Nature 383, 334–337 (Sept. 1996).

15. Strasburger, H. Unfocused spatial attention underlies the crowding effect in indirect form vision. en. J. Vis. 5, 1024–1037 (Dec. 2005).

16. Chen, J. et al. Attention-dependent early cortical suppression contributes to crowding. en. J. Neurosci. 34, 10465–10474 (Aug. 2014).

17. Robinson, D. A. A method of measuring eye movement using a scleral search coil in a magnetic field. en. IEEE Trans. Biomed. Eng. 10, 137–145 (Oct. 1963). 18. Delabarre, E. B. A Method of Recording Eye-Movements 1898.

19. Cornsweet, T. N. & Crane, H. D. Accurate two-dimensional eye tracker using first and fourth Purkinje images. en. J. Opt. Soc. Am. 63, 921–928 (Aug. 1973). 20. Usrey, W. M. & Reid, R. C. Synchronous activity in the visual system. en. Annu.

Rev. Physiol. 61, 435–456 (1999).

21. Zemel, R. S., Dayan, P. & Pouget, A. Probabilistic Interpretation of Population Codes 1998.

22. Pouget, A, Dayan, P & Zemel, R. Information processing with population codes. en. Nat. Rev. Neurosci. 1, 125–132 (Nov. 2000).

23. Zohary, E, Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. en. Nature 370, 140–143 (July 1994).

24. Cohen, M. R. & Kohn, A. Measuring and interpreting neuronal correlations. en. Nat. Neurosci. 14, 811–819 (June 2011).

25. Akaike, H. Fitting autoregressive models for prediction 1969.

26. Bonnen, K., Burge, J., Yates, J., Pillow, J. & Cormack, L. K. Continuous psy-chophysics: Target-tracking to measure visual sensitivity. en. J. Vis. 15 (Mar. 2015).

27. Huk, A., Bonnen, K. & He, B. J. Beyond Trial-Based Paradigms: Continuous Behavior, Ongoing Neural Activity, and Natural Stimuli. en. J. Neurosci. 38, 7551–7558 (Aug. 2018).

28. Bach, M. The Freiburg Visual Acuity Test-variability unchanged by post-hoc re-analysis. en. Graefes Arch. Clin. Exp. Ophthalmol. 245, 965–971 (July 2007). 29. Pelli, D. G. The VideoToolbox software for visual psychophysics: transforming

numbers into movies. en. Spat. Vis. 10, 437–442 (1997).

30. Cornelissen, F. W., Peters, E. M. & Palmer, J. The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. en. Behav. Res. Methods Instrum. Comput. 34, 613–617 (Nov. 2002).

(4)

31. Gordon, A. D., Breiman, L, Friedman, J. H., Olshen, R. A. & Stone, C. J. Classifi-cation and Regression Trees 1984.

32. Indurkhya, N & Weiss, S. Estimating performance gains for voted decision trees 1998. 33. Coeckelbergh, T. R. M., Cornelissen, F. W., Brouwer, W. H. & Kooijman, A. C. The effect of visual field defects on eye movements and practical fitness to drive. en. Vision Res. 42, 669–677 (Mar. 2002).

34. Schuett, S., Kentridge, R. W., Zihl, J. & Heywood, C. A. Adaptation of eye-movements to simulated hemianopia in reading and visual exploration: Transfer or specificity? en. Neuropsychologia 47, 1712–1720 (June 2009).

35. Walsh, D. V. & Liu, L. Adaptation to a simulated central scotoma during visual search training 2014.

36. Crabb, D. P., Smith, N. D. & Zhu, H. What’s on TV? Detecting age-related neurodegenerative eye disease using eye movement scanpaths. en. Front. Aging Neurosci. 6, 312 (Nov. 2014).

37. Tolentino, M. J., Miller, S, Gaudio, A. R. & Sandberg, M. A. Visual field deficits in early age-related macular degeneration. en. Vision Res. 34, 409–413 (Feb. 1994). 38. Heijl, A & Bengtsson, B. Early Visual Field Defects in Glaucoma: A Study of Eyes

Developing Field Loss 1996.

39. Williams, D. Visual function in patients with homonymous hemianopia 1997. 40. Greite, J.-H., H. Greite, J, P. Zumbansen, H & Adamczyk, R. Visual Field in

Diabetic Retinopathy (DR) 1981.

41. Voipio, H. & Karjalainen, K. Retinal and visual field changes in chloroquine retinopa-thy 2009.

42. Alexander, K. R., Barnes, C. S., Fishman, G. A., Pokorny, J. & Smith, V. C. Contrast-Processing Deficits in Melanoma-Associated Retinopathy 2004.

43. Barton, J. J. S. & Benatar, M. Automated Perimetry (Humphrey Field Analyzer) 2003. 44. Szatmáry, G. Can Swedish Interactive Thresholding Algorithm Fast Perimetry Be

Used as an Alternative to Goldmann Perimetry in Neuro-ophthalmic Practice? 2002. 45. Schultz, J. S. The “Learning Effect” in Automated Perimetry 1990.

46. Wild, J, Kim, L, Pacey, I & Cunliffe, I. Evidence for a Learning Effect in Short-Wavelength Automated Perimetry 2006.

47. Johnson, C. A., Adams, C. W. & Lewis, R. A. Fatigue effects in automated perimetry 1988.

48. Montolio, F. G. J., Junoy Montolio, F. G., Wesselink, C., Gordijn, M. & Jansonius, N. M. Factors That Influence Standard Automated Perimetry Test Results in Glaucoma: Test Reliability, Technician Experience, Time of Day, and Season 2012.

(5)

49. Walters, B. C., Rahi, J. S. & Cumberland, P. M. Perimetry in children: survey of current practices in the United Kingdom and Ireland. en. Ophthalmic Epidemiol. 19,358–363 (Dec. 2012).

50. Gangeddula, V., Ranchet, M., Akinwuntan, A. E., Bollinger, K. & Devos, H. Effect of Cognitive Demand on Functional Visual Field Performance in Senior Drivers with Glaucoma. en. Front. Aging Neurosci. 9, 286 (Aug. 2017).

51. Jones, P. R., Smith, N. D., Bi, W. & Crabb, D. P. Portable Perimetry Using Eye-Tracking on a Tablet Computer—A Feasibility Assessment 2019.

52. Pel, J. J. M., van Beijsterveld, M. C. M., Thepass, G. & van der Steen, J. Validity and Repeatability of Saccadic Response Times Across the Visual Field in Eye Movement Perimetry. en. Transl. Vis. Sci. Technol. 2, 3 (Nov. 2013).

53. Grillini, A., Ombelet, D., Soans, R. S. & Cornelissen, F. W. Towards using the spatio-temporal properties of eye movements to classify visual field defects 2018. 54. Smith, S & Nichols, T. Threshold-free cluster enhancement: Addressing problems of

smoothing, threshold dependence and localisation in cluster inference 2009.

55. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors 1986.

56. Cho, K. et al. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation 2014.

57. Tieleman, T. & Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. Coursera: Neural networks for machine learning 4, 26–31 (2012).

58. Van der Stigchel, S. et al. Macular degeneration affects eye movement behavior during visual search. en. Front. Psychol. 4, 579 (Sept. 2013).

59. Burton, R., Smith, N. D. & Crabb, D. P. Eye movements and reading in glaucoma: observations on patients with advanced visual field loss. en. Graefes Arch. Clin. Exp. Ophthalmol. 252, 1621–1630 (Oct. 2014).

60. Cornelissen, F. W., Bruin, K. J. & Kooijman, A. C. The influence of artificial scotomas on eye movements during visual search. en. Optom. Vis. Sci. 82, 27–35 (Jan. 2005).

61. McIlreavy, L., Fiser, J. & Bex, P. J. Impact of simulated central scotomas on visual search in natural scenes. en. Optom. Vis. Sci. 89, 1385–1394 (Sept. 2012).

62. Gardiner, S. K., Swanson, W. H., Goren, D., Mansberger, S. L. & Demirel, S. Assessment of the reliability of standard automated perimetry in regions of glaucomatous damage. en. Ophthalmology 121, 1359–1369 (July 2014).

63. Diniz-Filho, A., Delano-Wood, L., Daga, F. B., Cronemberger, S. & Medeiros, F. A. Association Between Neurocognitive Decline and Visual Field Variability in Glaucoma. en. JAMA Ophthalmol. 135, 734–739 (July 2017).

(6)

64. Patel, D. E. et al. Study of Optimal Perimetric Testing in Children (OPTIC): Feasibility, Reliability and Repeatability of Perimetry in Children. en. PLoS One 10,e0130895 (June 2015).

65. Tschopp, C et al. Automated visual field examination in children aged 5-8 years. Part II: Normative values. en. Vision Res. 38, 2211–2218 (July 1998).

66. Kim, D. E., Eizenman, M, Trope, G. E. & Kranemann, C. Eye movement perimetry in Proceedings of 17th International Conference of the Engineering in Medicine and Biology Society 2 (IEEE, Montreal, Que., Canada, 1995), 1629–1630.

67. Ishiyama, Y., Murata, H. & Asaoka, R. The Usefulness of Gaze Tracking as an Index of Visual Field Reliability in Glaucoma Patients. en. Invest. Ophthalmol. Vis. Sci. 56, 6233–6236 (Oct. 2015).

68. Asaoka, R., Fujino, Y., Aoki, S., Matsuura, M. & Murata, H. Estimating the Reliability of Glaucomatous Visual Field for the Accurate Assessment of Progression Using the Gaze-Tracking and Reliability Indices 2019.

69. Elze, T. et al. Patterns of functional vision loss in glaucoma determined with archetypal analysis. en. J. R. Soc. Interface 12 (Feb. 2015).

70. Abu-Mostafa, Y. S., Magdon-Ismail, M. & Lin, H.-T. Learning from Data: A Short Course en (Jan. 2012).

71. Brochu, E., Cora, V. M. & de Freitas, N. A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning. CoRR abs/1012.2599. arXiv: 1012.2599. http://arxiv.org/abs/1012.2599(2010).

72. Grillini, A., Renken, R. J., Vrijling, A. C. L., Heutink, J. H. C. & Cornelissen, F. W. Eye movement evaluation in Multiple Sclerosis and Parkinson’s Disease using a Standardized Oculomotor and Neuro-ophthalmic Disorder Assessment (SONDA) 2020.

73. Rottach, K. G., Riley, D. E., DiScenna, A. O., Zivotofsky, A. Z. & Leigh, R. J. Dynamic properties of horizontal and vertical eye movements in parkinsonian syndromes. en. Ann. Neurol. 39, 368–377 (Mar. 1996).

74. Jacobs, N. A. & Patterson, I. H. Variability of the hill of vision and its significance in automated perimetry. en. Br. J. Ophthalmol. 69, 824–826 (Nov. 1985).

75. Shabana, N., Pérès, V. C., Carkeet, A. & Chew, P. T. K. Motion Perception in Glaucoma Patients. Surv. Ophthalmol. 48, 92–106 (2003).

76. Mosimann, U. P. et al. Visual perception in Parkinson disease dementia and dementia with Lewy bodies. en. Neurology 63, 2091–2096 (Dec. 2004).

77. Burr, D. & Thompson, P. Motion psychophysics: 1985-2010. en. Vision Res. 51, 1431–1456 (July 2011).

(7)

78. Yu, T.-Y. et al. Global motion perception in 2-year-old children: a method for psychophysical assessment and relationships with clinical measures of visual function. en. Invest. Ophthalmol. Vis. Sci. 54, 8408–8419 (Dec. 2013).

79. Grillini, A., Ombelet, D., Soans, R. S. & Cornelissen, F. W. Towards using the spatio-temporal properties of eye movements to classify visual field defects in Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications - ETRA ’18 (2018). 80. Brainard, D. H. The Psychophysics Toolbox 1997.

81. Huk, A. C. & Heeger, D. J. Task-Related Modulation of Visual Cortex 2000. 82. Goldberg, J. M. & Fernandez, C. Physiology of peripheral neurons innervating

semicircular canals of the squirrel monkey. 3. Variations among units in their discharge properties. en. J. Neurophysiol. 34, 676–684 (July 1971).

83. Newsome, W. T., Wurtz, R. H. & Komatsu, H. Relation of cortical areas MT and MST to pursuit eye movements. II. Differentiation of retinal from extraretinal inputs. en. J. Neurophysiol. 60, 604–620 (Aug. 1988).

84. Arnold, D. B. & Robinson, D. A. The oculomotor integrator: testing of a neural network model. en. Exp. Brain Res. 113, 57–74 (Jan. 1997).

85. Derrington, A. M., Allen, H. A. & Delicato, L. S. Visual mechanisms of motion analysis and motion perception. en. Annu. Rev. Psychol. 55, 181–205 (2004). 86. Sheliga, B. M., Chen, K. J., Fitzgibbon, E. J. & Miles, F. A. Initial ocular following

in humans: a response to first-order motion energy. en. Vision Res. 45, 3307–3321 (Nov. 2005).

87. Rashbass, C. The relationship between saccadic and smooth tracking eye move-ments. en. J. Physiol. 159, 326–338 (Dec. 1961).

88. Robinson, D. A. The mechanics of human smooth pursuit eye movement. en. J. Physiol. 180, 569–591 (Oct. 1965).

89. Engel, K. C., Anderson, J. H. & Soechting, J. F. Oculomotor Tracking in Two Dimensions 1999.

90. Gegenfurtner, K. R., Xing, D., Scott, B. H. & Hawken, M. J. A comparison of pursuit eye movement and perceptual performance in speed discrimination. en. J. Vis. 3, 865–876 (Dec. 2003).

91. Tavassoli, A. & Ringach, D. L. When your eyes see more than you do. en. Curr. Biol. 20, R93–4 (Feb. 2010).

92. Newsome, W. T., Britten, K. H. & Movshon, J. A. Neuronal correlates of a perceptual decision. en. Nature 341, 52–54 (Sept. 1989).

93. Pasternak, T & Merigan, W. H. Motion perception following lesions of the superior temporal sulcus in the monkey. en. Cereb. Cortex 4, 247–259 (May 1994).

(8)

94. Rudolph, K & Pasternak, T. Transient and permanent deficits in motion per-ception after lesions of cortical areas MT and MST in the macaque monkey. en. Cereb. Cortex 9, 90–100 (Jan. 1999).

95. Dursteler, M. R. & Wurtz, R. H. Pursuit and optokinetic deficits following chemical lesions of cortical areas MT and MST 1988.

96. Ilg, U. J. & Thier, P. Visual tracking neurons in primate area MST are activated by smooth-pursuit eye movements of an “imaginary” target. en. J. Neurophysiol. 90,1489–1502 (Sept. 2003).

97. Komatsu, H & Wurtz, R. H. Modulation of pursuit eye movements by stimula-tion of cortical areas MT and MST. en. J. Neurophysiol. 62, 31–47 (July 1989). 98. Marcar, V. L., Zihl, J & Cowey, A. Comparing the visual deficits of a motion

blind patient with the visual deficits of monkeys with area MT removed. en. Neuropsychologia 35, 1459–1465 (Nov. 1997).

99. Spering, M. & Montagnini, A. Do we track what we see? Common versus inde-pendent processing for motion perception and smooth pursuit eye movements: a review. en. Vision Res. 51, 836–852 (Apr. 2011).

100. Hess, R. F., Hutchinson, C. V., Ledgeway, T & Mansouri, B. Binocular influences on global motion processing in the human visual system. en. Vision Res. 47, 1682–1692 (June 2007).

101. Hess, R. F. & Aaen-Stockdale, C. Global motion processing: The effect of spatial scale and eccentricity. en. J. Vis. 8, 11.1–11 (Apr. 2008).

102. Burr, D. C., Morrone, M. C. & Vaina, L. M. Large receptive fields for optic flow detection in humans. en. Vision Res. 38, 1731–1743 (June 1998).

103. Burr, D. C. & Santoro, L. Temporal integration of optic flow, measured by contrast and coherence thresholds 2001.

104. Nishida, S & Ashida, H. A hierarchical structure of motion system revealed by interocular transfer of flicker motion aftereffects. en. Vision Res. 40, 265–278 (2000).

105. Nishida, S & Sato, T. Motion aftereffect with flickering test patterns reveals higher stages of motion processing. en. Vision Res. 35, 477–490 (Feb. 1995). 106. Wilson, H. R. & Kim, J. A model for motion coherence and transparency 1994. 107. Matthews, N, Liu, Z, Geesaman, B. J. & Qian, N. Perceptual learning on

orienta-tion and direcorienta-tion discriminaorienta-tion. en. Vision Res. 39, 3692–3701 (Nov. 1999). 108. Matthews, N, Luber, B, Qian, N & Lisanby, S. H. Transcranial magnetic

stimula-tion differentially affects speed and direcstimula-tion judgments. en. Exp. Brain Res. 140, 397–406 (Oct. 2001).

109. Saffell, T. N. & Matthews, N. Perceptual learning reveals separate neural events for speed and direction 2010.

(9)

110. Brouwer, A.-M., Middelburg, T., Smeets, J. B. J. & Brenner, E. Hitting moving targets: a dissociation between the use of the target’s speed and direction of motion. en. Exp. Brain Res. 152, 368–375 (Oct. 2003).

111. Alvarez, G. A. & Cavanagh, P. Independent resources for attentional tracking in the left and right visual hemifields. en. Psychol. Sci. 16, 637–643 (Aug. 2005). 112. Cornelissen, F. W. & van den Dobbelsteen, J. J. Heading detection with simulated

visual field defects 1999.

113. Snowden, R. J. & Kavanagh, E. Motion perception in the ageing visual system: minimum motion, motion coherence, and speed discrimination thresholds. en. Perception 35, 9–24 (2006).

114. Frohman, E. M., Frohman, T. C., Zee, D. S., McColl, R. & Galetta, S. The neuro-ophthalmology of multiple sclerosis. en. Lancet Neurol. 4, 111–121 (Feb. 2005). 115. Graves, J. & Balcer, L. J. Eye disorders in patients with multiple sclerosis: natural

history and management. en. Clin. Ophthalmol. 4, 1409–1422 (Dec. 2010). 116. Derwenskus, J. et al. Abnormal eye movements predict disability in MS:

two-year follow-up. en. Ann. N. Y. Acad. Sci. 1039, 521–523 (Apr. 2005).

117. Pretegiani, E. & Optican, L. M. Eye Movements in Parkinson’s Disease and Inherited Parkinsonian Syndromes 2017.

118. Abadi, R. V. & Gowen, E. Characteristics of saccadic intrusions. en. Vision Res. 44,2675–2690 (Oct. 2004).

119. Rascol, O et al. Square wave jerks in parkinsonian syndromes. en. J. Neurol. Neurosurg. Psychiatry 54, 599–602 (July 1991).

120. Marandi, R. Z. & Gazerani, P. Aging and eye tracking: in the quest for objective biomarkers 2019.

121. Collewijn, H, Erkelens, C. J. & Steinman, R. M. Binocular co-ordination of human horizontal saccadic eye movements. en. J. Physiol. 404, 157–182 (Oct. 1988). 122. Bahill, A. T., Terry Bahill, A, Clark, M. R. & Stark, L. The main sequence, a tool for

studying human eye movements 1975.

123. Nij Bijvank, J. A. et al. A standardized protocol for quantification of saccadic eye movements: DEMoNS. en. PLoS One 13, e0200695 (July 2018).

124. Finke, C. et al. Dynamics of saccade parameters in multiple sclerosis patients with fatigue. en. J. Neurol. 259, 2656–2663 (Dec. 2012).

125. Serra, A., Chisari, C. G. & Matta, M. Eye Movement Abnormalities in Multiple Sclerosis: Pathogenesis, Modeling, and Treatment. en. Front. Neurol. 9, 31 (Feb. 2018).

126. Serra, A., Derwenskus, J., Downey, D. L. & Leigh, R. J. Role of eye movement examination and subjective visual vertical in clinical evaluation of multiple sclerosis. en. J. Neurol. 250, 569–575 (May 2003).

(10)

127. Mallery, R. M. et al. Visual Fixation Instability in Multiple Sclerosis Measured Using SLO-OCT. en. Invest. Ophthalmol. Vis. Sci. 59, 196–201 (Jan. 2018). 128. Lizak, N. et al. Impairment of Smooth Pursuit as a Marker of Early Multiple

Sclerosis. en. Front. Neurol. 7, 206 (Nov. 2016).

129. Huygen, P. L. M., E J J & Hommes, O. R. The Vestibulo-Ocular Reflex in Multiple Sclerosis 1986.

130. Jozefowicz-Korczynska, M, Łukomski, M & Pajor, A. Identification of internuclear ophthalmoplegia signs in multiple sclerosis patients 2008.

131. Bolanos, I, Lozano, D & Cantu, C. Internuclear ophthalmoplegia: causes and long-term follow-up in 65 patients 2004.

132. Frohman, T. C. et al. Accuracy of clinical detection of INO in MS: corroboration with quantitative infrared oculography. en. Neurology 61, 848–850 (Sept. 2003). 133. Winograd-Gurvich, C, Georgiou-Karistianis, N, Fitzgerald, P. B., Millist, L & White, O. B. Self-paced saccades and saccades to oddball targets in Parkinson’s disease. en. Brain Res. 1106, 134–141 (Aug. 2006).

134. Behrens, F, Mackeben, M & Schröder-Preikschat, W. An improved algorithm for automatic detection of saccades in eye movement data and for calculating saccade parameters. en. Behav. Res. Methods 42, 701–708 (Aug. 2010).

135. Thorndike, R. L. Who belongs in the family? 1953.

136. Frohman, E. M. et al. Quantitative oculographic characterisation of internuclear ophthalmoparesis in multiple sclerosis: the versional dysconjugacy index Z score. en. J. Neurol. Neurosurg. Psychiatry 73, 51–55 (July 2002).

137. Nij Bijvank, J. A. et al. Diagnosing and quantifying a common deficit in multiple sclerosis: Internuclear ophthalmoplegia. en. Neurology 92, e2299–e2308 (May 2019).

138. Frohman, E. M. et al. Ocular contrapulsion in multiple sclerosis: clinical features and pathophysiological mechanisms. en. J. Neurol. Neurosurg. Psychiatry 70, 688– 692 (May 2001).

139. Vidailhet, M. et al. Eye movements in parkinsonian syndromes 1994.

140. White, O. B., Saint-Cyr, J. A. & Sharpe, J. A. Ocular motor deficits in Parkinson’s Disease 1983.

141. Waterston, J. A., Barnes, G. R., Grealy, M. A. & Collins, S. Abnormalities of smooth eye and head movement control in Parkinson’s disease. en. Ann. Neurol. 39,749–760 (June 1996).

142. Gilaie-Dotan, S. et al. The role of human ventral visual cortex in motion perception 2013.

143. Cameron, I. G. M. et al. Impaired executive function signals in motor brain regions in Parkinson’s disease. en. Neuroimage 60, 1156–1170 (Apr. 2012).

(11)

144. Terao, Y., Fukuda, H., Ugawa, Y. & Hikosaka, O. New perspectives on the pathophysiology of Parkinson’s disease as assessed by saccade performance: a clinical review. en. Clin. Neurophysiol. 124, 1491–1506 (Aug. 2013).

145. Rivaud-Pechoux, S, Vidailhet, M, Brandel, J. P. & Gaymard, B. Mixing pro- and antisaccades in patients with parkinsonian syndromes 2006.

146. Tseng, P.-H. et al. High-throughput classification of clinical populations from natural viewing eye movements. en. J. Neurol. 260, 275–284 (Jan. 2013).

147. Bedell, H. E. & Stevenson, S. B. Eye movement testing in clinical examination 2013. 148. Smith, J. L. Neuro-ophthalmology now! en (May 1986).

149. Hertle, R. W. et al. Horizontal rectus tenotomy in patients with congenital nystagmus: results in 10 adults. en. Ophthalmology 110, 2097–2105 (Nov. 2003). 150. McLean, R., Proudlock, F., Thomas, S., Degg, C. & Gottlob, I. Congenital

nystag-mus: randomized, controlled, double-masked trial of memantine/gabapentin. en. Ann. Neurol. 61, 130–138 (Feb. 2007).

151. Kaski, D. & Bronstein, A. M. Ocular Tremor in Parkinson’s Disease: Discussion, Debate, and Controversy 2017.

152. Thiagarajan, P., Ciuffreda, K. J. & Ludlam, D. P. Vergence dysfunction in mild traumatic brain injury (mTBI): a review. en. Ophthalmic Physiol. Opt. 31, 456–468 (Sept. 2011).

153. Holzman, P. S., Proctor, L. R. & Hughes, D. W. Eye-tracking patterns in schizophrenia. en. Science 181, 179–181 (July 1973).

154. Mosimann, U. P. et al. Saccadic eye movement changes in Parkinson’s disease dementia and dementia with Lewy bodies. en. Brain 128, 1267–1276 (June 2005). 155. Hartline, H. K. The effects of spatial summation in the retina on the excitation

of the fibers of the optic nerve. Am. J. Physiol. 130, 700–711 (1940).

156. Barlow, H. B. Summation and inhibition in the frog’s retina. en. J. Physiol. 119, 69–88 (Jan. 1953).

157. Freed, M. A. & Sterling, P. The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. en. J. Neurosci. 8, 2303–2320 (July 1988).

158. Smith, A. T., Singh, K. D., Williams, A. L. & Greenlee, M. W. Estimating receptive field size from fMRI data in human striate and extrastriate visual cortex. en. Cereb. Cortex 11, 1182–1190 (Dec. 2001).

159. Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).

160. Field, D. J., Hayes, A & Hess, R. F. Contour integration by the human visual system: evidence for a local “association field”. en. Vision Res. 33, 173–193 (Jan. 1993).

(12)

161. Livne, T. & Sagi, D. Configuration influence on crowding. en. J. Vis. 7, 4.1–12 (Feb. 2007).

162. Livne, T & Sagi, D. Spatial interactions in crowding: Effects of flankers’ relations. J. Vis. 9, 983–983 (2010).

163. Chakravarthi, R. & Pelli, D. G. The same binding in contour integration and crowding. en. J. Vis. 11 (July 2011).

164. May, K. A. & Hess, R. F. Ladder contours are undetectable in the periphery: A crowding effect? J. Vis. 7, 9 (2007).

165. Van den Berg, R., Johnson, A., Martinez Anton, A., Schepers, A. L. & Cornelissen, F. W. Comparing crowding in human and ideal observers. en. J. Vis. 12, 13 (June 2012).

166. Dayan, P. & Solomon, J. A. Selective Bayes: attentional load and crowding. en. Vision Res. 50, 2248–2260 (Oct. 2010).

167. Sun, G. J., Chung, S. T. L. & Tjan, B. S. Ideal observer analysis of crowding and the reduction of crowding through learning. en. J. Vis. 10, 16 (May 2010). 168. Nandy, A. S. & Tjan, B. S. Saccade-confounded image statistics explain visual

crowding. en. Nat. Neurosci. 15, 463–9, S1–2 (Jan. 2012).

169. Parkes, L, Lund, J, Angelucci, A, Solomon, J. A. & Morgan, M. Compulsory averaging of crowded orientation signals in human vision. en. Nat. Neurosci. 4, 739–744 (July 2001).

170. Greenwood, J. A., Bex, P. J. & Dakin, S. C. Crowding changes appearance. en. Curr. Biol. 20, 496–501 (Mar. 2010).

171. Zhu, Z., Fan, Z. & Fang, F. Two-stage perceptual learning to break visual crowd-ing. en. J. Vis. 16, 16 (2016).

172. Põder, E. Crowding, feature integration, and two kinds of “attention”. J. Vis. 6, 7 (2006).

173. Põder, E. Effect of colour pop-out on the recognition of letters in crowding conditions. en. Psychol. Res. 71, 641–645 (Nov. 2007).

174. Mareschal, I., Morgan, M. J. & Solomon, J. A. Attentional modulation of crowd-ing. en. Vision Res. 50, 805–809 (Apr. 2010).

175. Bacigalupo, F. & Luck, S. J. The allocation of attention and working memory in visual crowding. en. J. Cogn. Neurosci. 27, 1180–1193 (June 2015).

176. Kanashiro, T., Ocker, G. K., Cohen, M. R. & Doiron, B. Attentional modulation of neuronal variability in circuit models of cortex. en. Elife 6 (June 2017). 177. Rabinowitz, N. C., Goris, R. L., Cohen, M. & Simoncelli, E. P. Attention stabilizes

(13)

178. Pestilli, F., Ling, S. & Carrasco, M. A population-coding model of attention’s influence on contrast response: Estimating neural effects from psychophysical data. Vision Res. 49, 1144–1153 (2009).

179. Ling, S., Liu, T. & Carrasco, M. How spatial and feature-based attention affect the gain and tuning of population responses. Vision Res. 49, 1194–1204 (2009). 180. Herrmann, K., Heeger, D. J. & Carrasco, M. Feature-based attention enhances

performance by increasing response gain. Vision Res. 74, 10–20 (2012).

181. Cohen, M. R. & Maunsell, J. H. R. Using neuronal populations to study the mechanisms underlying spatial and feature attention. en. Neuron 70, 1192–1204 (June 2011).

182. Kahneman, D & Beatty, J. Pupil diameter and load on memory. en. Science 154, 1583–1585 (Dec. 1966).

183. Brainard, D. H. The Psychophysics Toolbox. en. Spat. Vis. 10, 433–436 (1997). 184. Petrov, Y., Verghese, P. & McKee, S. P. Collinear facilitation is largely uncertainty

reduction. en. J. Vis. 6, 170–178 (Feb. 2006).

185. Michel, M. & Geisler, W. S. Intrinsic position uncertainty explains detection and localization performance in peripheral vision. en. J. Vis. 11, 18 (Jan. 2011). 186. Abbott, L. F. & Dayan, P. The effect of correlated variability on the accuracy of a

population code. en. Neural Comput. 11, 91–101 (Jan. 1999).

187. Averbeck, B. B., Latham, P. E. & Pouget, A. Neural correlations, population coding and computation. en. Nat. Rev. Neurosci. 7, 358–366 (May 2006).

188. Nirenberg, S. & Latham, P. E. Decoding neuronal spike trains: how important are correlations? en. Proc. Natl. Acad. Sci. U. S. A. 100, 7348–7353 (June 2003). 189. Cohen, M. R. & Maunsell, J. H. R. Attention improves performance primarily by

reducing interneuronal correlations. en. Nat. Neurosci. 12, 1594–1600 (Dec. 2009). 190. Mitchell, J. F., Sundberg, K. A. & Reynolds, J. H. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. en. Neuron 63, 879–888 (Sept. 2009).

191. Boynton, G. M. Attention and visual perception. en. Curr. Opin. Neurobiol. 15, 465–469 (Aug. 2005).

192. Serences, J. T. & Boynton, G. M. Feature-based attentional modulations in the absence of direct visual stimulation. en. Neuron 55, 301–312 (July 2007). 193. Ross, J & Speed, H. D. Contrast adaptation and contrast masking in human

vision. en. Proc. Biol. Sci. 246, 61–69 (Oct. 1991).

194. Wilkinson, F, Wilson, H. R. & Ellemberg, D. Lateral interactions in peripherally viewed texture arrays. en. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 14, 2057–2068 (Sept. 1997).

(14)

195. Nazir, T. A. Effects of lateral masking and spatial precueing on gap-resolution in central and peripheral vision. en. Vision Res. 32, 771–777 (Apr. 1992).

196. Scolari, M., Kohnen, A., Barton, B. & Awh, E. Spatial attention, preview, and popout: which factors influence critical spacing in crowded displays? en. J. Vis. 7,7.1–23 (Feb. 2007).

197. Intriligator, J & Cavanagh, P. The spatial resolution of visual attention. en. Cogn. Psychol. 43, 171–216 (Nov. 2001).

198. Binda, P., Pereverzeva, M. & Murray, S. O. Pupil size reflects the focus of feature-based attention. en. J. Neurophysiol. 112, 3046–3052 (Dec. 2014).

199. Binda, P., Pereverzeva, M. & Murray, S. O. Pupil constrictions to photographs of the sun. en. J. Vis. 13 (May 2013).

200. Jacobs, R. H.A. H., Renken, R., Aleman, A. & Cornelissen, F. W. The amygdala, top-down effects, and selective attention to features. Neurosci. Biobehav. Rev. 36, 2069–2084 (2012).

201. Reynolds, J. H. & Chelazzi, L. Attentional Modulation of Visual Processing. Annu. Rev. Neurosci. 27, 611–647 (2004).

202. Martinez-Trujillo, J. C. & Treue, S. Feature-based attention increases the selectiv-ity of population responses in primate visual cortex. en. Curr. Biol. 14, 744–751 (May 2004).

203. Connor, C. E., Preddie, D. C., Gallant, J. L. & Van Essen, D. C. Spatial attention effects in macaque area V4. en. J. Neurosci. 17, 3201–3214 (May 1997).

204. Desimone, R & Duncan, J. Neural mechanisms of selective visual attention. en. Annu. Rev. Neurosci. 18, 193–222 (1995).

205. Womelsdorf, T., Anton-Erxleben, K., Pieper, F. & Treue, S. Dynamic shifts of visual receptive fields in cortical area MT by spatial attention. en. Nat. Neurosci. 9,1156–1160 (Sept. 2006).

206. Fitzpatrick, D. Seeing beyond the receptive field in primary visual cortex. en. Curr. Opin. Neurobiol. 10, 438–443 (Aug. 2000).

207. Angelucci, A. & Bullier, J. Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? en. J. Physiol. Paris 97, 141–154 (Mar. 2003).

208. Gilbert, C. D., Li, W. & Piech, V. Perceptual learning and adult cortical plasticity. en. J. Physiol. 587, 2743–2751 (June 2009).

209. Bedell, H. E., Siderov, J., Formankiewicz, M. A., Waugh, S. J. & Aydin, S. Evi-dence for an eye-movement contribution to normal foveal crowding. en. Optom. Vis. Sci. 92, 237–245 (Feb. 2015).

(15)

210. Klein, B. P., Harvey, B. M. & Dumoulin, S. O. Attraction of position preference by spatial attention throughout human visual cortex. en. Neuron 84, 227–237 (Oct. 2014).

211. Sprague, T. C. & Serences, J. T. Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices. en. Nat. Neurosci. 16, 1879–1887 (Dec. 2013).

212. Chopin, A. & Mamassian, P. Predictive properties of visual adaptation. en. Curr. Biol. 22, 622–626 (Apr. 2012).

213. Liberman, A., Fischer, J. & Whitney, D. Serial dependence in the perception of faces. en. Curr. Biol. 24, 2569–2574 (Nov. 2014).

214. Fischer, J. & Whitney, D. Serial dependence in visual perception 2014.

215. Krishnan, G. P., González, O. C. & Bazhenov, M. Origin of slow spontaneous resting-state neuronal fluctuations in brain networks. en. Proc. Natl. Acad. Sci. U. S. A. 115, 6858–6863 (June 2018).

216. Maus, G. W., Chaney, W., Liberman, A. & Whitney, D. The challenge of measur-ing long-term positive aftereffects. en. Curr. Biol. 23, R438–9 (May 2013). 217. Fritsche, M., Mostert, P. & de Lange, F. P. Opposite Effects of Recent History on

Perception and Decision. en. Curr. Biol. 27, 590–595 (Feb. 2017).

218. Cicchini, G. M., Mikellidou, K. & Burr, D. Serial dependencies act directly on perception. en. J. Vis. 17, 6 (Dec. 2017).

219. Cicchini, G. M., Anobile, G & Burr, D. C. Compressive mapping of number to space reflects dynamic encoding mechanisms, not static logarithmic transform 2014. 220. Manassi, M., Liberman, A., Kosovicheva, A., Zhang, K. & Whitney, D. Serial

dependence in position occurs at the time of perception. en. Psychon. Bull. Rev. 25,2245–2253 (Dec. 2018).

221. Suárez-Pinilla, M., Seth, A. K. & Roseboom, W. Serial dependence in the percep-tion of visual variance. en. J. Vis. 18, 4 (July 2018).

222. Rahnev, D., Koizumi, A., McCurdy, L. Y., D’Esposito, M. & Lau, H. Confidence Leak in Perceptual Decision Making. en. Psychol. Sci. 26, 1664–1680 (Nov. 2015). 223. Cicchini, G. M., Mikellidou, K. & Burr, D. C. The functional role of serial

depen-dence. en. Proc. Biol. Sci. 285 (Oct. 2018).

224. Henderson, J. M. Human gaze control during real-world scene perception. en. Trends Cogn. Sci. 7, 498–504 (Nov. 2003).

225. Hayhoe, M. & Ballard, D. Eye movements in natural behavior 2005.

226. Najemnik, J. & Geisler, W. S. Optimal eye movement strategies in visual search. en. Nature 434, 387–391 (Mar. 2005).

227. Baddeley, R. J., Ingram, H. A. & Miall, R. C. System Identification Applied to a Visuomotor Task: Near-Optimal Human Performance in a Noisy Changing Task 2003.

(16)

228. Burge, J., Ernst, M. O. & Banks, M. S. The statistical determinants of adaptation rate in human reaching. en. J. Vis. 8, 20.1–19 (Apr. 2008).

229. Bonnen, K., Huk, A. C. & Cormack, L. K. Dynamic mechanisms of visually guided 3D motion tracking. en. J. Neurophysiol. 118, 1515–1531 (Sept. 2017). 230. Lisberger, S. G., Morris, E. J. & Tychsen, L. Visual motion processing and

sensory-motor integration for smooth pursuit eye movements. en. Annu. Rev. Neurosci. 10,97–129 (1987).

231. Barnes, G. R. & Ruddock, C. J. Factors affecting the predictability of pseudo-random motion stimuli in the pursuit reflex of man. en. J. Physiol. 408, 137–165 (Jan. 1989).

232. Boudet, C., Bocca, M.-L., Dollfus, S. & Denise, P. The saccadic component of ocular pursuit is influenced by the predictability of the target motion in humans. en. Exp. Brain Res. 168, 294–297 (Jan. 2006).

233. Lisberger, S. G. Visual Guidance of Smooth Pursuit Eye Movements. en. Annu Rev Vis Sci 1, 447–468 (Nov. 2015).

234. Liu, B., Macellaio, M. V. & Osborne, L. C. Efficient sensory cortical coding optimizes pursuit eye movements. en. Nat. Commun. 7, 12759 (Sept. 2016). 235. Mukherjee, T., Liu, B., Simoncini, C. & Osborne, L. C. Spatiotemporal Filter

for Visual Motion Integration from Pursuit Eye Movements in Humans and Monkeys. en. J. Neurosci. 37, 1394–1412 (Feb. 2017).

236. Chauhan, B. C. et al. Practical recommendations for measuring rates of visual field change in glaucoma. en. Br. J. Ophthalmol. 92, 569–573 (Apr. 2008).

237. Jansonius, N. M. On the accuracy of measuring rates of visual field change in glaucoma 2010.

238. Fung, S. S. M., Lemer, C., Russell, R. A., Malik, R. & Crabb, D. P. Are practical recommendations practiced? A national multi-centre cross-sectional study on frequency of visual field testing in glaucoma. en. Br. J. Ophthalmol. 97, 843–847 (July 2013).

239. Glen, F. C., Baker, H. & Crabb, D. P. A qualitative investigation into patients’ views on visual field testing for glaucoma monitoring. en. BMJ Open 4, e003996 (Jan. 2014).

240. Pender, M. P. et al. Epstein-Barr virus-specific T cell therapy for progressive multiple sclerosis. en. JCI Insight 3 (Nov. 2018).

241. Fielding, J., Kilpatrick, T., Millist, L., Clough, M. & White, O. Longitudinal assessment of antisaccades in patients with multiple sclerosis. en. PLoS One 7, e30475 (Feb. 2012).

242. Fielding, J., Kilpatrick, T., Millist, L. & White, O. Multiple sclerosis: Cognition and saccadic eye movements. en. J. Neurol. Sci. 277, 32–36 (Feb. 2009).

(17)

243. Yarbus, A. L. Eye Movements and Vision 1967.

244. Borji, A. & Itti, L. Defending Yarbus: eye movements reveal observers’ task. en. J. Vis. 14, 29 (Mar. 2014).

245. Anderson, T. et al. Oculomotor function in multiple system atrophy: clinical and laboratory features in 30 patients. en. Mov. Disord. 23, 977–984 (May 2008). 246. Garbutt, S. et al. Oculomotor function in frontotemporal lobar degeneration,

related disorders and Alzheimer’s disease. en. Brain 131, 1268–1281 (May 2008). 247. Tabrizi, S. J. et al. Biological and clinical manifestations of Huntington’s disease

in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. en. Lancet Neurol. 8, 791–801 (Sept. 2009).

248. Chen, A. L. et al. The disturbance of gaze in progressive supranuclear palsy: implications for pathogenesis. en. Front. Neurol. 1, 147 (Dec. 2010).

249. Anderson, T. J. & MacAskill, M. R. Eye movements in patients with neurodegenera-tive disorders 2013.

250. Hellmuth, J et al. Multicenter validation of a bedside antisaccade task as a measure of executive function. en. Neurology 78, 1824–1831 (June 2012).

Referenties

GERELATEERDE DOCUMENTEN

Vlak voordat ik later dat jaar vertrok voor een lange reis kwam de Nederlandse vertaling op de markt voor net geen € 25,-. Deze pil van bijna 500 bladzijden kwam bij

3 Classification of visual field defects based on the spatio-temporal properties of eye-movements 31 3.1

Using the analysis framework introduced in Chapter 2, I answer the second ques- tion - “how can spatio-temporal integration properties be applied in a clinical context?” This

A. Example of ocular horizontal velocity in response to the tracking target. Example of CCG resulting from the average of the 6 individual cross-correlograms obtained after

Figure 3.5 shows the comparison between the control group, simulated peripheral loss group, and a single patient previously diagnosed with peripheral visual field loss due to

We developed and proposed two methods that enable the reconstruction of visual field maps by estimating retinal sensitivity using continuous gaze-tracking data: (1)

In the visual deprivation condition, the reduction in visual integration strength compared to the baseline was spatially selective and showed a strict correspondence to the

In Chapter 7, we modeled the relationship between spatial integration of visual information on the one hand and space-based and feature-based attention on the other. Using a