• No results found

Magnetic resonance imaging techniques for risk stratification in cardiovascular disease Roes, S.D.

N/A
N/A
Protected

Academic year: 2021

Share "Magnetic resonance imaging techniques for risk stratification in cardiovascular disease Roes, S.D."

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Magnetic resonance imaging techniques for risk stratification in cardiovascular disease

Roes, S.D.

Citation

Roes, S. D. (2010, June 24). Magnetic resonance imaging techniques for risk stratification in cardiovascular disease. Retrieved from https://hdl.handle.net/1887/15730

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden Downloaded

from: https://hdl.handle.net/1887/15730

Note: To cite this publication please use the final published version (if applicable).

(2)

Referenties

GERELATEERDE DOCUMENTEN

Since expression of Serpins may facilitate the immune escape of HLA positive tumors, we next analysed the effect of Serpin expression on survival in cases with normal/partial

Accordingly, the present study compares myocardial strain assessed using 2D speckle tracking with the transmural extent of scar tissue on contrast-enhanced magnetic resonance

Comparison of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging and left ventricular function and volumes to predict mortality in patients

The purpose of this study was to assess the predictive value of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging (MRI) in medically treated

Detection of amyloid plaques in mouse models of Alzheimer’s disease by magnetic resonance imaging.. Apostolova

Peripheral blood cells were stained with HLA-A2.1 tetramers containing the tyrosinase368–376 peptide followed by staining with a panel of lineage antibodies, as described in

Blades and blade fragments seem to have been especially used for longitudinal motions, mainly on plant material (7/12). Flake and flake fragments are used in different motions on

This shape also occurs in the combination artefacts (see below). The shape is the result of intensive use in a repetitive abrasive motion, carried out from different angles. In