• No results found

Advanced Virgo : cryostat designs Some thermal aspects

N/A
N/A
Protected

Academic year: 2021

Share "Advanced Virgo : cryostat designs Some thermal aspects"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Advanced Virgo : cryostat designs Some thermal aspects

Eric Hennes, University of Amsterdam

Gravitational Waves group Amsterdam Nikhef-VU-UvA

Contents

 geometrical overview

 questions to be answered

 thermal properties

 modeling method

results for several design parameters

conclusion

(2)

cylinder T

c

=80 K fixed

Lc Dc

Dm mirror

Simplified geometry

Ambient temperature T

a

=300K

Lcm

tm

Mirror:

D

m

= 0.4 m t

m

= 0.1 m

A

m

= p(D

m

t

m

+D

m2

/2) R

m

= D

m

/2

Cylinder:

D

c

= 0.65 or 1.0 m L

vc

= 2.5 m

A

c

= pD

c

L

c

Exterior: isolated

cold area viewed by mirrorBaffle ring at Ta transparant area

viewed by mirror

Distance:

L

cm

= 2.5 m

`

(3)

To be estimated

P

am

P

mc

P

ac

•Cryostat power consumption P

ac

due to radiation

•Radiative heat flow P

mc

=P

am

from and to mirror (in equilibrium)

•Mirror temperature distribution, without or with baffle(s)

•Effect T-distribution on mirror optics (optical path)

•(Design of baffle heating)

`

`

(4)

Thermal material properties involved

Mirror: Thermal conductivity : k = 1.36 W/Km Thermo-optic coefficient :dn/dT = 0.98 10-5 K

-1

Thermal Expansivity : a = 0.54 mm//Km Emissivity: : e

m

= 0.89

Cryostate Emissivity: : e

c

= 0.1 (initial)

= 0.2 (nominal, t< 2 years)

= 0.9 (worst “icing” case)

Baffle “ : e

b

= 0.12

Ambiance “ : e

amb

= 1.0 (“black”)

Reflection of radiation : diffuse, i.e. non-specular

(5)

Mirror temperature distribution : FEM (COMSOL) Domain : DT=0

Boundary : .n=J (outward conducted power flux)

Radiation heat exchange

general : FEM

Isothermal mirror equilibrium : analytical approximation

cooling power:

ambiance to mirror:

mirror to cryostat:

solving T

m

(equilibrium): P

mc

= P

am

Modeling method / tools 1

4 4

,

ac a c

ac c ca c

ca

F A E E T T

P  e   

am m ma m

ma

F A E

P  e

) 1

( )

1 )(

1 (

1

mc c m cm cc c

mc m mc m c

mc

F F F

E A P F

e e

e e e

 

(6)

View factor calculation

general : FEM (COMSOL)

2 simple bodies (A

m

<<A

c

) : analytical approximation:

general: A

1

F

12

=A

2

F

21

with F

cc

: view factor between two circular faces 1 and 2 at distance d:

Modeling method / tools 2

2

1 2 2

1 2

1 2 2

2 1

1 2 ,

2 4 ) 1 , ,

( 

 

 

 

 

 

 



 

 

 

D

D D

X d D

X D X

d D D F

cc

( , , ) ( , , )

4 1 /

4

c cm

c m cc cm

c m cc m

m mc

ma

F D D L F D D L L

A F D

F    

 p

2 2

1 1

1

c c c

c cc

ca

D

L D

F L

F     

(7)

Mirror geometrical properties change (mirror initially flat)

mirror thickness change due to thermal expansion:

mirror surface radii of curvature: FEM mechanical analysis

Modeling method / tools 3

D

D

m

t

m

r T z r dz

t

0

) , ( )

( a

Thermal lensing

change in optical path:

radius of curvature of equivalent isothermal lens (one side flat):

D

 D

D

m

t

m

T z r dz

dT r dn

t n

r s

0

) , ( )

( )

1 ( ) (

( ) ( 0 )

2

) 1

(

2

s R

s

R R n

m

m optic

thermo

D  D

 

T ( t , r ) T ( 0 , r ) 

dT t dn

m

m

D  D

(8)

FEM models (thermal & thermo-mechanical)

Dc=1m, 3 baffles,

quadratic hex elements Dc=0.65m, no baffles, linear prism elements

(9)

Results small cryostate (e c =0.2), no baffles

Cryostat power Pac 180 W

Self-irradiance Fcc 0.87

Mirror

view factor Fmc 0.0123

power Pmc 0.22 W

Av. cooling DTm 0.23

K

front-back DTfb 0.10

mid-edge DTme 0.06

thickness Dtm(Rm) Dtm(0) 4 displacement nm

differences

front Dzf(Rm) Dzf(0) 13 back Dzb(Rm) Dzb(0) 9

Radius of curvature

front surface Rfront 1500

back

surface Rback

2200

km

refractive

Rthermo-optic

120

Temperature profile (299.70 – 299.86 K)

9 nm Front Back

dz=13 nm

Enlargement factor : 2E6

(10)

Summary results for e c =0.2

D

c

(m) baffles P

c

(W) P

m

(W)

DTm(K)

R

thermo-optic

(km)

0.65 no 180 0.42 0.21 120

1.0

no 370 0.8 0.43 60

b1 320 0.24 0.12 220

b1+b2 340 0.23 0.11 250

b1…..b3 350 0.31 0.16 170

b1…..b4 305 0.40 0.19 100

b1+b4 260 0.44 0.21 120

mirror Dc

(11)

Cryostat power for several emissivities e c

E

c

: 0.1 0.2 0.9

D

c

(m) baffles P

c

(W)

1.0

no 245 370 675

b1 221 320 530

b1+b4 190 260 370

0.65 no 130 180 295

(12)

Final remarks & conclusion

• All radii of curvature are larger than 100 km and exceed by far those predicted for beam power absorption (see van Putten et al.)

Conclusion: no mirror optics problems expected for any proposed design

• Lowest cryostat power is obtained using (only) 2 baffles on either side

• Including the recoil mass into the models will result into a smaller radial temperature gradient, and consequently, into even larger radii of curvature

Referenties

GERELATEERDE DOCUMENTEN

Deze middenlijn is zo gesitueerd, dat wanneer men het gedigita- liseerde signaal uitzet als funktie van de afstand en men de waarden met elkaar verbindt, het

Ook al zijn de meeste mensen in de moderne tijd niet meer afhankelijk van de natuur om te overleven, ze worden nog steeds geboren met een bereidheid om voorkeuren aan te leren voor

Three people had nothing to add to knowledge with regards to HIV prevention, but one felt that besides knowledge it was important for mass media to relay accurate and convincing

Finally, the two aforementioned precipita- tion data sets and a meteorological reanalysis data set were used to force a hydrological model, evaluating the influence of

Behavior synthesis model Human speaker Stimulus Perceptual evaluation Samples Model learning Behavior synthesis model Human speaker Virtual

investigate ways to maximise the nuclear weapons proliferation resistance of the Pu(PWR) fuel cycle. Thus, the problem to be solved is the simulation and evaluation of the

Deze karakteristieken zijn gebruikt als invoer van het computer- model SWMS_2D, dat de potentiële runoff van individuele monsters en bodemprofie- len berekent.. Uit de vergelijking

In this thesis, we investigate the far-field distribution of SPDC light produced by a 2 mm long periodically pooled potassium titanyl phos- phate (PPKTP) crystal, at various