• No results found

Improved Quantum Communication Complexity Bounds for Disjointness and Equality

N/A
N/A
Protected

Academic year: 2022

Share "Improved Quantum Communication Complexity Bounds for Disjointness and Equality"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

PeterHyer 1;?

andRonalddeWolf 2;??

1

Dept.ofComp.S i.,Univ.ofCalgary,AB,Canada.hoyer ps .u algary. a

2

UCBerkeley.583SodaHall,BerkeleyCA94720,USA.rdewolf s.berkeley.edu

Abstra t. Weprovenewboundsonthequantum ommuni ation om-

plexity ofthe disjointnessand equality problems.Forthe ase of exa t

andnon-deterministi proto olsweshowthatthese omplexitiesareall

equalton+1,thepreviousbestlowerboundbeingn=2.Weshowthisby

improvingageneralboundfornon-deterministi proto olsofdeWolf.We

alsogiveanO(

p

n log



n

)-qubitbounded-errorproto olfordisjointness,

modifyingandimprovingtheearlier O(

p

nlogn)proto olofBuhrman,

Cleve, andWigderson, andprovean( p

n )lowerboundfor a lassof

proto olsthatin ludestheBCW-proto olaswellasournewproto ol.

1 Introdu tion

The area of ommuni ation omplexity deals with abstra ted models of dis-

tributed omputing,whereoneonly aresaboutminimizingtheamountof om-

muni ationbetweenthepartiesandnotabouttheamountof omputationdone

by the individual parties. The standard setting is the following. Two parties,

Ali e and Bob,wantto omputesome fun tion f : f0;1g n

f0;1g n

!f0;1g.

Ali e re eives input x 2 f0;1g n

, Bob re eives y 2 f0;1g n

, and they want to

ompute f(x;y). Forexample,they maywant to nd outwhether x = y (the

equality problem) orwhether x and y are hara teristi ve torsof disjoint sets

(thedisjointnessproblem).A ommuni ationproto olisadistributedalgorithm

where Ali e rstdoessome omputation on herside, then sends amessage to

Bob, whodoes some omputation on his side, sends a messageba k, et . The

ostoftheproto olismeasuredbythenumberofbits(orqubits,inthequantum

ase) ommuni atedonaworst- aseinput(x;y).

Asinmanyotherbran hesof omplexitytheory,we andistinguishbetween

variousdi erent\modes"of omputation.LettingP(x;y)denotethea eptan e

probability of the proto ol (the probability of outputting 1), we onsider four

di erentkindsofproto olsfor omputingf,

{ Anexa tproto olhasP(x;y)=f(x;y),forallx;y

?

SupportedinpartbyCanada'sNSERCandthePa i InstitutefortheMathema-

ti alS ien es.

??

SupportedbyTalentgrantS62{565fromtheNetherlandsOrganizationforS ienti

Resear h.Work ondu tedwhile at CWI, Amsterdam,partially supportedby EU

(2)

{ Anon-deterministi proto olhasP(x;y)>0if andonlyiff(x;y)=1,for

allx;y

{ Aone-sidederrorproto olhasP(x;y)1=2iff(x;y)=1,andP(x;y)=0

iff(x;y)=0

{ Atwo-sidederrorproto olhasjP(x;y) f(x;y)j1=3,forallx;y.

These four modes of omputation orrespond to those of the omputational

omplexity lassesP,NP,RP,andBPP,respe tively.

Proto olsmaybe lassi al(sendandpro ess lassi albits)orquantum(send

andpro essquantumbits).Classi al ommuni ation omplexitywasintrodu ed

byYao[35℄,andhasbeenstudiedextensively.Itiswellmotivatedbyitsintrinsi

interest as well asby its appli ations in lowerbounds on ir uits, VLSI, data

stru tures,et .WerefertothebookofKushilevitzandNisan[26℄forde nitions

andresults. WeuseD(f), N(f),R

1

(f),and R

2

(f)to denote theminimal ost

of lassi alproto olsforf in theexa t,non-deterministi ,one-sidederror,and

two-sidederrorsettings,respe tively. 1

NotethatR

2

(f)R

1

(f)D(f)n+1

andN(f)R

1

(f)D(f)n+1forallf.Similarlywede neQ

E

(f),NQ(f),

Q

1

(f),andQ

2

(f)forthequantumversionsofthese ommuni ation omplexities

(we will be abit morepre ise about the notionof a quantum proto ol in the

nextse tion).Forallof these omplexities, weassumeAli eand Bobstartout

withoutanysharedrandomnessorentanglement.

Quantum ommuni ation omplexity was introdu ed by (again) Yao [36℄

and the rst examples of fun tions where quantum ommuni ation omplex-

ity is less than lassi al ommuni ation omplexity were given in [14,10,11,

15,9℄. In parti ular, Buhrman, Cleve, and Wigderson [9℄ showed for a spe-

i promise version of the equality problem that Q

E

(f) 2 O(logn) while

D(f)2(n).Theyalsoshowedfortheinterse tion problem(thenegationofthe

disjointnessproblem)thatQ

1 (INT

n )2O(

p

nlogn),whereasR

2 (INT

n

)2(n)

is awell known and non-trivial result from lassi al ommuni ation omplex-

ity [20,31℄. Later, Raz [30℄ exhibited a promise problem with an exponential

quantum- lassi algapeveninthebounded-errorsetting:Q

2

(f)2O(logn)ver-

susR

2

(f)2(n 1=4

=logn).Otherresultsonquantum ommuni ation omplex-

itymaybefoundin [25,2,28,13,21,34,24,23℄.

Theaimof this paperis to sharpenthe bounds on thequantum ommuni-

ation omplexities ofthe equalityand disjointness(or interse tion) problems,

inthefourmodeswedistinguishedabove.Wesummarizewhatwasknownprior

to thispaper,

{ n=2Q

1 (EQ

n );Q

E (EQ

n

)n+1[25,13℄

n=2NQ(EQ

n

)n+1[34℄

Q

2 (EQ

n

)2(logn)[25℄

{ n=2Q

1 (DISJ

n );Q

E (DISJ

n

)n+1[25,13℄

n=2NQ(DISJ

n

)n+1[34℄

lognQ

1 (INT

n );Q

2 (DISJ

n )2O(

p

nlogn)[9℄.

1

KushilevitzandNisan [26℄useN 1

(f) forourN(f), R 1

(f)for ourR1(f)andR (f)

forourR (f).

(3)

InSe tion3we rstsharpenthenon-deterministi bounds,byprovingageneral

algebrai hara terizationofNQ(f).In[34℄itwasshownforallfun tionsf that

lognrank(f)

2

NQ(f)log(nrank(f))+1;

where nrank(f) denotesthe rank ofa \non-deterministi matrix" for f (to be

de ned more pre isely below). It is interesting to note that in many pla es

in quantum omputing one sees fa tors of 1

2

appearing that are essential, for

example in the query omplexity of parity [4,17℄, in the bounded-error query

omplexity of allfun tions [16℄, in superdense oding [5℄, and in lowerbounds

forentanglement-enhan edquantum ommuni ation omplexity[13,28℄.In on-

trast,weshowherethatthe 1

2

intheabovelowerbound anbedispensedwith,

andtheupperbound istight, 2

NQ(f)=log(nrank(f))+1:

Equality and disjointness both have non-deterministi rank 2 n

, so their non-

deterministi omplexities are maximal: NQ(EQ

n

) = NQ(DISJ

n

) = n+1.

(This ontrastswiththeir omplements:NQ(NEQ

n

)=2[27℄andNQ(INT

n )

N(INT

n

)=logn+1.)Sin eNQ(f)lowerboundsQ

1

(f)andQ

E

(f),wealsoob-

tainoptimalboundsfortheone-sidedandexa tquantum ommuni ation om-

plexities of equality and disjointness. In parti ular, Q

E (EQ

n

) = n+1, whi h

answersaquestion posed to one ofus (RdW) by GillesBrassardin De ember

2000.

The two-sided error bound Q

2 (EQ

n

) 2 (logn) is easy to show, whereas

thetwo-sidederror omplexityofdisjointnessisstillwideopen.InSe tion4we

give a one-sidederror proto ol for the interse tion problem that improvesthe

O(

p

nlogn)proto olofBuhrman,Cleve,andWigdersonbynearlyalog-fa tor,

Q

1 (INT

n )2O(

p

n log

?

n

);

where is a (small) onstant. The fun tion log

?

n is de ned as the minimum

number of iterated appli ations of the logarithm fun tion ne essary to obtain

a number less than or equalto 1: log

?

n = minfr  0 j log (r)

n  1g, where

log (0)

isthe identityfun tion and log (r)

=logÆlog (r 1)

. Eventhough log

?

n

is

exponentialin log

?

n,itisstillverysmallinn,in parti ular log

?

n

2o(log (r)

n)

forevery onstantr1.Itshouldbenotedthatourproto olisasymptoti ally

somewhat more eÆ ient than the BCW-proto ol ( p

n log

?

n

versus p

nlogn),

butisalsomore ompli atedtodes ribe;itisbasedonare ursivemodi ation

oftheBCW-proto ol,anideathat previouslyhasbeenusedfor law- ndingby

Buhrmanet al.[12,Se tion5℄.

Proving good lower bounds on the Q

2

- omplexity of the disjointness and

interse tion problems isoneof themain openproblems in quantum ommuni-

ation omplexity. Onlylogarithmi lowerbounds areknown so farforgeneral

2

Similarly we an improve the query omplexity result ndeg (f)=2  NQ

q (f) 

ndeg (f)of[34℄totheoptimalNQ (f)=ndeg (f).

(4)

proto ols [25,2,13℄. A lower bound of (n 1=k

) is shown in [24℄ for proto ols

ex hangingat mostk 2O(1) messages.InSe tion 4.1 we proveanearly tight

lowerboundof( p

n)qubitsof ommuni ationforallproto olsthatsatisfythe

onstraintthattheira eptan eprobabilityisafun tionofx^y(then-bitAND

ofAli e'sxandBob'sy),ratherthanofxandy\separately."Sin eDISJ

n itself

is also afun tion only of x^y, this does notseem to bean extremely strong

onstraint.The onstraintis satis ed by a lass of proto ols that in ludes the

BCW-proto olandournewproto ol.Itseemsplausiblethatthegeneralbound

isQ

2 (DISJ

n )2(

p

n)aswell,but wehavesofarnotbeenabletoweakenthe

onstraintthat thea eptan eprobabilityisafun tionof x^y.

2 Preliminaries

2.1 Quantum Computing

Herewebrie ysket hthesettingofquantum omputation,referringtothebook

ofNielsenandChuang[29℄formoredetails.Anm-qubitquantumstatejiisa

superpositionorlinear ombinationoverall lassi alm-bitstates,

ji= X

i2f0;1g m

i jii;

withthe onstraintthat P

i j

i j

2

=1.Equivalently,jiisaunit ve torinC 2

m

.

Quantum me hani s allows us to hange this state by means of unitary (i.e.,

norm-preserving) operations: j

new

i = Uji, where U is a 2 m

2 m

unitary

matrix. A measurement of ji produ es the out ome i with probability j

i j

2

,

andthenleavesthesystemin thestatejii.

Thetwomain examplesof quantum algorithmsso far,are Shor'salgorithm

for fa toring n-bit numbers using a polynomial number (in n) of elementary

unitarytransformations[32℄andGrover'salgorithmforsear hinganunordered

n-element spa e using O(

p

n) \look-ups" or queries in the spa e [18℄. Below

we use a te hnique alled amplitude ampli ation, whi h generalizes Grover's

algorithm.

Theorem 1 (Amplitude ampli ation [7℄). There exists a quantum algo-

rithm QSear h with the following property. Let A be any quantum algorithm

thatusesnomeasurements,andlet:f1;:::;ng!f0;1gbeanyBooleanfun -

tion. Let adenote the initial su ess probability of Aof nding asolution (i.e.,

the probability of outputting some i 2 f1;:::;ng so that (i) = 1). Algorithm

QSear h nds asolution using anexpe ted numberof O



1

p

a



appli ations of

A, A 1

,and ifa>0,anditruns forever ifa=0.

Considertheproblem of sear hing anunordered n-elementspa e. An algo-

rithmAthat reatesauniformsuperpositionoveralli2f1;:::;nghassu ess

probabilitya 1=n, soplugging this into theabovetheorem andterminating

afterO(

p

n)appli ationsgivesusanalgorithmthat ndsasolutionwithprob-

(5)

2.2 Communi ation Complexity

For lassi al ommuni ation proto ols we refer to [26℄. Here we brie y de ne

quantum ommuni ationproto ols,referringtothesurveys[33,8,22,6℄formore

details.Thespa einwhi hthequantumproto olworks, onsistsofthreeparts:

Ali e's part,the ommuni ation hannel, andBob's part(wedo notwrite the

dimensions of these spa es expli itly). Initially these three parts ontain only

0-qubits,

j0ij0ij0i:

WeassumeAli estartstheproto ol.SheappliesaunitarytransformationU A

1 (x)

to her partand the hannel. This orresponds to her initial omputation and

her rst message.The length of this message is the number of hannel qubits

a e ted. Thestateisnow

(U A

1 (x)I

B

)j0ij0ij0i;

wheredenotestensorprodu t,andI B

denotestheidentitytransformationon

Bob'spart. ThenBob applies aunitary transformationU B

2

(y) to his partand

the hannel.This operation orrespondsto Bobreading Ali e'smessage,doing

some omputation, and puttinga return-messageon the hannel. This pro ess

goesba k andforth for somek messages, so the nal stateof the proto ol on

input(x;y)willbe(in aseAli egoeslast)

(U A

k (x)I

B

)(I A

U B

k 1

(y))(I A

U B

2 (y))(U

A

1 (x)I

B

)j0ij0ij0i:

Thetotal ostoftheproto olisthetotallengthofallmessagessent,onaworst-

ase input(x;y). Forte hni al onvenien e, weassume that at the end of the

proto ol theoutput bit is the rst qubit on the hannel. Thus thea eptan e

probabilityP(x;y)oftheproto olistheprobabilitythatameasurementofthe

nalstategivesa`1'inthe rst hannel-qubit.Notethatwedonotallowinter-

mediate measurements during the proto ol.This is without loss of generality:

itiswellknownthat su hmeasurements anbepostponeduntiltheendofthe

proto olatnoextra ommuni ation ost.Asmentionedin theintrodu tion,we

useQ

E

(f),NQ(f),Q

1

(f),andQ

2

(f)to denotethe ostofoptimalexa t,non-

deterministi ,one-sidederror,and two-sidederrorproto olsforf,respe tively.

Thefollowinglemma wasstatedsummarily withoutproofby Yao [36℄ and

in moredetailbyKremer[25℄.Itiskeyto manyoftheearlierlowerboundson

quantum ommuni ation omplexityaswellasto ours,andis easilyprovenby

indu tion on`.

Lemma2 (Yao [36℄;Kremer[25℄).The nalstateofan `-qubitproto ol on

input(x;y) an bewrittenas

X

i2f0;1g

` jA

i (x)iji

` ijB

i (y)i ;

where the A

i (x);B

i

(y) are ve tors (not ne essarily of norm 1), andi

`

denotes

(6)

Thea eptan eprobabilityP(x;y)oftheproto olisthesquarednormofthe

partofthe nalstatethathasi

`

=1.Lettinga

ij

bethe2 n

-dimensional omplex

olumnve torwiththeinnerprodu tshA

i (x)jA

j

(x)iasentries,andb

ij the2

n

-

dimensional olumn ve torwith entries hB

i (y)jB

j

(y)i , we anwrite P (viewed

as a 2 n

2 n

matrix) as the sum P

i;j:i

`

=j

`

=1 a

ij b

T

ij of 2

2` 2

rank 1 matri es,

so therank of P is at most 2 2` 2

. Forexample, for exa tproto ols this gives

immediatelythat`islowerboundedby 1

2

timesthelogarithmoftherankofthe

ommuni ationmatrix,and fornon-deterministi proto ols ` islowerbounded

by 1

2

timesthe logarithmof thenon-deterministi rank(de nedbelow).Inthe

nextse tionweshowhowwe angetridofthefa tor 1

2

inthenon-deterministi

ase.

Weusex^ytodenotethebitwise-ANDofn-bitstringsxandy,andsimilarly

xy denotes thebitwise-XOR.LetORdenotethen-bitfun tion whi his1if

at leastoneofits ninputbits is1,and NORbeitsnegation.We onsiderthe

followingthree ommuni ation omplexityproblems,

{ Equality:EQ

n

(x;y)=NOR(xy)

{ Interse tion:INT

n

(x;y)=OR(x^y)

{ Disjointness:DISJ

n

(x;y)=NOR(x^y).

3 Optimal Non-Deterministi Bounds

Let f : f0;1g n

f0;1g n

! f0;1g. A 2 n

2 n

omplex matrix M is alled a

non-deterministi matrixforf ifithasthepropertythatM

xy

6=0ifandonlyif

f(x;y)=1(equivalently, M

xy

=0ifandonlyiff(x;y)=0).Weusenrank(f)

todenotethenon-deterministi rankoff,whi histheminimalrankamongall

non-deterministi matri esforf.In[34℄ itwasshownthat

lognrank(f)

2

NQ(f)log(nrank(f))+1:

Inthisse tionweshowthat theupperboundisthetruebound.Theproofuses

thefollowingte hni allemma.

Lemma3. If thereexisttwofamilies of ve torsfA

1

(x);:::;A

m

(x)gC d

and

fB

1

(y);:::;B

m

(y)gC d

su hthat for allx2f0;1g n

andy2f0;1g n

,we have

m

X

i=1 A

i

(x)B

i

(y)=0if andonlyif f(x;y)=0;

thennrank(f)m.

Proof. Assume there exist twosu h families of ve tors. LetA

i (x)

j

denote the

jthentryofve torA

i

(x),andletsimilarlyB

i (y)

k

denotethekthentryofve tor

B

i

(y). We use pairs (j;k) 2 f1;:::;dg 2

to index entries of ve torsin the d 2

-

(7)

iff(x;y)=0then m

i=1 A

i (x)

j B

i (y)

k

=0forall(j;k),

iff(x;y)=1then P

m

i=1 A

i (x)

j B

i (y)

k

6=0forsome(j;k).

Asa rststep,wewanttorepla etheve torsA

i

(x)andB

i

(y)bynumbersa

i (x)

and b

i

(y) that have similar properties. Weuse the probabilisti method [1℄ to

showthat this anbedone.

LetI be an arbitraryset of 2 2n+1

numbers. Choose oeÆ ients

1

;:::;

d

and

1

;:::;

d

,ea h oeÆ ientpi keduniformlyatrandomfromI.Foreveryx,

de ne a

i (x) =

P

d

j=1

j A

i (x)

j

, and for everyy de ne b

i (y) =

P

d

k =1

k B

i (y)

k .

Considerthenumber

v(x;y)= m

X

i=1 a

i (x)b

i (y)=

d

X

j;k =1

j

k m

X

i=1 A

i (x)

j B

i (y)

k

!

:

Iff(x;y)=0,thenv(x;y)=0forall hoi esofthe

j

;

k .

Now onsidersome(x;y)withf(x;y)=1.There isapair(j 0

;k 0

)forwhi h

P

m

i=1 A

i (x)

j 0

B

i (y)

k 0

6=0.Wewanttoprovethat v(x;y)=0happensonlywith

very small probability. In order to do this, x the random hoi es of all

j ,

j 6= j 0

, and

k

, k 6= k 0

, and view v(x;y) as a fun tion of the two remaining

not-yet- hosen oeÆ ients =

j 0

and =

k 0

,

v(x;y)=

0 +

1 +

2 +

3 :

Hereweknowthat

0

= P

m

i=1 A

i (x)

j 0B

i (y)

k

0 6=0.Thereisatmostonevalueof

forwhi h

0 +

2

=0.Allothervaluesof turnv(x;y)intoalinearequationin

,soforthose thereisatmostone hoi eof thatgivesv(x;y)=0.Hen eout

ofthe(2 2n+1

) 2

di erentwaysof hoosing( ; ),atmost2 2n+1

+(2 2n+1

1)1<

2 2n+2

hoi esgivev(x;y)=0.Therefore

Pr[v(x;y)=0℄<

2 2n+2

(2 2n+1

) 2

=2 2n

:

Usingtheunionbound,wenowhave

Pr



there isan(x;y)2f 1

(1)forwhi hv(x;y)=0





X

(x;y)2f 1

(1)

Pr[v(x;y)=0℄<2 2n

2 2n

=1:

Thisprobabilityisstri tlylessthan1,sothereexistsetsfa

1

(x);:::;a

m

(x)gand

fb

1

(y);:::;b

m

(y)gthatmakev(x;y)6=0forevery(x;y)2f 1

(1).Wethushave

that

m

X

i=1 a

i (x)b

i

(y)=0ifandonlyiff(x;y)=0:

Viewthea

i andb

i as2

n

-dimensionalve tors,letAbethe2 n

mmatrixhaving

the a

i

as olumns, and B be the m2 n

matrix having the b

i

as rows. Then

(AB)

xy

= P

m

i=1 a

i (x)b

i

(y), whi h is 0ifand onlyiff(x;y)=0. Thus AB isa

(8)

Lemma 3 allows us to prove tight bounds for non-deterministi quantum

proto ols.

Theorem4. NQ(f)=log (nrank(f))+1.

Proof. TheupperboundNQ(f)log(nrank(f))+1wasshownin[34℄(a tually,

the upperbound shownthere waslog (nrank(f))for proto ols where onlyBob

hastoknowtheoutputvalue).Forthesakeof ompletenesswerepeatthatproof

here.Letr=nrank(f)and M bearank-r non-deterministi matrixfor f.Let

M T

=UV bethesingularvaluede ompositionofthetransposeofM [19℄,so

U andV areunitary,andisadiagonalmatrixwhose rstrdiagonalentriesare

positiverealnumbersandwhoseotherdiagonalentriesare0.Belowwedes ribe

aone-roundnon-deterministi proto olforf,usinglog(r)+1qubits.FirstAli e

preparesthe statej

x i=

x

Vjxi, where

x

>0isanormalizingrealnumber

that depends onx.Be ause onlythe rstrdiagonalentries of arenon-zero,

onlythe rstramplitudesofj

x

iarenon-zero,soj

x

i anbe ompressedinto

logr qubits. Ali esends these qubits to Bob. Bob then applies U to j

x i and

measures theresulting state.If heobservesjyi, then heputs 1 onthe hannel

andotherwiseheputs0there. Thea eptan eprobabilityof thisproto olis

P(x;y)=jhyjUj

x ij

2

= 2

x

jhyjUVjxi j 2

= 2

x jM

T

yx j

2

= 2

x jM

xy j

2

:

Sin e M

xy

isnon-zeroifand onlyiff(x;y)=1,P(x;y)will bepositiveifand

only iff(x;y) =1.Thus wehave anon-deterministi quantum proto ol for f

withlog(r)+1qubitsof ommuni ation.

Forthelowerbound, onsideranon-deterministi `-qubitproto olforf.By

Lemma2,its nalstateoninput(x;y) anbewrittenas

X

i2f0;1g

` jA

i (x)iji

` ijB

i (y)i :

Without lossofgeneralityweassume theve torsA

i

(x) andB

i

(y)allhavethe

samedimension d.Let S =fi2 f0;1g

`

j i

`

=1g and onsider thepartof the

statethat orrespondstooutput1(wedropthei

`

=1andtheji -notationhere),

(x;y)= X

i2S A

i

(x)B

i (y):

Be ausetheproto olhasa eptan eprobability0ifandonlyiff(x;y)=0,this

ve tor(x;y) will be the zero ve tor if and only if f(x;y) = 0.The previous

lemmagivesnrank(f)jSj=2

` 1

,andhen ethatlog(nrank(f))+1NQ(f).

u t

Note that any non-deterministi matrix for the equality fun tion has non-

zeroes on its diagonal and zeroes o -diagonal, and hen e has full rank. Thus

NQ(EQ

n

) = n+1, whi h ontrasts sharply with the non-deterministi om-

plexity of its omplement (inequality), whi h is only 2 [27℄. Similarly, a non-

deterministi matrixfordisjointnesshasfull rank,be ausereversingtheorder-

(9)

the diagonal. This gives tight bounds for the exa t, one-sided error, and non-

deterministi settings.

Corollary 5. We have that Q

E (EQ

n ) = Q

1 (EQ

n

) = NQ(EQ

n

) = n+1 and

that Q

E (DISJ

n )=Q

1 (DISJ

n

)=NQ(DISJ

n

)=n+1.

4 On the Bounded-Error Complexity of Disjointness

4.1 Improved Upper Bound

Hereweshowthatwe antakeo mostofthelognfa torfromtheO(

p

nlogn)

proto olfortheinterse tionproblem(the omplementofdisjointness)thatwas

givenbyBuhrman,Cleve,andWigdersonin[9℄.

Theorem6. Thereexistsa onstant su hthat Q

1 (INT

n )2O(

p

n log

?

n

).

Proof. Were ursivelybuildaone-sidederrorproto olthat an ndanindex i

su h that x

i

= y

i

= 1, provided su h an i exists ( all su h an i a `solution').

Clearly this suÆ es for omputing INT

n

(x;y). Let C

n

denote the ost of our

proto olonn-bitinputs.

Ali eandBobdividethenindi esf1;:::;nginton=(logn) 2

blo ksof(logn) 2

indi esea h.Ali epi ksarandomnumberj 2f1;:::;n=(logn) 2

gandsendsthe

numberj toBob.Nowtheyre ursivelyrunourproto olonthejthblo k,ata

ost of C

(logn) 2

qubits of ommuni ation. Ali e then measures her partof the

state,andtheyverifywhetherthemeasurediis indeedasolution.Ifthereisa

solutioninthejthblo k,thenAli e ndsonewithprobabilityatleast1=2,sothe

overallprobabilityof ndingasolution(ifthereisone)isatleast(logn) 2

=2n.By

usingasuperpositionoveralljwe anpushallintermediatemeasurementstothe

endwithouta e tingthesu essprobability.Therefore,applyingO(

p

n=logn)

rounds of amplitude ampli ation(Theorem 1) boosts this proto ol to having

errorprobabilityat most1=2.Wethushavethere urren e

C

n

O(1) p

n

logn C

(logn)

2+O(logn)



:

Sin e C

1

= 2, this re ursion unfolds to the bound C

n 2 O(

p

n log

?

n

) for

some onstant .Carefulinspe tion oftheproto ol givesthat the onstant is

reasonablysmall. ut

4.2 LowerBound fora Spe i Class of Proto ols

We givea lowerbound for two-sidederror quantum proto ols for disjointness.

The lowerbound applies to allproto olswhose a eptan eprobabilityP(x;y)

isafun tionjustofx^y,ratherthanofxandy \separately."Inparti ular,the

proto olsof[9℄andofourpreviousse tion fallinthis lass.

(10)

Theorem7. Anytwo-sidederrorquantumproto olforDISJ

n

whosea eptan e

probability isafun tion of x^y,has to ommuni ate ( p

n)qubits.

Proof. Consideran`-qubitproto olwitherrorprobabilityatmost1=3.Bythe

ommentfollowingLemma2,we anwriteitsa eptan eprobabilityP(x;y)as

a2 n

2 n

matrixP ofrankr2 2` 2

.

WenowinvokearelationbetweentherankofthematrixP andpropertiesof

the2n-variatemultilinearpolynomialthatequalsP(x;y).

3

Thereisann-variate

fun tiong su hthatP(x;y)=g(x^y).Letg(z)= P

S a

S z

S

bethepolynomial

representationofg.ThenP(x;y)=g(x^y)= P

S a

S (x^y)

S

= P

S a

S x

S y

S ,so

the2n-variatemultilinearpolynomialP only ontainsmonomialsin whi h the

set of x-variables is thesame astheset of y-variables. Forpolynomialsof this

form( alled\even"),[13,Lemmas2and3℄implythatthenumberofmonomials

in P(x;y)equalstherankr ofthematrixP.

Settingy=xinP(x;y)givesapolynomialp(x)= P

S a

S x

S

thathasrmono-

mialsand thatapproximatesthen-bitfun tion NOR,sin ejp(x) NOR(x)j=

jP(x;x) DISJ (x;x)j  1=3. But [13, Theorem 8℄implies that every polyno-

mial that approximates NOR must have at least 2 p

n=12

monomials. Hen e

2 p

n=12

r2 2` 2

,whi h gives` p

n=48+1. ut

5 Open Problems

This paper ts inasequen e ofpapersthat (slowly)extendwhat isknownfor

quantum ommuni ation omplexity, e.g. [9,2,30,13,21,34,24,23℄. The main

open question isstill the bounded-error omplexityof disjointness.Of interest

is whether itis possibleto proveanO(

p

n) upperbound fordisjointness,thus

gettingridofthefa torof log

?

n

inourupperboundofTheorem6,andwhether

it is possible to extend the lower bound of Theorem 7 to broader lasses of

proto ols. Sin e disjointness is oNP- omplete for ommuni ation omplexity

problems [3℄, stronglowerbounds onthe disjointness problem implya hostof

otherlowerbounds.

A se ond questionis whether qubit ommuni ation anbe signi antlyre-

du edin aseAli eandBob anmakeuseofpriorentanglement(shared EPR-

pairs).GivingAli eandBobnsharedEPR-pairstrivializesthenon-deterministi

omplexity(usetheEPR-pairsasapubli ointorandomlyguesssomen-bitz,

Ali ethensendsBob1bitindi atingwhetherx=z,ifx=zthenBob an om-

pute theanswerf(x;y)and sendit toAli e,if x6=z thentheyoutput 0),but

for theexa tand bounded-error models itis open whether priorentanglement

an makeasigni antdi eren e.

3

ForS[n℄=f1;:::;ng,weusexSforthemonomial Q

i2S

xi.Ann-variatemultilin-

earpolynomialp(x)= P

S[n℄

aSxS,aS2R,isaweightedsumofsu hmonomials.

The number of monomials in p is the number of S for whi h aS 6= 0. One an

showthat foreveryfun tiong:f0;1g n

!Rthereisauniquen-variatemultilinear

n

(11)

A knowledgments

WethankHarryBuhrmanandHartmutKlau kforhelpful dis ussions on ern-

ing the proof of Lemma 3, and Ri hard Cleve for helpful dis ussions on the

proto olfordisjointness.

Referen es

1. N.AlonandJ.H.Spen er. TheProbabilisti Method. Wiley-Inters ien e,1992.

2. A. Ambainis, L. S hulman,A. Ta-Shma, U. Vazirani, and A. Wigderson. The

quantum ommuni ation omplexity of sampling. In Pro eedings of 39th IEEE

FOCS,pages342{351,1998.

3. L.Babai,P.Frankl,andJ.Simon.Complexity lassesin ommuni ation omplexity

theory. InPro eedingsof27thIEEEFOCS,pages337{347,1986.

4. R. Beals, H. Buhrman, R. Cleve, M. Mos a, and R. de Wolf. Quantum lower

boundsbypolynomials. InPro eedingsof39thIEEEFOCS,pages352{361,1998.

quant-ph/9802049.

5. C.Bennett andS.Wiesner. Communi ationviaone- and two-parti leoperators

onEinstein-Podolsky-Rosenstates. Physi alReviewLetters,69:2881{2884, 1992.

6. G.Brassard. Quantum ommuni ation omplexity(asurvey).quant-ph/0101005,

1Jan2001.

7. G. Brassard,P.Hyer,M. Mos a, and A.Tapp. Quantumamplitudeampli a-

tionandestimation.quant-ph/0005055.ToappearinQuantumComputationand

QuantumInformation:A MillenniumVolume,AMSContemporaryMathemati s

Series,15May2000.

8. H.Buhrman. Quantum omputingand ommuni ation omplexity. EATCSBul-

letin,pages131{141,February2000.

9. H.Buhrman,R.Cleve,andA.Wigderson. Quantumvs. lassi al ommuni ation

and omputation. InPro eedings of30thACMSTOC,pages63{68,1998. quant-

ph/9802040.

10. H.Buhrman,W.vanDam,andR.Cleve. Quantumentanglementand ommuni-

ation omplexity. SIAMJournal onComputing, 30(6):1829{1841, 2001. quant-

ph/9705033.

11. H.Buhrman,W.vanDam,P.Hyer,andA.Tapp.Multipartyquantum ommuni-

ation omplexity.Physi alReviewA,60(4):2737{2741, 1999. quant-ph/9710054.

12. H. Buhrman, Ch. Durr, M. Heiligman, P. Hyer, F. Magniez, M. Santha, and

R. de Wolf. Quantum algorithms for element distin tness. In Pro eedings of

16thIEEEConferen eonComputationalComplexity,pages131{137,2001. quant-

ph/0007016.

13. H. BuhrmanandR.deWolf. Communi ation omplexitylowerboundsbypoly-

nomials. InPro eedings of 16thIEEE Conferen e onComputational Complexity,

pages120{130,2001. s.CC/9910010.

14. R.CleveandH.Buhrman.Substitutingquantumentanglementfor ommuni ation.

Physi alReviewA,56(2):1201{1204, 1997. quant-ph/9704026.

15. R. Cleve, W. vanDam, M. Nielsen, and A. Tapp. Quantumentanglement and

the ommuni ation omplexity of the inner produ t fun tion. In Pro eedings of

1stNASAQCQC onferen e,volume1509ofLe ture NotesinComputer S ien e,

(12)

16. W. vanDam. Quantumora le interrogation: Getting all information for almost

halfthe pri e. InPro eedings of 39thIEEE FOCS,pages 362{367,1998. quant-

ph/9805006.

17. E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. A limit on the speed of

quantum omputation in determining parity. Physi al Review Letters, 81:5442{

5444,1998. quant-ph/9802045.

18. L. K. Grover. A fast quantum me hani al algorithm for database sear h. In

Pro eedingsof28thACMSTOC,pages212{219,1996. quant-ph/9605043.

19. R. A. Horn and C. R. Johnson. Matrix Analysis. CambridgeUniversity Press,

1985.

20. B. Kalyanasundaram and G. S hnitger. The probabilisti ommuni ation om-

plexityofsetinterse tion. SIAMJournalonComputing,5(4):545{557,1992.

21. H.Klau k. Onquantumandprobabilisti ommuni ation:LasVegasandone-way

proto ols. InPro eedingsof 32ndACM STOC,pages644{651,2000.

22. H.Klau k. Quantum ommuni ation omplexity. InPro eedings ofWorkshopon

BooleanFun tionsandAppli ationsat27thICALP,pages241{252,2000. quant-

ph/0005032.

23. H.Klau k. Lowerboundsforquantum ommuni ation omplexity.InPro eedings

of 42ndIEEE FOCS,pages288{297,2001. quant-ph/0106160.

24. H. Klau k, A. Nayak,A. Ta-Shma, and D. Zu kerman. Intera tioninquantum

ommuni ationandthe omplexityofsetdisjointness.InPro eedingsof33rdACM

STOC,pages124{133,2001.

25. I. Kremer. Quantum ommuni ation. Master'sthesis, HebrewUniversity,Com-

puterS ien eDepartment,1995.

26. E. Kushilevitzand N.Nisan. Communi ationComplexity. CambridgeUniversity

Press, 1997.

27. S. Massar, D. Ba on, N. Cerf, and R. Cleve. Classi al simulation of quantum

entanglement without lo al hiddenvariables. Physi al Review A, 63(5):052305,

2001. quant-ph/0009088.

28. M. A. Nielsen. Quantum Information Theory. PhD thesis, University of New

Mexi o,Albuquerque,1998. quant-ph/0011036.

29. M.A.NielsenandI.L.Chuang.QuantumComputationandQuantumInformation.

CambridgeUniversityPress,2000.

30. R.Raz.Exponentialseparationofquantumand lassi al ommuni ation omplex-

ity. InPro eedingsof31st ACMSTOC,pages358{367,1999.

31. A.Razborov. Onthe distributional omplexityofdisjointness. Theoreti alCom-

puter S ien e,106(2):385{390,1992.

32. P.W.Shor. Polynomial-timealgorithmsforprimefa torizationanddis rete log-

arithmsonaquantum omputer. SIAMJournalonComputing, 26(5):1484{1509,

1997. quant-ph/9508027.

33. A.Ta-Shma.Classi alversusquantum ommuni ation omplexity.ACMSIGACT

News (ComplexityColumn23),pages25{34,1999.

34. R. deWolf. Chara terization of non-deterministi quantumqueryand quantum

ommuni ation omplexity.InPro eedingsof15thIEEEConferen eonComputa-

tionalComplexity,pages271{278,2000. s.CC/0001014.

35. A. C.-C. Yao. Some omplexity questions related to distributive omputing. In

Pro eedingsof11thACMSTOC,pages209{213,1979.

36. A. C.-C.Yao. Quantum ir uit omplexity. InPro eedings of 34thIEEE FOCS,

pages352{360,1993.

Referenties

GERELATEERDE DOCUMENTEN

1 Note that this lower bound concerns a problem that is slightly more general than the problem of distinguishing fingerprints, because the fingerprints used in Section 8.2 are

We show that, in the black- box model, the exponential quantum speed-up obtained for partial functions (i.e. problems involving a promise on the input) by Deutsch and Jozsa and by

We derive from the AND-OR-trees a communication complexity problem where an asymptotic gap occurs between the zero-error quantum communica- tion complexity and the zero-error

One of the main reasons for the usefulness of non- deterministic query and communication complexities in the classical case, is the tight relation of these complexities

We also prove a lower bound, showing our quantum algorithm for matrix scaling is essentially optimal for constant ε: every quantum algorithm for matrix scaling that achieves a

We show that for Lasso we can get a quadratic quantum speedup in terms of d by speeding up the cost-per- iteration of the Frank-Wolfe algorithm, while for Ridge the best

We show that the “log rank” lower bound extends to the strongest variant of quantum com- munication complexity (qubit communication + unlimited prior entanglement).. By relating

Other examples of this are lower bounds for locally decodable codes and private information retrieval [13, 14], classical proof systems for lattice prob- lems derived from