• No results found

Conventional linear prediction methods

N/A
N/A
Protected

Academic year: 2021

Share "Conventional linear prediction methods"

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Linear prediction of audio signals

Toon van Waterschoot and Marc Moonen

Katholieke Universiteit Leuven, ESAT-SCD, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium toon.vanwaterschoot@esat.kuleuven.be

http://homes.esat.kuleuven.be/∼tvanwate/

Linear prediction audio applications:

• audio compression (warped LP)

• lossless audio coding

• audio (spectral) analysis

• audio signal whitening

(feedback/echo cancellation)

Tonal audio signal model, t = 1, ..., M : x(t) = PN

n=1 A(n) sin[nω0t + φ(n)] + e(t) Residual spectral flatness measure:

SFMR = exp n

1 M

Pfs˜

f =0ln

|R(f )|2o

1 M

Pfs˜

f =0 |R(f )|2

0 0.5 1 1.5 2

x 104

−300

−250

−200

−150

−100

−50 0 50 100

f (Hz) 20log10|X(ej2πf/fs)|(dB)

• fs = 44.1 kHz

• ω0 = 2π/64 rad (f0 = 689.1 Hz)

• M = 2048 samples = 46.4 ms

• N = 15

• e(t) ≡ 0

• A(n) ∼ U(0, 1)

• φ(n) ∼ U(0, 2π)

LP method SFMR (dB) LP (autocorrelation) -6.92

LP (covariance) -52.97 Pole-zero model -1.19

High-order LP -0.55 Pitch prediction -15.37

Warped LP -5.17 Selective LP -1.76

Conventional linear prediction methods

'

&

$

%

Autocorrelation method

0 0.5 1 1.5 2

x 104

−30

−20

−10 0 10 20 30

f (Hz) 20log10|H(ej2πf/fs )|(dB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8 1

30

Real Part

Imaginary Part

'

&

$

%

Covariance method

0 0.5 1 1.5 2

x 104

−200

−150

−100

−50 0 50 100 150

f (Hz) 20log10|H(ej2πf/fs)|(dB)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8 1

30

Real Part

Imaginary Part

⇓ ⇓

residual spectral flatness maximization high-resolution tonal components identification

Conjectures:

1. AR(2N ) model is not suited for achieving BOTH residual spectral flatness and and high-resolution tonal components identification, UNLESS tonal components are uniformly distributed in Nyquist interval (ω

0

= π/(N + 1))

2. AR(2N ) model with covariance method fails to identify tonal components when noise is added to tonal signal (e(t) 6= 0)

Alternative linear prediction methods

'

&

$

%

Pole-zero modelling

0 0.5 1 1.5 2

x 104

−140

−120

−100

−80

−60

−40

−20 0 20

f (Hz) 20log10|H(ej2πf/fs)|(dB)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8 1

Real Part

Imaginary Part

'

&

$

%

High-order AR modelling

0 0.5 1 1.5 2

x 104

−50

−40

−30

−20

−10 0 10 20

f (Hz) 20log10|H(ej2πf/fs)|(dB)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8 1

2

2 2

2 2

2 1024

Real Part

Imaginary Part

'

&

$

%

Pitch prediction

0 0.5 1 1.5 2

x 104

−35

−30

−25

−20

−15

−10

−5 0 5 10

f (Hz) 20log10|H(ej2πf/fs)|(dB)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8 1

64

Real Part

Imaginary Part

'

&

$

%

Warped linear prediction

0 0.5 1 1.5 2

x 104

−40

−30

−20

−10 0 10 20 30 40 50 60

f˜(Hz) 20log10|X(ej2π

˜ f/fs)|(dB)

0 0.5 1 1.5 2

x 104

−40

−30

−20

−10 0 10 20

f˜(Hz) 20log10|H(ej2π

˜ f/fs )|(dB)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8 1

30

Real Part

Imaginary Part

'

&

$

%

Selective linear prediction

0 2000 4000 6000 8000 10000

−300

−250

−200

−150

−100

−50 0 50 100

f (Hz) 20log10|X(ej2πKf/fs)|(dB)

0 2000 4000 6000 8000 10000

−30

−20

−10 0 10 20 30

f (Hz) 20log10|H(ej2πKf/fs)|(dB)

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2 0 0.2 0.4 0.6 0.8 1

30

Real Part

Imaginary Part

See also: T. van Waterschoot and M. Moonen, “Comparison of linear prediction models for audio signals,” EURASIP J. Audio, Speech, Music Process., submitted for publication. ftp:

//ftp.esat.kuleuven.be/pub/sista/vanwaterschoot/abstracts/07-29.html

Referenties

GERELATEERDE DOCUMENTEN

Specifically, Shi (1992) claims that lexical tones beginning with aspirated onsets are independent of lexical tones beginning with unaspirated onsets and are merging toward

De volgende stap is het vergroenen van de straat. In de straat worden parkeerplaatsen voorzien van groene waterdoorlatende tegels en worden bomen geplant. Samen met de bewoners wordt

De data werden verzameld aan de hand van standaard methoden, volgens het protocol voor het macroscopisch onderzoek van menselijke resten binnen het agentschap Onroerend Erfgoed 20.

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden Downloaded.

Recall from §6.2 that the underlying actor model assumes the existence of a unique name for each actor. The Dreams framework assumes also a total order among actors based on

While there were detailed acoustic differences in tone production, tones with similar contours between the two dialects were basically perceived to be the same, resulting in mapped

In keeping with this ideology, the initial aim of the research project has been to identify the disease- causing mutations in patients affected by inherited RDD and to translate

Zoals wij boven konden spreken van een heterogene functionele binding van het gezochte voorwerp (de boor werd niet zo gemakkelijk gezien als haak door zij.n functionele binding als