• No results found

Generalized uncertainty principle, classical mechanics, and general relativity

N/A
N/A
Protected

Academic year: 2021

Share "Generalized uncertainty principle, classical mechanics, and general relativity"

Copied!
5
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Generalized

Uncertainty

Principle,

Classical

Mechanics,

and

General

Relativity

Roberto Casadio

a

,

b

,

,

Fabio Scardigli

c

,

d

aDipartimentodiFisicaeAstronomia,AlmaMaterUniversitàdiBologna,viaIrnerio46,40126Bologna,Italy bI.N.F.N.,SezionediBologna,ISFLAGvialeB.Pichat6/2,I-40127Bologna,Italy

cDipartimentodiMatematica,PolitecnicodiMilano,PiazzaLeonardodaVinci32,20133Milano,Italy dInstitute-LorentzforTheoreticalPhysics,LeidenUniversity,P.O.Box9506,Leiden,theNetherlands

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received22April2020

Receivedinrevisedform7June2020 Accepted10June2020

Availableonline16June2020 Editor:B.Grinstein

The GeneralizedUncertaintyPrinciple (GUP)hasbeendirectlyappliedto themotionof(macroscopic) test bodies ona given space-time in order to compute corrections to the classical orbits predicted in Newtonian Mechanics or General Relativity. These corrections generically violate the Equivalence Principle. The GUP has also been indirectly applied to the gravitational source by relating the GUP modifiedHawkingtemperaturetoadeformationofthebackgroundmetric.Suchadeformedbackground metricdeterminesnewgeodesicmotionswithoutviolatingtheEquivalencePrinciple.Wepointouthere that thetwo effectsare mutuallyexclusivewhen comparedwithexperimentalbounds. Moreover,the former stems frommodified Poissonbrackets obtainedfrom awrongclassical limitof thedeformed canonicalcommutators.

©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Equivalence Principle and diffeomorphism invariance

Itiswellknown [1] thatthe(weak)EquivalencePrinciple(EP; namelytheequalitybetweengravitationalandinertialmass) dic-tatesthattheequationofmotionoftestparticlesinagravitational fieldbeoftheform

d2xλ dτ2

+ 

λ μν dxμdxν

=

0

.

(1)

Ontheotherhand,Eq. (1) turnsalso outtodescribegeodesicsina manifold with metric gμν and the Levi-Civita connection



λ

μν

=

1 2gλσ



gμσ,ν

+

gνσ,μ

gμν,σ



.1 In his foundational paper [2] of GeneralRelativity(GR),AlbertEinsteinproposedthatthegeodesic equation (1) playedtheroleoftheequationofmotionforapoint particleinthe gravitationalfield gμν ,whichin turnshould obey thecelebratedfieldequations

*

Correspondingauthor.

E-mailaddresses:casadio@bo.infn.it(R. Casadio),fabio@phys.ntu.edu.tw (F. Scardigli).

1 Asusual,commasdenotepartialderivativesw.r.t. thecoordinatesxμand

semi-colonsthe covariantderivativesinthe metric gμν; Rμν isthe Riccitensorand

R theRicciscalar;weshallalsouseunitswithc=1 butdisplaytheBoltzmann constantkB,thePlanckconstanth,¯ theNewtonconstantGN andthePlanckmass mp=  ¯ h/GNexplicitly. Gμν

Rμν

1 2R gμν

=

8

π

GNTμν

,

(2)

where Tμν istheenergy-momentumtensorofthematter source. In that original formulation, theidentification of theequation of motion with the geodesic equation was seen as an independent axiomofthetheory,inparticularindependent fromthefield equa-tions (2).Fromthispointofview,onecansaythatthecontentof theEPispreciselythattheequationofmotionisthegeodesicequation.

Insuccessivestudies [3,4],Einsteinandcollaboratorsobtaineda resultofconsiderableimportance:theequationofmotionofpoint particles,that isthegeodesic equation (1), caninfact bederived fromthegravitationalfieldequations (2).2Inotherwords,thefield equationsdetermineuniquelytheequationofmotionforbodiesin a gravitationalfield which are not subjected toother forces,and theensuingtrajectoriesaregeodesicsofthecorrespondingmetric. This finding is in full agreement with the postulate of geodesic motion, which therefore appears as a consequence of the field equations,andnotasanindependentaxiomofthetheory.

AnexplicitderivationcanbefoundforinstanceinRefs. [6,7].It isimportantheretoremarkthatthestarting pointisthe conser-vationoftheenergy-momentumtensor,towit

2 Strictlyspeaking,theargumentappliestodust(asmoothfluidwithzero pres-sure),sincepoint-likesourcesareknowntobemathematicallyincompatiblewith Eq. (2) [5].

https://doi.org/10.1016/j.physletb.2020.135558

(2)

Tμν;ν

=

0

.

(3)

This continuity condition can be obtained directly from Eq. (2), using the Bianchi identity for the Einstein tensor, 0

=

Gμν;ν

=

8

π

GNTμν;ν .Inthisway,itappears asaconsistencycondition for

thefield equations.More generally,Eq. (3) can be derived by re-quiringthe diffeomorphisminvariance ofthe matter action [1,8]. Infact,underageneric(infinitesimal)changeofcoordinates,xμ

=

+ ξ

μ

(

x

)

, themetric tensorchanges by

δ

gμν

= −(ξμ

;ν

+ ξν

;μ

)

,

andthematteractionvariesas

δ

SM

=

1 2



d4x

g Tμν

δ

gμν

= −



d4x

−g T

μν

ξ

μ;ν

=



d4x

g Tμν;ν

ξ

μ

.

(4)

Sincethevariation

ξ

μ isarbitrary,requiringthat

δ

SM

=

0 is

equiv-alenttorequireEq. (3).Inconclusion,geodesicmotionandtheEP are deeplyrooted into the field equationsof GRand, evenmore fundamentally,they stemfrom the diffeomorphism invarianceof thematteraction(whichisdemandedbythePrincipleofGR).One thereforecannotmodifyorrenouncetoeitherofthemeasily. 2. Generalized Uncertainty Principle

Muchefforthasbeenputintotryingtoincorporatetheeffects ofgravityinquantumphysicsbymeansofaGUPoftheform [9–

17]

x

p

≥ ¯

h 2



1

+ β

0

p2



,

(5)

where x and p are the position andconjugate momentum of a particle,withthecorresponding quantumobservablesdenotedby

ˆ

x and p,

ˆ

O2

≡ 

O

ˆ

2



− 

O

ˆ



2 foranyoperator O ,

ˆ

and

β

0

= β/

m2p

isadeformingparameterexpectedtoemergefromcandidate the-oriesof quantum gravity. Uncertaintyrelations can be associated with(fundamental)commutatorsbymeansofthegeneral inequal-ity

A

B

1

2



 [ ˆ

A

, ˆ

B

] 



 .

(6)

Forinstance,onecanderiveEq. (5) fromthecommutator

ˆ

x

,

p

ˆ

=

ih

¯



1

+ β

0p

ˆ

2



,

(7)

forwhichEq. (6) yields

x

p

≥ ¯

h 2



1

+ β

0

 ˆ

p2





= ¯

h 2

1

+ β

0



p2

+  ˆ

p



2



.

(8)

Thisimmediatelyimpliesthat theGUP (5) holdsforanyquantum state, since



p

ˆ



2

0 always. In particular for mirror-symmetric

states

ψ

mssatisfying

 ψ

ms

| ˆ

p

| ψ

ms

 =

0

,

(9)

one has

p2

= 

ψ

ms

| ˆ

p2

| ψ

ms



and theinequality (8) coincides

withtheGUP (5).WealsorecallthatEq. (5) impliestheexistence ofaminimumlength

= ¯

h

β

0 whichoneexpectsoftheorderof

thePlancklength.

TheoreticalconsequencesoftheGUPonquantum(microscopic) systemshavebeenextensivelyinvestigatedbyvariousauthors(see e.g. [18–20]).Inaddition,severalexperimentshavebeenproposed

to testdifferentGUP’sinthe laboratory [21–23],aswell assome groundandspacebasedexperimentscould alsobeableto reveal GUPeffects(seee.g. [24]).Itisveryimportantthatthesizeofsuch modifications canbe constrainedalsowithmacroscopictest bod-ies byexisting astronomicaldataemployed forthe standardtests ofGR.Constrainingthedeformingparameter

β

usingastronomical data requires toestimate the effect ofthe GUP (5) in the classi-cal limit.Intheexistingliterature,thishasbeendoneindifferent ways.Inthefollowing,wecriticallyreviewandcomparetwo com-plementaryapproachesofparticularrelevance.

3. GUP and classical mechanics

WorksdevotedtoevaluatetheimpactoftheGUPonthemotion ofclassical(macroscopic)bodiesusuallyemployamodificationof theclassicalPoissonbracketswhichresemblesthedeformed quan-tumcommutator (7) (see,e.g. [25–31]).Theyessentiallyimplement theclassicallimitastheformalmappingintoPoissonbrackets

1 ih

¯

ˆ

x

,

p

ˆ

=



1

+ β

0p

ˆ

2



→ {

x

,

p

} =



1

+ β

0p2



.

(10)

Such deformed Poisson brackets are then used to determine or-bitsintheSolarsystemandderiveperturbativecorrectionstothe Newtoniantrajectories.

ThetypicalformforthecorrectioncomingfromEq. (10) canbe foundinAppendix AofRef. [32].Tokeepthecalculation transpar-entandfocusontheconcepts,we justconsiderapoint-likemass

m falling radially towards a mass M

m. From the Newtonian Hamiltonian H

=

p 2 2 m

GNM m r

p2 2 m

+

m VN (11)

andthePoissonbrackets (10) withx

=

r,the canonicalequations read

˙

r

= {

r

,

H

} =



1

+ β

0p2



p m (12)

˙

p

= {

p

,

H

} = −



1

+ β

0p2



GNM m r2

,

(13)

whereadotstandsforthetimederivative.Tofirstorderin

β

,one thenobtainstheequationofmotion

¨

r

GNM r2

1

+

4

β

m 2 m2 p

˙

r2



.

(14)

Equivalently, one can proceed like in Ref. [25], starting from Eq. (12). The conservation of the total energy E

=

m

E

then im-plies p2

=

2m2

(

E

VN

)

,usingwhichonecanfinally write(for a

particlewithzeroangularmomentum)

˙

r2

2

(

E −

VN

)



1

+

4

β

m 2 m2 p

(

E −

VN

)



,

(15) againtofirstorderin

β

.

Thetermsoforder

β

inbothEqs. (14) and(15) dependonthe massm ofthetestbody andonitsvelocity

˙

r

∼ (E

VN

)

1/2.Itis

(3)

Difficultiesastheabovearefullyconfirmedalsowhenthe mod-ifiedclassical Poissonbracketsare formulatedina covariantway, on a fixed background metric [29,30]. A slightly different path is followed in Ref. [28], where the EP is recovered even for the GUPmodifiedclassical mechanics,by consideringcomposite bod-ies andpostulating that thekinetic energyis additive. The price to pay in this case is a different deformation parameter

β

0i for

eachspecie i of(elementary)particlesofmassmi composingthe macroscopicbody. Correspondingly, there wouldexist a different minimal length

i

= ¯

h

β

0i for each elementary particle. For

in-stance,theminimallengththatcanbeprobedbyaprotonshould besmallerthanthatprobedbyanelectron.Thisfeatureisclearly atoddwiththeuniversalityofgravitation,andwiththefact that thePlancklengthcanbecomputedinawaythatdoesnotdepend atallontheparticleconsidered(seee.g. [33]).

Whatistheoriginofsuchblatantlyunphysicalpredictionsand potentialviolationoftheEP?Theerrorcanbetracedbacktothe implementationof theclassical limit in Eq. (10) for objects with strictly non-vanishing momentum.In fact, fora generic (normal-ized) state

ψ

with



p

ˆ



=

0, the classical limit of the commuta-tor (7) isformallygivenby

{

x

,

p

} =

lim ¯ h→0

 ψ | [ˆ

x

,

p

ˆ

] | ψ 

ih

¯

=

lim ¯ h→0



1

+ β

GN

¯

h



 ˆ

p



2

+

p2



.

(16)

However, classical (macroscopic) bodies with non-vanishing mo-mentum should be more precisely represented by semiclassical states

ψ

cl,for which we expect the classical limit can be

gener-icallydefinedbythetwoproperties3

lim

¯

h→0

 ψ

cl

| ˆ

p

| ψ

cl

 =

p

,

(17)

wherep istheclassicalmomentum,and

lim ¯ h→0

p 2

lim ¯ h→0



 ψ

cl

| ˆ

p2

| ψ

cl

 −  ψ

cl

| ˆ

p

| ψ

cl



2



=

0

.

(18)

Therefore, even under the stronger condition

p2

/

h

¯

0, the

limit (16) becomes

{

x

,

p

} =

lim ¯ h→0



1

+ β

GNp 2

¯

h



,

(19)

whichdivergesbadlylikeh

¯

−1.4Ofcourse,thisdivergencedoesnot occur formirror symmetricstates,forwhich Eq. (9) impliesthat theclassicalmomentump

=

0.InfactEq. (19) yieldsthestandard Poissonbracketswithoutcorrectionsifweset p

=

0 beforetaking thelimit. Inother words,since mirrorsymmetricstates canonly representobjectswith zeromomentum, thecommutator (7) and thecorrespondingPoissonbrackets (10) shouldbeappliedonlyto classicalbodiesstrictlyatrest.ItisthenobviouswhyEq. (10) can-notdescribethedynamicsofplanetsorbitingtheSun!

ApossiblewayoutofthisconundrumistoderivetheGUP (5) fromthe(explicitlystatedependent)deformedcommutator

3 Ofcourse, the wholetopic ofhow theclassical behavior emergesin quan-tumphysicsisfarricherthanwhatweneedtodiscusshere(forarecentreview, seeRef. [34]).For instance, the condition (18) forthe states ψcl could be im-plementedbyrequiringp∼ ¯,withα>0.Sinceforsuchsemiclassicalstates wecanalso assumex∼ ¯, withγ>0,thenHeisenberguncertaintyrelation

xp∼ ¯hα+γ≥ ¯h/2 wouldcontinuetoholdthroughoutthelimitingprocessfor

¯

h→0 ifα+γ≤1.However,thisisonlyanaivewaytoenforceEqs. (17) and(18) andnotnecessarilyausefulone.

4 Thedivergenceobviouslydisappearswhengravityisswitchedoff(G N=0) be-foretakingthelimit.

ˆ

x

,

p

ˆ

=

ih

¯

1

+ β

0



ˆ

p2

−  ˆ

p



2



,

(20)

whichindeedleads totheGUP (5) for anyquantum statevia the inequality (6), and it further reduces to the commutator (7) for mirror symmetric states. The commutator (20), for semiclassical statessatisfyingtheconditions (17) and(18),implies

{

x

,

p

} =

lim ¯ h→0

 ψ

cl

| [ˆ

x

,

p]

ˆ

| ψ

cl



ih

¯

=

1

+ β

GN

0

,

(21) where

0

lim ¯ h→0

(

p

2

/

h

¯

)

dependson the state

ψ

cl andcan take

thefollowingvalues:

i)

0

=

0 andtheclassicallimit (21) yieldsthestandardPoisson

bracketswith

{

x

,

p

}

=

1;

ii)

0

>

0 and finite.The limit in Eq. (21) then yields the

con-stantC20

=

1

+ β

GN

0,whichcanbesimplyusedtorescalex

and p sothat thestandard Poissonbracketsare again recov-ered;

iii)

0

= ∞

andthecommutator (20) doesnot yieldaconsistent

classical limit.Hence, thecorresponding states

ψ

cl shouldbe

avoided.

Summarizing: the classical limit is either badly defined [be-cause Eqs. (19) or (21) diverge], or is just given by the classical Poisson brackets with

{

x

,

p

}

=

1 without corrections. Therefore, along thisway, it is clearly impossible to estimate any effect of the GUPon macroscopicbodies.To thisaim,we should followa completelydifferentpath.

4. GUP and General Relativity

In order to compute GUP effects on macroscopic bodies, we mayrely on theindirect argumentillustrated inRef. [32]. Letus consider a Schwarzschildblack holeof mass M, whose metric is givenby

ds2

= −

f

(

r

)

dt2

+

dr 2

f

(

r

)

+

r

2d



2

,

(22)

with f

(

r

)

=

1

2GNM

/

r. From the inequality (5), one can

de-rive a modified Hawking temperaturewhich, to first order in

β

, reads [33,35–37] T

h

¯

8

π

GNkBM

1

+

β

m 2 p 4

π

2M2



.

(23)

Wethenintroduceamodifiedmetricfunction f

(

r

)

+ δ

f

(

r

)

=

1

2 GNM

r

+

ε

G2NM2

r2

,

(24)

and compute the correction

δ

f

(

r

)

which can reproduce the re-sult (23) bymeansofastandardQuantumFieldTheorycalculation. We thusfind arelationbetweenthe deformationparameter

ε

of themetricandthedeformationparameter

β

oftheGUPas

β

M

2

m2 p

ε

2

.

(25)

(4)

backgroundmetric,5 weexpect noviolationoftheEP by construc-tion,andobtainatypicalcorrectiontotheNewtonianpotential of theform [32]6

VGUP

=

ε

G2NM2 2 r2



|β|

mp M V 2 N

.

(28)

UnlikeEqs. (14) and(15), thiscorrection doesnotdependonthe massorspeedoftheorbitingobjectatall,infullagreementwith the EP. Moreover, it becomes vanishingly small for macroscopic sources of mass M

mp (as one should reasonablyexpect). For

the sake of completeness, we remark that there are other ap-proaches which avoid anyEP violation by construction, like that of Ref. [43], where gravitational waves are used for constrain-ing a GUP-modified dispersion relationfor gravitons,and that of Ref. [44], where a GUP-deformed background metric is used to compute corrections to the black hole shadow. Furthermore, ex-tensive discussions of precision tests of the EP, and its possible violations,indifferentcontexts(e.g.inscalar-tensorgravityandat finitetemperature)canbefoundinRefs. [45,46].

5. Experimental bounds and conclusions

AsidefromthepreviousconsiderationsontheEPandthe clas-sical limit, the correction termproportional to

β

inEq. (15) can alsobequantitativelyconfrontedwiththecorrection (28), assum-ing of course that the deforming parameter

β

is universal and appliesto bothtest bodiesandgravitationalsourcesofanyscale. For macroscopic objects and, in particular, for consistence with SolarSystem tests, the correction in Eq. (15) requires an incred-ibly smallGUPparameter

β



10−66 [25,29].Consequently, using

thisboundinthecorrection (28) fortheextremecaseofaPlanck sizesourceofmass M

mp,onefinds

VGUP

10−33VN2,which

is essentially zero.This appears ratherodd, since one introduces the GUP (5) precisely for describing quantum gravity effects at the Planck scale. For instance, one expects a minimum measur-able length

p

β

comparable to the Planck length, rather

than many orders of magnitude shorter. On the other hand, if one accepts the Solar Systembounds on

β

coming from

VGUP

inEq. (28),thatis

β



1069[32,42],thecorrectionfora

hypothet-icalPlancksizesourcecanstillbeveryrelevant(asexpected). Since thecorrections ofthe formin Eq. (15) are irrelevant at thePlanckscale,violatetheEP,growlargerandlargerforplanets intheSolarSystem,moreovertheystemfromacommutatorwhich isincompatible with theproper classicallimit for anystate with non-vanishingclassicalmomentum,weconcludethatthe dynami-calequations (14) and(15),andthemodifiedPoissonbrackets (10) shouldbeviewedasbothconceptuallywrongand phenomenolog-icallyunviable.

Declaration of competing interest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

5 FordetailsaboutorbitsinGR,seee.g. Ref. [41]. 6 Adeformationofthemetricfunctionoftheform

δf(r)=εf(r)  2 GNM r 2 (26)

wasusedinRef. [42],wheretheauthorsobtainaGUPparameter

α0 −

M mp

ε, (27)

whichis relatedto β byβ α2

0. The experimentalboundson α0 obtainedin Ref. [42] arethereforeequivalenttothoseonβderivedinRef. [32].

Acknowledgements

R.C. ispartiallysupportedbytheINFNgrantFLAGandhiswork hasalsobeencarriedoutintheframeworkofactivitiesofthe Na-tionalGroupofMathematicalPhysics(GNFM,INdAM).

References

[1]S.Weinberg,GravitationandCosmology,JohnWileyandSons,NewYork,1972. [2]A.Einstein,Ann.Phys.(4)49(1916)769.

[3]A.Einstein,J.Grommer,Sitz.ber.Preuss.Akad.Wiss.Berl.2(1927). [4]A.Einstein,L.Infeld,B.Hoffmann,Ann.Math.39(1938)65. [5]R.P.Geroch,J.H.Traschen,Phys.Rev.D36(1987)1017.

[6]R.Adler,M.Bazin,M.Schiffer,IntroductiontoGeneralRelativity,McGraw-Hill Inc.,NewYork,1965.

[7]N.Straumann,GeneralRelativity,Springer,Dordrecht-Heidelberg,2004. [8]L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields,

Butterworth-Heinemann,Oxford,1987. [9]H.S.Snyder,Phys.Rev.71(1947)38;

C.N.Yang,Phys.Rev.72(1947)874; C.A.Mead,Phys.Rev.B135(1964)849; F.Karolyhazy,NuovoCimentoA42(1966)390.

[10]D.Amati,M.Ciafaloni,G.Veneziano,Phys.Lett.B197(1987)81; D.J.Gross,P.F.Mende,Phys.Lett.B197(1987)129;

D.Amati,M.Ciafaloni,G.Veneziano,Phys.Lett.B216(1989)41; K.Konishi,G.Paffuti,P.Provero,Phys.Lett.B234(1990)276. [11]M.Maggiore,Phys.Lett.B304(1993)65,arXiv:hep-th/9301067.

[12]A.Kempf,G.Mangano,R.B.Mann,Phys.Rev.D52(1995)1108,arXiv:hep-th/ 9412167.

[13]F.Scardigli,Phys.Lett.B452(1999)39,arXiv:hep-th/9904025.

[14]R.J.Adler,D.I.Santiago,Mod.Phys.Lett.A14(1999)1371,arXiv:gr-qc/9904026. [15]S.Capozziello,G.Lambiase,G.Scarpetta,Int.J.Theor.Phys.39(2000)15,arXiv:

gr-qc/9910017.

[16]F.Scardigli,R.Casadio,Class.QuantumGravity20(2003)3915,arXiv:hep-th/ 0307174.

[17]P.Bosso, Onthe quasi-position representation intheories with a minimal length,arXiv:2005.12258 [gr-qc];

P.Bosso,O.Obregón,Class.QuantumGravity37(2020)045003,arXiv:1904. 06343 [gr-qc].

[18]F.Brau,J. Phys.A32(1999)7691,arXiv:quant-ph/9905033.

[19]S.Das,E.C.Vagenas,Phys.Rev.Lett.101(2008)221301,arXiv:0810.5333 [hep -th];

A.F.Ali,S.Das,E.C.Vagenas,Phys.Rev.D84(2011)044013,arXiv:1107.3164 [hep-th].

[20]P.Pedram,K.Nozari,S.H.Taheri,J. HighEnergyPhys.1103(2011)093,arXiv: 1103.1015 [hep-th].

[21]I.Pikovski, M.R. Vanner,M. Aspelmeyer, M.S.Kim, C.Brukner, Nat.Phys.8 (2012)393,arXiv:1111.1979 [quant-ph].

[22]F.Marin,etal.,Nat.Phys.9(2013)71.

[23]M.Bawaj,etal.,Nat.Commun.6(2015)7503,arXiv:1411.6410 [gr-qc]. [24]G.M.Tino,etal.,Eur.Phys.J.D73 (11)(2019)228,arXiv:1907.03867 [astro-ph.

IM].

[25]S.Benczik,L.N.Chang,D.Minic,N.Okamura,S.Rayyan,T.Takeuchi,Phys.Rev. D66(2002)026003,arXiv:hep-th/0204049.

[26]K. Nozari, S. Akhshabi, Chaos Solitons Fractals 37 (2008) 324, arXiv:gr-qc/ 0608076.

[27]A.F.Ali,Class.QuantumGravity28(2011)065013,arXiv:1101.4181 [hep-th]. [28]V.M.Tkachuk,Phys.Rev.A86(2012)062112,arXiv:1301.1891 [gr-qc]. [29]X.Guo,P.Wang,H.Yang,J. Cosmol.Astropart.Phys.1605(2016)062,arXiv:

1512.03560 [gr-qc].

[30]S.Ghosh,Class.QuantumGravity31(2014)025025,arXiv:1303.1256 [gr-qc]. [31]S.Mignemi,R.Strajn,Phys.Rev.D90(2014)044019,arXiv:1404.6396 [gr-qc]. [32]F.Scardigli,R.Casadio,Eur.Phys.J.C75(2015)425,arXiv:1407.0113 [hep-th]. [33]F.Scardigli,NuovoCimentoB110(1995)1029,arXiv:gr-qc/0206025. [34]P.Martin-Dussaud, Searching for coherent states,from origins to quantum

gravity,arXiv:2003.11810 [quant-ph].

[35]R.J.Adler,P.Chen,D.I.Santiago,Gen.Relativ.Gravit.33(2001)2101, arXiv: gr-qc/0106080.

[36]L.Susskind,J.Lindesay,AnIntroductiontoBlackHoles,Information,andthe StringTheoryRevolution,WorldScientific,Singapore,2005(seechapter10). [37]F.Scardigli,M.Blasone,G.Luciano,R.Casadio,Eur.Phys.J.C78(2018)728,

arXiv:1804.05282 [hep-th].

[38]P.Jizba,H.Kleinert,F.Scardigli,Phys.Rev.D81(2010)084030,arXiv:0912.2253 [hep-th].

[39]Y.C.Ong,J. Cosmol.Astropart.Phys.1809(2018)015,arXiv:1804.05176 [gr-qc]. [40]L.Buoninfante,G.G.Luciano,L.Petruzziello,Eur.Phys.J.C79(2019)663,arXiv:

1903.01382 [gr-qc].

(5)

[42]A.FaragAli,M.Khalil,E.Vagenas, Europhys.Lett. 112(2015)20005,arXiv: 1510.06365 [gr-qc].

[43]Z.W.Feng,S.Z.Yang,H.L. Li,X.T.Zu,Phys. Lett.B768(2017)81–85,arXiv: 1610.08549 [hep-ph].

[44]J.C.Neves,Eur.Phys.J.C80 (4)(2020)343,arXiv:1906.11735 [gr-qc].

[45]B.Altschul,etal.,Adv.SpaceRes.55(2015)501,arXiv:1404.4307 [gr-qc]; G.M.Tino,L.Cacciapuoti,S.Capozziello,G.Lambiase,F.Sorrentino,Prog.Part. Nucl.Phys.112(2020)103772,arXiv:2002.02907 [gr-qc].

Referenties

GERELATEERDE DOCUMENTEN

The subtleties of lower-dimensional gravity, and its important differences concerning four and higher dimensions, are duly taken into account, by considering different

Nor do I think that fears are justified that Islamic extremist doctrines or so-called ‘Islamofascism’ will take over the West, just like the Nazi-minority succeeded in

prospects for the study of the Solar System and circumstellar disks with SIRTF. A substantial program that surveyed a wide variety of Solar System bodies was included in the first

It then follows that a uniformly accelerated observer per- ceives the Minkowski vacuum as a thermal bath of Rindler quanta with a temperature proportional to the acceleration (the

The time data points and standard deviation of the flux from the BRITE data were used to generate a data set similar to the BRITE data with Gaussian noise.. The BATMAN curves

Thus while the general picture in the binary/multiple star formation scenario is more com- plex than the single, isolated core case, the initial conditions for planet formation

Thus, this research will focus specifically on microcredit access and the effects it might have on male participants as compared to female participants, concerning outstanding

The new global health differs from the old international health (and the still older tropical health) in a number of ways; but particularly by placing the care of the