• No results found

Dynamics of H2 on Ti/Al(100) surfaces Chen, J.C.

N/A
N/A
Protected

Academic year: 2021

Share "Dynamics of H2 on Ti/Al(100) surfaces Chen, J.C."

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Dynamics of H2 on Ti/Al(100) surfaces

Chen, J.C.

Citation

Chen, J. C. (2011, October 19). Dynamics of H2 on Ti/Al(100) surfaces. Retrieved from https://hdl.handle.net/1887/17956

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/17956

Note: To cite this publication please use the final published version (if applicable).

(2)

Dynamics of H 2 on Ti/Al(100) surfaces

PROEFSCHRIFT

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op woensdag 19 oktober 2011 klokke 15.00 uur

door

Jian-Cheng Chen

geboren te Shaanxi in 1977

(3)

Promotiecommissie

Promotores: Prof. dr. G. J. Kroes Prof. dr. R. A. Olsen Co-promotor: Dr. J. C. Juanes-Marcos Overige leden: Prof. dr. M. T. Koper

Dr. G. C. Groenenboom Prof. dr. J. Brouwer

Prof. dr. J. J. C. Geerlings Dr. L. B. F. Juurlink

Prof. dr. M. C. van Hemert

This research described in this thesis was performed at the Theoretical Chemistry Group of the Leiden Institute of Chemistry (LIC), Leiden University, 2300 RA Leiden. This work was made possible by financial support from the “Marie Curie Research Training Network:

HYDROGEN” under contract No. 032474. The “Stichting Nationale Computerfaciliteiten” (NCF) is acknowledged for grants of computer time.

Productie en vormgeving omslag: F&N Boekservice

(4)

To my parents

(5)
(6)

Contents

1 Introduction 9

1.1 Hydrogen production and storage . . . 9

1.1.1 Hydrogen production . . . 10

1.1.2 Hydrogen storage . . . 10

1.2 H2–surface reactions . . . 13

1.2.1 Gas–surface reaction mechanisms . . . 14

1.2.2 Scattering of H2on metal surfaces . . . 16

1.2.3 Dissociation of H2on metal surfaces . . . 18

1.3 Scope and major results . . . 19

1.4 Outlook . . . 22

1.5 References . . . 24

2 Theoretical methods 31 2.1 The Born-Oppenheimer approximation . . . 31

2.2 Brief density functional theory . . . 32

2.2.1 From Hartree approximation to density functional theory . . . 32

2.2.2 Density functional theory . . . 35

2.2.3 Plane wave DFT . . . 37

2.2.4 Two-center projected density of states . . . 39

2.3 Quasi-Newton optimization . . . 40

2.4 Barrier search methods . . . 42

2.5 Potential energy surface building . . . 44 v

(7)

CONTENTS CONTENTS

2.5.1 The “grow” method . . . 46

2.5.2 Corrugation reducing procedure . . . 49

2.6 Quasi-classical trajectory method . . . 50

2.7 Time-dependent wave packet . . . 51

2.7.1 Hamiltonian and the time-dependent wave packet . . . 51

2.7.2 Methods to propagate the time-dependent wave packet . . . 54

2.7.3 Representation of the wave packet . . . 55

2.7.4 Asymptotic analysis . . . 59

2.8 Transition state theory . . . 61

2.9 Molecular beam simulations . . . 63

2.10 References . . . 64

3 A DFT study of H2reacting on Ti/Al(100) surfaces 69 3.1 Introduction . . . 69

3.2 Methodology and numerical details . . . 72

3.3 Results and discussion . . . 74

3.3.1 Slab models . . . 74

3.3.2 H2dissociation barriers . . . 77

3.3.3 A molecular orbital view of the H2 approach to the surface and the subsequent dissociation . . . 83

3.4 Conclusions . . . 85

3.5 References . . . 86

4 Six-dimensional quasi-classical and quantum dynamics for H2 dissociation on the 1 monolayer covered c(2 × 2)-Ti/Al(100) surface 89 4.1 Introduction . . . 90

4.2 Methodology and numerical details . . . 92

4.2.1 Electronic structure calculations and slab model . . . 92

4.2.2 Modified Shepard interpolation method and “growing” of the six- dimensional PES . . . 93

4.2.3 CT and QCT calculations . . . 97 vi

(8)

CONTENTS CONTENTS

4.2.4 TDWP calculations . . . 100

4.3 Results and discussion . . . 103

4.3.1 PES obtained from the “Grow” method . . . 103

4.3.2 Quasi-classical H2 dissociation probabilities . . . 105

4.3.3 Quantum dynamics of H2dissociation probability . . . 110

4.4 Conclusions . . . 114

4.5 References . . . 115

5 Dynamics of H2 dissociation on the 1/2 ML Ti-covered c(2 × 2)-Ti/Al(100) surface 121 5.1 Introduction . . . 122

5.2 Methodology and details . . . 124

5.2.1 Electronic structure calculations and slab model . . . 124

5.2.2 The interpolation of the 6D PESs . . . 125

5.2.3 CT and QCT calculations . . . 128

5.2.4 Effective barrier heights and rovibrational efficacies in QCT cal- culations . . . 128

5.2.5 TDWP calculations . . . 129

5.2.6 Molecular beam simulations . . . 131

5.2.7 H2 dissociation rate constant calculations by transition state the- ory and quasi-classical trajectories . . . 132

5.3 Results and discussion . . . 134

5.3.1 PES obtained from the corrugation reducing procedure . . . 134

5.3.2 Quasi-classical H2 dissociation probabilities . . . 137

5.3.3 Stereodynamic effects and rovibrational efficacies from the QCT calculations . . . 141

5.3.4 Quantum dynamics of H2dissociation . . . 144

5.3.5 Molecular beam simulations results . . . 146

5.3.6 Reaction rate constant calculations by transition state theory and quasi-classical dynamics . . . 147

5.4 Conclusions . . . 150 vii

(9)

CONTENTS CONTENTS

5.5 References . . . 152

viii

Referenties

GERELATEERDE DOCUMENTEN

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden Downloaded.

Based on our DFT results, the elementary reaction of H 2 dissociation on a 1 ML Ti covered Al(100) surface [63] is believed to be the most realistic model for atomic

The two Hohenberg-Kohn theorems [8] state that every observable of a stationary quantum mechanical system can be calculated, in principle exactly, from the electronic

The most realistic model promoting dissociation we find is a 1 ML Ti/Al(100) surface, with Ti in the first and the third layer, which has a late minimum barrier of only 0.23 eV and

(3) After repeating the above two steps under point (2), until 100 new points have been added to the PES, the reaction probability for a number of initial H 2 rovibrational states

For the vibrational ground state, the E 0 (v, j) (effective barrier) values associated with the degeneracy averaged reaction probabilities are all higher than the DFT barrier

Modellen met 1 ML en 1/4 ML oppervlakte- bedekkingen, waar Ti atomen zich alleen in de eerste laag bevinden, beschikken over nog lagere energie-barri`eres voor H 2 dissociatie,

I attended the “Winter School of Hydrogen” organized by Shell in February 2008 in Am- sterdam, the “Summer School on Materials for the Hydrogen Society” in June 2008 in Reykjavik,