• No results found

polynomials of the sine function

N/A
N/A
Protected

Academic year: 2021

Share "polynomials of the sine function"

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

340

NAW 5/2 nr. 4 december 2001 Oscillations of the Taylor polynomials of the sine function Imme van den Berg

Imme van den Berg

Departamentado de Matemática

CLAV, Universidade de Évora, 7001 Évora Codex Portugal ivdb@dmat.uevora.pt

Letters to the editor

Oscillations of the Taylor

polynomials of the sine function

In Nieuw Archief voor Wiskunde, december 2000, F. Rothe gives a first-order estimation of the number of zerosNωof a Taylorpolyno- mialPωof the sine function of high orderω, i.e. Nω π e2 · ω. The asymptotic formu- la is proved by joining to the common upper bound of the remainder a sufficiently close lower bound. The bound and its derivation are clearly ad-hoc.

It seems to me that the result is a straight- forward corollary to two general formulae for remainders of Taylor expansions I derived in [1, Proposition 3.2, Theorem 3.5] and [2, The- orem 3.11 and Chapter 3.4]. The formulae be- long to nonstandard analysis, which makes them somewhat particular. However, the for- mulae contain two parameters, index and place. It is not natural to let one of the pa- rameters go to infinity, or to couple them, so the formulae cannot be translated directly to standard formulae.

The formulae were derived within Internal Set Theory (IST) of E. Nelson. In this ax- iomatic system, which is consistent with clas- sical set theory, the set R contains infinites- imals and infinitely large or unlimited num- bers. Below I use some symbols of nonstan- dard asymptotics:, the ‘unknown’ infinites- imal,£the ‘unknown’ limited number,@the

‘unknown’ appreciable number, analogous to respectivelyo(1), O(1)andOs(1). An up-to- date introduction to IST is given in [3].

In the case of the sine function, the first formula is the following. LetRω−2(x)be the remainder

sin x −

(ω−3)/2

X

n =0

(−1)n x2n+1 (2n + 1)!,

such that the first neglected term(−1)ω xω!ω is of (odd) degreeω. Then, for all realx, limited or unlimited

Rω−2(x) = (1 + ∅)

1 + (x/ω)2 · (−1)ωxω ω!. (1) The second formula gives the remainder for

the special valuesx = ω+ uwithω=ωe +

1

2elog ωandulimited. Then Rω−2+ u) ≃ (−1)ω eeu

2π (1 +e12). (2)

Applied to the cosine function, the formulae are identical, for evenω.

We consider only positivexand claim that the distance between the last zero of the Tay- lor polynomialPω−2andωis limited. Notice that, firstly,

F (x) ≡ 1

1 + (x/ω)2 · (−1)ωxω ω!

is monotonous inx, and, secondly that for- mula (2) implies that ifupasses through all limited values,F (ω+ u)passes through all appreciable values. Hence it follows from the monotony ofF (x)that F (x)is infinitesimal forx = ω+ uwithu negative unlimited, appreciable forx = ω+ u withu limited, and unlimited forx = ω+ uwithupositive unlimited. The same partition holds for the remainder, sinceRω−2(x) = (1 + ∅)F(x).

As long as the remainder of the sine func- tion is infinitesimal, the Taylor polynomial has a zero infinitely close to every zero of the sine function, with integer k. In fact, there is only one zero, for the polynomialPω−2is transversal to thex-axis: the derivative of the polynomial is the Taylor polynomial of degree ω − 3of the cosine function, and because formula (1) is also valid for the cosine func- tion, one hasPω−2 (x) ≃ cos(x) ≃ ±1for all x ≃ kπ. If the remainder of the sine function is unlimited, the distance betweenPω−2and thex-axis is also unlimited, and no more ze- ros can occur. We conclude that the last zero is of the formω+ uwithulimited. It could be determined individually for mostωup to an infinitesimal, using formula (2).

We see that the number of positive zeros is+ £) /π, and by symmetry

Nω−2= 2

π e· ω + 1

π e· log ω + £.

The same expression holds forNω.

The problem in question is somewhat anecdotical, but the formulae behind are not.

Formulae (1) and (2) hold under very general conditions, implying that the remainder as a function of the distance to the origine is lo- cally exponential such as in (2), and that the series is locally exponential (geometric) as a function of the index; indeed, we recognize in (1) the remainder of a geometric series with ratioωx2. Finally we mention that that the crucial valuesx = ω+ £may be determined from (1), by solving the external equation

(1 + ∅) 1 + (x/ω)2.xω

ω! = @,

which can be effectuated using systematic, al- gebraic methods based on the external num-

bers of [3] and [4]. k

The sine function approximated by the polynomials of its Taylor series.

References

1 I.P. van den Berg, Un point de vue nonstan- dard sur les développements en série de Taylor, Astérisque 110, p. 209–223 (1983).

2 I.P. van den Berg, Nonstandard Asymptotic Anal- ysis, Springer Lecture Notes in Mathematics 1249, p. 187 (1987).

3 F. Diener, M. Diener (ed.), Nonstandard Analy- sis in Practice, Springer universitext, (1995), in particular Chapter 7: F. Koudjeti, I.P. van den Berg, Neutrices, external numbers and external calculus.

4 F. Koudjeti, Elements of external calculus, with an application to mathematical finance, Thesis, Groningen, Labyrint Publications, Capelle a/d IJssel, (1995).

Referenties

GERELATEERDE DOCUMENTEN

Daarop volgt de tabel van het bedrijf waarbij de planten later in de teelt geïnfecteerd zijn geraakt met pepinomozaïekvirus en als laatste volgen de twee

Het probleem van DAF- werknemers wordt ook in Fries- land en Noord-Holland ervaren als een Nederlands probleem.' De PvdA moet naar zijn mening niet alleen optimistisch zijn, maar

Let K, /, arid g be äs in Theorem f We may embed K äs a subfield in Q^ Then K Qp has degree at most m over Qj, Hcnco any zero of / in Qp that has degree at most d over K lies in

Verder komt de invloed van geologische kennis in de hedendaagse maatschap- pij aan de orde, naar aanleiding van modern geologisch

The B¨ acklund transformation is a shortcut for a larger, and more difficult solution scheme, namely the Inverse Scattering Transform, which associates an eigenvalue problem

This means that every zero z with |z| < 1 of a Littlewood polynomial is also a zero of a Littlewood series, as was shown in the proof of Lemma 16.. The set of Littlewood series

De Directie van Wageningen IMARES is niet aansprakelijk voor gevolgschade, alsmede voor schade welke voortvloeit uit toepassingen van de resultaten van werkzaamheden of

First, the matrices A, B, C are reduced to a lower-dimensional triplet A, B, C, with B and C nonsingular, using orthogonal transformations such as the QR-factorization with