• No results found

Mean-field description of the structure and tension of curved fluid interfaces

N/A
N/A
Protected

Academic year: 2021

Share "Mean-field description of the structure and tension of curved fluid interfaces"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Mean-field description of the structure and tension of curved fluid interfaces

Kuipers, J.

Citation

Kuipers, J. (2009, December 16). Mean-field description of the structure and tension of curved fluid interfaces. Retrieved from https://hdl.handle.net/1887/14517

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/14517

Note: To cite this publication please use the final published version (if applicable).

(2)

Mean-field Description of the Structure and Tension of Curved Fluid Interfaces

Joris Kuipers

(3)

Mean-field description of the structure and tension of curved fluid interfaces / J. Kuipers

Copyright c 2009, by J. Kuipers. All rights reserved.

ISBN 978-90-9024828-8

Typeset in LATEX

Coverdesign by C. van der Kamp

Printed by Ipskamp Drukkers, Enschede, The Netherlands

(4)

Mean-field Description of the Structure and Tension of Curved Fluid Interfaces

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. P.F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op woensdag 16 december 2009 klokke 15.00 uur

door

Joris Kuipers

geboren te Roosendaal en Nispen

in 1982

(5)

iv

Promotiecommissie

promotor : Prof.dr. D. Bedeaux co-promotor : Dr. E.M. Blokhuis

Overige Leden : Prof.dr.ir. J.G.E.M. Fraaije Universiteit Leiden Prof.dr. W.K. Kegel Universiteit Utrecht Prof.dr.ir. F.A.M. Leermakers Universiteit Wageningen Dr. D.G.A.L. Aarts Oxford University, UK

(6)

v

“Science is what we have learned about how not to fool ourselves about the way the world is.”

- R.P. Feynman

Even a stopped clock gives the right time twice a day

(7)

List of Publications

• E. M. Blokhuis and J. Kuipers, “Thermodynamic expressions for the Tolman length” J. Chem. Phys. 124, 074701 (2006) (Chapter 2)

• E. M. Blokhuis and J. Kuipers, “On the determination of the structure and tension of the interface between a fluid and curved hard wall” J. Chem. Phys.

126, 054702 (2007) (Chapter 3)

• J. Kuipers and E. M. Blokhuis, “Interfacial properties of colloid-polymer mix- tures” J. Coll. Interface Sci. 315, 270 (2007) (chapter 5)

• E. M. Blokhuis, J. Kuipers and R. L. C. Vink, “Description of the fluctuating colloid-polymer interface” Phys. Rev. Lett. 101, 086101 (2008)

• J. Kuipers and E. M. Blokhuis, “Wetting and drying transitions in mean-field theory: Describing the surface parameters for the theory of Nakanishi and Fisher in terms of a microscopic model” J. Chem. Phys. 131, 044702 (2009) (chapter 4)

• J. Kuipers and E. M. Blokhuis, “Wetting to drying reversal in colloid-polymer systems” (Chapter 6, to be submitted)

• J. Kuipers, J. Groenewold and W. K. Kegel, “The Pickering Interface” (chapter 7 and appendix E, to be submitted)

vi

(8)

Contents

List of Publications vi

Table of Contents vii

1 Introduction 1

1.1 Historical Background . . . 4

1.2 Interfaces . . . 6

1.2.1 Curved Interfaces . . . 6

1.2.2 Helfrich free energy . . . 7

1.3 Mean Field theory . . . 8

1.3.1 van der Waals theory: square-gradient approach . . . 9

1.4 Outline of this Thesis . . . 11

2 Thermodynamic Expressions for the Tolman length 13 2.1 Introduction . . . 14

2.2 Thermodynamics . . . 17

2.3 Relation with the isothermal compressibility of the liquid . . . 20

2.4 The Tolman length using the van der Waals equation of state . . . . 22

2.5 Discussion . . . 24

3 The Interfacial structure and tension between a fluid and a curved hard wall 27 3.1 Introduction . . . 28

3.2 Mechanical equilibrium and the wall theorem . . . 29

3.3 Square-gradient Theory . . . 32

3.3.1 Planar hard wall . . . 33

3.3.2 Spherically shaped hard wall . . . 35

3.4 Density functional theory . . . 36

3.4.1 Planar hard wall . . . 37

3.4.2 Spherically shaped hard wall . . . 38

3.5 Summary . . . 41

vii

(9)

CONTENTS viii

4 Wetting and Drying transitions in mean-field theory 43

4.1 Introduction . . . 44

4.1.1 The model of Nakanishi and Fisher . . . 44

4.2 Landau mean-field lattice model . . . 46

4.3 Density functional theory . . . 48

4.4 Square-gradient fluid in a square-well potential . . . 53

4.4.1 Simulation results by van Swol and Henderson . . . 56

4.5 Discussion . . . 58

5 Interfacial properties of colloid-polymer mixtures 61 5.1 Introduction . . . 62

5.2 Perturbation theory . . . 62

5.3 Calculation of interfacial properties . . . 65

5.3.1 Surface tension . . . 66

5.3.2 Bending rigidity . . . 69

5.4 Discussion . . . 73

6 Wetting in colloid-polymer systems 77 6.1 Introduction . . . 78

6.2 Second order free volume theory . . . 79

6.3 Nakanishi-Fisher model approximation . . . 82

6.3.1 Direct comparison with the results by Aarts et al. . . . 86

6.3.2 Numerical solution for the contact angle . . . 87

6.4 Discussion . . . 91

7 Pickering Stabilisation 93 7.1 Introduction . . . 94

7.2 Thermodynamics . . . 95

7.2.1 Calculating the Interfacial Tension . . . 96

7.3 Testing the model on the work of Sacanna et al. . . . 99

7.3.1 Close Packing . . . 100

7.4 Discussion . . . 100

Bibliography 104

A Alternative thermodynamic derivation of the Tolman length in terms

of the free energy density 113

B Verification of mechanical equilibrium 115

C Virial expressions for the surface tension and Tolman length 118 D Full α(ρ) and excluded volume interactions 122

(10)

CONTENTS ix

E A detailed description of the interface in Pickering Emulsions 125 E.1 2 D description . . . 125 E.2 3 D description . . . 128

Summary 131

Algemene Samenvatting 134

Curriculum Vitae 137

Dankwoord 138

(11)

Referenties

GERELATEERDE DOCUMENTEN

The density profiles, surface tension and Tolman length are calculated using square-gradient theory and density functional theory with a non- local, integral expression for

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden Downloaded.

Then we briefly examine some of the theoretical methods devised in order to describe these inhomogeneous fluid systems, namely mean-field theory and the Helfrich surface free

It is now known that different thermodynamic conditions to induce interfacial cur- vature may lead to different values for curvature coefficients not only for the Tolman length, but

We have determined density profiles, surface tension and Tolman length for a fluid in contact with a hard wall using the square-gradient model and density functional.. 3.5

To appreciate this point, we first investigate in Sections 4.2 and 4.3 two routes to derive the Nakanishi-Fisher free energy expression: the Landau mean-field lattice model and

Using density functional theory and a virial approach we calculate the surface tension and bending rigidity of the interface between the demixed fluid phases.. Our results are

The wetting phase diagram obtained using second order free volume theory where the polymers act as ideal particles displays a remarkable feature: there is a cross-over at q =