• No results found

University of Groningen Spin transport in graphene-based van der Waals heterostructures Ingla Aynés, Josep

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Spin transport in graphene-based van der Waals heterostructures Ingla Aynés, Josep"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Spin transport in graphene-based van der Waals heterostructures

Ingla Aynés, Josep

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Ingla Aynés, J. (2018). Spin transport in graphene-based van der Waals heterostructures. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Spin transport in graphene-based van der Waals heterostructures

(3)

Spino

graph

Spintronics in Graphene

Zernike Institute PhD thesis series 2018-33 ISSN: 1570-1530

ISBN: 978-94-034-1178-1

ISBN: 978-94-034-1177-4 (electronic version)

The work described in this thesis was performed in the research group Physics of Nanodevices of the Zernike Institute for Advanced Materials at the University of Groningen, the Nether-lands.

Description of the cover: Spins float down a river, the process is analogous to spin drift. Be-tween the valleys, spins scatter with the trees. The spins which point out-of-plane keep their direction while the in-plane ones flip after scattering. The sketch is a simplified picture of the spin-valley coupling mechanism described in the thesis.

(4)

Spin Transport in graphene-based van

der Waals heterostructures

Proefschrift

ter verkrijging van de graad van doctor aan de Rijksuniversiteit Groningen

op gezag van de

Rector Magnificus Prof. Dr. E. Sterken en volgens besluit van het College voor Promoties.

De openbare verdediging zal plaatsvinden op

dinsdag 13 november 2018 om 11:00 uur

door

Josep Ingla Ayn´es

geboren op 29 juni 1990 te Ribera d’Ondara, Spanje

(5)

Promotor

Prof. dr. ir. B. J. van Wees

Copromotor Dr. I. J. Vera-Marun Beoordelingscommissie Prof. dr. G. E. W. Bauer Prof. dr. F. Casanova Prof. dr. I. Grigorieva

(6)

Contents

1 Introduction 1 1.1 Semiconductor electronics . . . 1 1.2 Spin electronics . . . 1 1.3 Graphene spintronics . . . 2 1.4 Thesis outline . . . 3 References . . . 4

2 Electronic properties of two-dimensional materials 7 2.1 Monolayer graphene . . . 7

2.2 Bilayer graphene . . . 8

2.3 Charge diffusion coefficient in monolayer and bilayer graphene . . . . 9

2.4 Bilayer graphene field effect transistors . . . 10

2.5 Hexagonal boron nitride . . . 12

2.6 Transition metal dichalcogenides . . . 12

References . . . 13

3 Graphene spintronics 17 3.1 Spin and charge currents . . . 17

3.2 Minority carrier drift in semiconductors . . . 18

3.3 Drift-diffusion equations . . . 20

3.4 Two-channel model and the nonlocal measurement configuration . . . 21

3.4.1 Two-channel model . . . 21

3.4.2 Spin injection . . . 23

3.4.3 Spin detection . . . 23

3.4.4 Contact-induced spin relaxation and the conductivity mismatch problem . . . 24

3.5 Nonlocal spin valve . . . 24

(7)

3.7 Spin precession in anisotropic systems . . . 29

3.8 Modelling of spin transport in complex device geometries . . . 30

3.9 Spin relaxation in graphene . . . 31

3.9.1 Theoretical considerations about spin relaxation in graphene . 32 3.9.2 Spin transport measurements in graphene . . . 32

3.9.3 Spin transport in graphene/TMD heterostructures . . . 34

References . . . 35

4 Methods 39 4.1 Sample fabrication . . . 39

4.1.1 Exfoliation of two-dimensional materials . . . 39

4.1.2 Dry pick-up technique . . . 40

4.1.3 Contact preparation . . . 41

4.1.4 Etching of graphene/hBN stacks using a hard mask . . . 43

4.2 Electrical measurements . . . 44

References . . . 46

5 24 micrometer spin relaxation length in boron nitride-encapsulated bilayer graphene 47 5.1 Introduction . . . 47

5.2 Results . . . 48

5.2.1 Charge transport characterization . . . 48

5.2.2 Nonlocal spin transport . . . 50

5.2.3 Device simulations . . . 52

5.3 Conclusions . . . 54

5.4 Supplementary information . . . 54

5.4.1 Sample fabrication . . . 54

5.4.2 Transport measurements . . . 55

5.4.3 Determination of the mobility at 4 K . . . 55

5.4.4 Spin and charge transport at room temperature . . . 56

5.4.5 Spin transport at 4 K . . . 57

References . . . 58

6 88% directional guiding of spin currents with 90 micrometer relaxation length in bilayer graphene using carrier drift 61 6.1 Introduction . . . 61

6.2 Results and discussion . . . 62

6.3 Conclusions . . . 68

6.4 Supplementary information . . . 69

6.4.1 Modelling parameters . . . 69

(8)

6.4.3 Effect of τencin the modelling . . . 75

References . . . 75

7 Drift control of spin currents in graphene-based spin current demultiplex-ers 79 7.1 Spin drift model . . . 80

7.2 Results . . . 82 7.2.1 Geometry I . . . 82 7.2.2 Geometry II . . . 83 7.2.3 Demultiplexing operation . . . 84 7.2.4 Geometry III . . . 85 7.2.5 Geometry IV . . . 86 7.3 Discussion . . . 87 7.4 Conclusions . . . 88 References . . . 88

8 Large proximity-induced spin lifetime anisotropy in TMD/graphene het-erostructures 91 8.1 Introduction . . . 91

8.2 Results and discussion . . . 92

8.2.1 Hanle precession with Bz . . . 92

8.2.2 Hanle precession with Bx . . . 95

8.3 Conclusions . . . 97

8.4 Supplementary information . . . 98

8.4.1 Device fabrication . . . 98

8.4.2 Electrical characterization . . . 98

8.4.3 Contact resistances . . . 100

8.4.4 Local magnetoresistance measurements . . . 100

8.4.5 Models used for extraction of spin transport parameters . . . . 101

8.4.6 Hanle precession in pristine graphene with Bz . . . 103

8.4.7 Hanle precession in pristine graphene with Bx . . . 106

8.4.8 Hanle precession across the TMD/graphene region with Bx . . 106

8.4.9 Gate dependence of the spin signal . . . 108

8.4.10 Spin lifetime anisotropy in a WSe2/graphene heterostructure . 109 References . . . 110

9 Observation of spin-valley coupling induced large spin lifetime anisotropy in bilayer graphene 113 9.1 Introduction . . . 113

9.2 Results and discussion . . . 114

(9)

9.4 Supplementary Information . . . 120

9.4.1 Fabrication details . . . 120

9.4.2 Charge and spin transport characterization . . . 122

9.4.3 Spin lifetime anisotropy at zero DC bias . . . 124

9.4.4 Measurements using different injector-detector spacings . . . . 124

9.4.5 Low temperature anisotropy measurements . . . 125

9.4.6 Carrier concentration dependence of the in-plane spin lifetime 125 9.4.7 Spin precession measurements with in-plane magnetic fields . . 126

9.4.8 Carrier density dependence of the magnetoresistance . . . 128

9.4.9 Modeling of the spin lifetime anisotropy . . . 128

9.4.10 Effect of the contact resistance on the anisotropy . . . 130

9.4.11 Measurement of the contact resistances . . . 131

9.4.12 Estimation of the electric field . . . 132

9.4.13 Measurements on a second BLG device . . . 132

9.5 Electric field control of spin relaxation . . . 134

References . . . 135

10 Conclusions and outlook 139 10.1 High-quality graphene for long distance spin transport . . . 139

10.2 Spin guiding using drift currents . . . 140

10.3 Proximity induced spin orbit coupling in TMD/graphene heterostruc-tures . . . 141

10.4 Anisotropic spin transport in bilayer graphene . . . 141

References . . . 142 Summary 145 Samenvatting 149 Acknowledgements 153 List of publications 157 Curriculum Vitae 159

Referenties

GERELATEERDE DOCUMENTEN

The output terminal, where the current is directed, can be controlled by changing the carrier densities in the top and bottom arms while keeping the left arm at the same density

Motivated by these findings and the results on bilayer graphene on SiO 2 obtained in [4, 5], we studied spin transport in hBN-encapsulated bilayer graphene that lead to the

The use of small magnetic domains as memory units, which can be addressed with spin polarized currents, make spintronics very appealing for combining logics with in-situ

De huidige halfgeleiderapparaten zijn gebaseerd op het gebruik van elektronis- che lading als informatiedrager. Echter, behalve hun lading hebben elektronen ook een

Christoph Stampfer and his group in Aachen for their hospitality during my secondment there, I really enjoyed working there with your high-quality CVD graphene.. My PhD position

24 µm spin relaxation length in boron nitride encapsulated bilayer graphene.. Eighty-Eight Percent Directional Guiding of Spin Currents with 90 µm Relax- ation Length in

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright

Moreover, since the transport time depends inversely on the applied drift current, spin relaxation lengths in the millimeter range can be achieved if current densities in the range