• No results found

Association morphologies of amphiphilic polyelectrolyte diblock copolymers

N/A
N/A
Protected

Academic year: 2021

Share "Association morphologies of amphiphilic polyelectrolyte diblock copolymers"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Association morphologies of amphiphilic polyelectrolyte diblock

copolymers

Korobko, Alexander Viktorovitch

Citation

Korobko, A. V. (2006, December 12). Association morphologies of amphiphilic

polyelectrolyte diblock copolymers. Retrieved from https://hdl.handle.net/1887/5568

Version:

Corrected Publisher’s Version

License:

Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from:

https://hdl.handle.net/1887/5568

(2)

Association Morphologies

of Amphiphilic Polyelectrolyte

Diblock Copolymers

(3)
(4)

Universiteit Leiden

Association Morphologies

of Amphiphilic Polyelectrolyte

Diblock Copolymers

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus Dr. D. D. Breimer,

hoogleraar in de faculteit der Wiskunde en Natuurwetenschappen en die der Geneeskunde, volgens besluit van het College voor Promoties te verdedigen op dinsdag 12 december 2006

klokke 16.15 uur

door

Alexander Viktorovitch Korobko

(5)

Promotiecommissie: Promotores:

Prof. Dr. J.R.C. van der Maarel (National University of Singapore) Prof. Dr. Ir. J.G.E.M. Fraaije

Referent:

Prof. Dr. M.A. Cohen Stuart (Wageningen University)

Overige leden:

Prof. Dr. H.J.M. de Groot

Prof. Dr. H.N.W. Lekkerkerker (Utrecht University) Prof. Dr. S. Picken (TU Delft)

(6)
(7)
(8)

Contents

1 Introduction 1

1.1 General Introduction . . . 1

1.2 Polyelectrolytes . . . 2

1.2.1 Amphiphilic Diblock Copolymers and DNA . . . 2

1.3 Curved Polyelectrolyte Brushes . . . 3

1.3.1 Theoretical Investigations . . . 3 1.3.2 Experimental Results . . . 6 1.4 Polyelectrolyte Vesicles . . . 7 1.4.1 Polymersomes . . . 8 1.4.2 Multilayer Capsules . . . 9 1.5 Thesis Outline . . . 9

2 Do Interacting Spherical Polyelectrolyte Brushes Interdigitate? 19 2.1 Introduction . . . 19

2.2 Theory . . . 20

2.3 Experimental Section . . . 21

2.4 Conclusions . . . 26

3 Structure of strongly interacting polyelectrolyte diblock copolymer mi-celles 29 3.1 Introduction . . . 30

3.2 Scattering Analysis . . . 32

3.2.1 From Intensities to Structure Factors . . . 32

3.2.2 Solution Structure Factor . . . 34

(9)

ii CONTENTS

3.3 Corona Chain Statistics . . . 35

3.4 Experimental Section . . . 37

3.4.1 Chemicals and solutions . . . 37

3.4.2 Neutron Scattering . . . 37

3.4.3 X-ray Scattering . . . 39

3.4.4 Rheology . . . 40

3.5 Results and Discussion . . . 40

3.5.1 Core and Corona Structure . . . 40

3.5.2 Counterion Structure . . . 46

3.5.3 Inter-micelle Structure . . . 49

3.5.4 Visco-elastic Behavior . . . 52

3.6 Conclusions . . . 54

4 Encapsulation of DNA by Cationic Diblock Copolymer Vesicles 59 4.1 Introduction . . . 60

4.2 Experimental Section . . . 63

4.2.1 Chemicals and Solutions . . . 63

4.2.2 Imaging . . . 64

4.3 Results and Discussion . . . 65

4.3.1 Production of the vesicles . . . 65

4.3.2 Density distribution and compaction factors . . . 69

4.3.3 Stability of the vesicles . . . 75

4.3.4 Cloning Vector DNA and the “Charge Inverse” System . . . 78

4.4 Conclusions . . . 79

5 DNA-copolymer vesicles for gene delivery 83 5.1 Introduction . . . 84

5.2 Materials and methods . . . 85

5.2.1 Plasmid isolation . . . 85

5.2.2 Copolymer and osmotic agent . . . 86

5.2.3 Growth and transfection media . . . 86

5.2.4 Imaging . . . 87

5.3 Results and discussion . . . 88

5.3.1 Production of the vesicles . . . 88

5.3.2 Stability, density distribution, and compaction . . . 91

(10)

CONTENTS iii

5.4 Conclusions . . . 100 5.A Permeability of Membrane . . . 104

6 Conclusions 109

Samenvatting 113

Curriculum Vitae 117

Acknowledgments 119

(11)

Referenties

GERELATEERDE DOCUMENTEN

Here we focus attention on the sharp-interface version of the functional and con- sider a limit in which the volume fraction tends to zero but the number of minority phases

We present the second of two articles on the small volume-fraction limit of a nonlocal Cahn–Hilliard functional introduced to model microphase separation of diblock copolymers..

We present the first of two articles on the small volume fraction limit of a nonlocal Cahn–Hilliard functional introduced to model microphase separation of diblock copolymers.. Here

He is a member of the editorial board of the International Joumal of Circuit Theory and its Applications, Neurocomputing, Neural Networks and the Joumal of Circuits Systems

Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden Downloaded from: https://hdl.handle.net/1887/5568 Note: To

For the osmotic quenched brush, the fraction of trapped counterions does not vary along the radius, chains are uniformly stretched, and the monomer density profile decays as r −2

Comparison of the micelle diameter from the form factor analysis with the diameter from the center of mass structure factor and with the average inter- micelle distance will then

共a兲 Isosurface for density of A-beads for the case when a plane with uniform density serves as a constraint; 共b兲 Isosurface for density of A-beads for the case when a uniform