• No results found

Monotonicity and Boundedness in general Runge-Kutta methods Ferracina, L.

N/A
N/A
Protected

Academic year: 2021

Share "Monotonicity and Boundedness in general Runge-Kutta methods Ferracina, L."

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Monotonicity and Boundedness in general Runge-Kutta methods

Ferracina, L.

Citation

Ferracina, L. (2005, September 6). Monotonicity and Boundedness in general Runge-Kutta

methods. Retrieved from https://hdl.handle.net/1887/3295

Version:

Corrected Publisher’s Version

License:

Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from:

https://hdl.handle.net/1887/3295

(2)

Monotonic ity a nd B ou nd e d ne ss in

g e ne r a l R u ng e -K u tta m e th od s

Proefschrift

ter verk rijging van

de graad van D oc tor aan de U niversiteit L eiden,

op gez ag van de R ec tor M agnifi c us D r. D .D . B reim er,

hoogleraar in de fac ulteit der W isk unde en

N atuurw etenschappen en die der G eneesk unde,

volgens besluit van het C ollege voor Prom oties

te verdedigen op dinsdag 6 septem ber 2 0 0 5

k lok k e 1 5 .1 5 uur

door

L uc a Ferrac ina

(3)

Samenstelling van d e p romotiec ommissie: p romotors: Prof.d r. M .N . Sp ijk er

Prof.d r. J .G . Verw er (U vA / C W I) referent: D r. W . H u nd sd orfer (C W I) overige led en: Prof.d r. G . van D ijk

(4)
(5)
(6)
(7)
(8)

Prefa c e

This thesis consists of an introduction and four papers which appeared (or were submitted for publication) in scientifi c journals. The introduction has been written with the intention to be understandable also for the reader who is not specializ ed in the fi eld. The papers, which are listed below, are essentially self-contained, and each of them may be read independently of the others.

Ferrac in a L ., S p ijk er M .N . (2 0 0 4 ): Stepsiz e restrictions for the totalvariationdiminishing property in general R ungeK utta methods, SIAM J . N u -m e r. An a l. 42, 1 0 7 3 – 1 0 9 3 .

Ferrac in a L ., S p ijk er M .N . (2 0 0 5 ): An ex tension and analysis of the Shu-O sher representation of R unge-K utta methods, Ma th . C o m p . 249 , 2 0 1 – 2 1 9 . Ferrac in a L ., S p ijk er M .N . (2 0 0 5 ): Computing optimal monotonicity-preserving R unge-K utta methods, submitted for publication, report Mathematical Institute, Leiden University, MI 2 0 0 5 -0 7 .

(9)
(10)

Contents

Intr o d u c tio n 1

1 Monotonicity for Runge-Kutta methods . . . 1

2 A numerical illustration . . . 3

3 Guaranteeing the monotonicity property: reviewing some literature 6 4 The limitation of the approach in the literature . . . 7

4.1 Stepsize restriction guaranteeing monotonicity for general Runge-Kutta methods . . . 7

4.2 Optimal Shu-Osher representations . . . 8

4.3 Computing optimal monotonic Runge-Kutta methods . . . 8

4.4 B oundedness for general Runge-Kutta methods . . . 9

5 Scope of this thesis . . . 10

B ibliography . . . 11

I S te p siz e r e str ic tio ns fo r th e to ta l-v a r ia tio n-d im ish ing p r o p e r ty in g e ne r a l R u ng e -K u tta m e th o d s 15 1 Introduction . . . 16

1.1 The purpose of the paper . . . 16

1.2 Outline of the rest of the paper . . . 18

2 A general theory for monotonic Runge-Kutta processes . . . 19

2.1 Stepsize-coeffi cients for monotonicity in a general context . 19 2.2 Irreducible Runge-Kutta schemes and the q uantity R(A , b) 21 2.3 Formulation of our main theorem . . . 23

3 The application of our main theorem to the q uestions raised in Sub-section 1.1 . . . 24

3.1 The eq uivalence of process (1.3) to method (2.2) . . . 24

3.2 The total-variation-diminishing property of process (3.1) . . 25

3.3 The strong-stability-preserving property of process (3.1) . . 26

3.4 Illustrations to the Theorems 3.2 and 3.6 . . . 27

4 Optimal Runge-Kutta methods . . . 28

4.1 Preliminaries . . . 28

4.2 Optimal methods in the class Em,p . . . 28

(11)

4.4 Final remarks . . . 31

5 Kraaijevanger’s theory and our proof of Theorem 2.5 . . . 32

5.1 A theorem of Kraaijevanger on contractivity . . . 32

5.2 The proof of Theorem 2.5 . . . 34

Bibliography . . . 40

II A n ex tension and analysis of the Shu-O sher representation of Runge-Kutta methods 43 1 Introduction . . . 44

1.1 The purpose of the paper . . . 44

1.2 Outline of the rest of the paper . . . 47

2 An extension, of the Shu-Osher approach, to arbitrary Runge-Kutta methods . . . 49

2.1 A generalization of the Shu-Osher process (1.8) . . . 49

2.2 A generalization of the Shu-Osher Theorem 1.1 . . . 50

2.3 Proving Theorem 2.2 . . . 52

3 Maximizing the coefficient c(A, b, L) . . . 54

3.1 Irreducible Runge-Kutta schemes and the quantity R(A, b) 54 3.2 The special parameter matrix L∗ . . . . 56

3.3 Proving Theorem 3.4 . . . 57

4 Applications and illustrations of the Theorems 2.2 and 3.4 . . . 59

4.1 Applications to general Runge-Kutta methods . . . 59

4.2 Applications to explicit Runge-Kutta methods . . . 60

4.3 Illustrations to the Theorems 3.4 and 4.3 . . . 62

Bibliography . . . 63

III C omputing optimal monotonicity-preserving Runge-Kutta methods 6 7 1 Introduction . . . 68

1.1 Monotonic Runge-Kutta processes . . . 68

1.2 The Shu-Osher representation . . . 69

1.3 A numerical procedure used by Ruuth & Spiteri . . . 72

1.4 Outline of the rest of the paper . . . 72

2 An extension and analysis of the Shu-Osher representation . . . 73

2.1 A generalization of Theorem 1.1 . . . 73

2.2 The maximal size of c(L, |M |) . . . 75

2.3 Proof of Theorems 2.5, 2.6 . . . 77

3 Generalizing and improving Ruuth & Spiteri’s procedure . . . 79

4 Illustrating our General Procedure III in a search for some optimal singly-diagonally-implicit Runge-Kutta methods . . . 81

5 A numerical illustration . . . 83

6 Conjectures, open questions and final remarks . . . 85

(12)

IV Stepsize restrictions for total-variation-b oundedness in general Runge-Kutta

procedures 8 9

1 Introduction . . . 90

1.1 The purpose of the paper . . . 90

1.2 Outline of the rest of the paper . . . 93

2 Kraaijevanger’s coefficient and the TVD property . . . 94

2.1 Irreducible Runge-Kutta methods and the coefficient R(A, b) 94 2.2 Stepsize restrictions from the literature for the TVD property 95 3 TVB Runge-Kutta processes . . . 96

3.1 Preliminaries . . . 96

3.2 Formulation and proof of the main result . . . 97

4 Applications and illustrations of Theorem 3.2 and Lemma 3.6 . . . 100

4.1 TVB preserving Runge-Kutta methods . . . 100

4.2 Two examples . . . 101

4.3 A special semi-discretization given by Shu (1987) . . . 102

5 The proof of Lemma 3.6 . . . 102

Bibliography . . . 106

Samenvatting (Summary in D utch) 10 9

(13)

Referenties

GERELATEERDE DOCUMENTEN

This talk presents an implementation of code generation for Implicit Runge-Kutta (IRK) methods with efficient sensitivity generation, which outper- forms other solvers for the

Diehl, an implementation of code generation for Nonlinear Model Predictive Control (NMPC) and Moving Horizon Estimation (MHE) is devel- oped that uses carefully designed

The first aspect is to show that auto generation of Implicit Runge-Kutta (IRK) methods with sensitivity generation can also be im- plemented very efficiently.. This greatly improves

More specifically, the natural question arises of whether stepsize restrictions of the form (3.5) can be established which guarantee property (4.3) when condition (4.2) is fulfilled..

After the introductory Section 4.1 we review, in Section 4.2, conclusions of Kraaijevanger (1991) regarding the optimization of R(A, b), in various classes of explicit

In Section 2 we shall give generalizations of the Shu-Osher representation (1.8) and of the above Shu-Osher Theorem 1.1; our generalizations are relevant to arbitrary

Accordingly, in Section 4, we shall illustrate our new version of (1.16) in a numerical search for some optimal methods within the important class of

(2002): A new class of optimal high-order strong- stability-preserving time discretization methods. (1999): Riemann solvers and numerical methods for fl uid