• No results found

Optical node with time-space-and-wavelength domain contention resolution, deflection and dropping capability

N/A
N/A
Protected

Academic year: 2021

Share "Optical node with time-space-and-wavelength domain contention resolution, deflection and dropping capability"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Optical node with time-space-and-wavelength domain

contention resolution, deflection and dropping capability

Citation for published version (APA):

Vegas Olmos, J. J., Chi, N., Zervas, G., Simeonidou, D., Yu, S., Tafur Monroy, I., & Koonen, A. M. J. (2006). Optical node with time-space-and-wavelength domain contention resolution, deflection and dropping capability. Optics Express, 14(24), 11545-11550. https://doi.org/10.1364/OE.14.011545

DOI:

10.1364/OE.14.011545 Document status and date: Published: 01/01/2006

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

(2)

Optical node with time-space-and-wavelength

domain contention resolution, deflection and

dropping capability

J.J. Vegas Olmos1, N. Chi2, G. Zervas3, D. Simeonidou3, S. Yu2, I. Tafur Monroy1, and A.M.J. Koonen1

1COBRA Research Institute, Faculty of Electrical Engineering, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands.

2 Department of Electrical & Electronics Engineering, University of Bristol, BS8 1TR, Bristol, United Kingdom

3Electronic Systems Engineering Department, University of Essex, Wivenhoe Park, Colchester CO4 3SQ,United Kingdom

j.j.vegas@tue.nl

Abstract: We experimentally demonstrate an optical node with

time-space-and-wavelength domain contention resolution, deflection and dropping capability. The node is composed of an optical buffer based on an optical crossconnect and a wavelength converter. Although the experimental results are shown at 10 Gbit/s the bitrate can be increased substantially. Bit-error rate measurements are shown, sustaining only 3.5 dB power penalty after 10μs of optical buffering and agile wavelength conversion over 18nm span.

©2006 Optical Society of America

OCIS codes: (060.2330) Fiber optics communications; (060.4510) Optical communications

References and links

1. D.K. Hunter, M.C. Chia, and I. Andanovic, "Buffering in optical packet switches," IEEE J. Lightwave

Technol. 16, 2081-2094 (1998).

2. W. D. Zhong, and R.S. Tucker, “Wavelength routing-based photonic packet buffers and their applications

in photonic packet switching,” IEEE J. Lightwave Technol 16, 1737-1745 (1998).

3. W. D. Zhong and R. S. Tucker, “A new wavelength-routed packet buffer combining traveling delay-lines

with delay-line loops", IEEE J. Lightwave Technol 19, 1085-1092 (2001).

4. C. Qiao, “Labeled Optical Burst Switching for IP-over-WDM Integration”, IEEE Communication

Magazine 38, 104-114 (2000).

5. D. Griffith, K. Sriram, and N. Golmie, “Protection switching for optical burst using segmentation and

deflection routing,” IEEE Commun. Lett. 9, 930-932 (2005).

6. S. Lee, K. Sriram, H. Kim, and J. Song, “Contention-Based Limited Deflection Routing Protocol in Optical

Burst-Switched Networks,” IEEE J. Sel. Areas Commun. 23, 1596 - 1611 (2005).

7. Y. Liu, M. T. Hill, N. Calabretta, H. de Waardt, G.D. Khoe, and H.J.S. Dorren, “All-optical buffering in

all-optical packet switched cross connects,” IEEE Photonics Technol. Lett. 14, 849 – 851 (2002).

8. R. Varrazza, I.B. Djordjevic, and S. Yu “Active vertical-coupler-based optical crosspoint switch matrix for

optical packet-switching applications,” IEEE J. Lightwave Technol. 22, 2034-2042 (2004).

9. S. Yu et al. “Demonstration of high-speed optical packet routing using vertical coupler crosspoint space

switch array,” Electron. Lett. 36, 556-558 (2000).

10. N.S. Bergano, F.W. Kerfoot, and C.R. Davidsion, “Margin measurements in optical amplifier system,”

IEEE Photonics Technol. Lett. 5, 304-306 (1993).

11. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical

processing,” IEEE J. Sel. Top. Quantum Electron. 6, 1428-1435 (2000).

12. N. Chi, Z. Wang, and S. Yu, "A Large Variable Delay, Fast Reconfigurable Optical Buffer Based on

Multi-Loop Configuration and an Optical Crosspoint Switch Matrix," in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2006), paper OFO7.

(3)

1. Introduction

In optical networks, contention occurs when two packets arrive simultaneously to the same node, and have to be routed to the same output. Contention resolution in optical switching can be addressed using the time, the space and/or the wavelength domain [1]. Time domain contention resolution can be implemented using fiber delay lines (FDL), recirculating configurations [2] or buffering strategies with a combination of traveling and re-circulating delay lines [3]. Recirculating configurations are preferable, since there is an inherent finer degree of granularity in terms of time delay because shorter FDL can be used and packets can be accessed upon each recirculation through the switch fabric. The main drawback of this approach is the patterning effects induced in the active switches, which limit the number of recirculations and heavily impairs the quality of the signal. On the other hand, contention resolution in the wavelength domain is widely used by means of wavelength converters (WC). However, generally speaking, wavelength converters are intended to be used as packet routers, without considering any contention problem.

Space domain contention is mainly resolved by optical crosspoint switches or similar routing devices, which basically route the packets through an alternative path.

Further refinements in optical packet switching (OPS) [4] also request optical nodes capable of dropping or deflecting packets in case of contention events unsolved by the methods mentioned above [5]. Deflection routing capability is an attractive feature since it can work with limited optical buffering (or even no buffering) because it reroutes (on the fly) the contending bursts to an output port other than the intended output port [6]. Hence, contention by combining all three dimensions (space, time, and wavelength) is attractive solution for congestion-free routing nodes. Combining all these functionalities, an optical node is expected to look that the one depicted in Fig. 1.

Fig. 1. Optical node. OPS: optical packet switching. The arbiter is a physical element that locally route the packets in the event of contention [7].

In this paper we propose a physical implementation of an optical node with simultaneous time-space-and-wavelength contention resolution, deflection and dropping capabilities. The node is based on a cascaded optical crosspoint switch (OXS), a semiconductor optical amplifier Mach-Zehnder Interferometer (SOA-MZI) and a fast widely tunable sampled grating distributed Bragg reflector (SG-DBR). It is important to stress that space contention resolution, and the deflection and dropping capabilities are achieved by routing the packets to different outputs of the OXS. We demonstrate experimentally the proposed scheme with all-optical buffering up to 10.08 μs and wavelength conversion over a wavelength range of 18 nm for a system operating at a payload bit rate of 10 Gbit/s and label signal at 155 Mbit/s. Despite packet routing is not shown in this paper, we believe that the functionalities shown can provide attractive features to implement highly versatile optical routers.

(4)

2. System concept and setup

The integrated 4x4 OXS device consists of two waveguide layers. Two active vertical couplers (AVC) are formed at each cross-point of the switch by having an active waveguide stacked on top of both input and output passive waveguides. The switching mechanism of the OXC is carrier-induced refractive index and gain changes in the AVCs [8-9]. In the ON state, the effective refractive index of the active upper layer is reduced by the presence of injected carriers to equal that of the lower waveguide thereby allowing coupling. The injected carriers in the active layer also provide gain for the signal resulting in a high ON/OFF contrast.

Complementarily, the agile wavelength contention is performed using an SOA-MZI wavelength converter and a SG-DBR tunable laser. The conversion curve of the SOA-MZI device used during the experiments is shown in the Inset (a) of Fig. 2.

In the experimental setup shown in Fig. 2, the continuous wave (CW) probe light (1545.7 nm) generated by a tunable laser source (TLS) was modulated using an intensity modulator (IM) forming optical packets. The packets had 100ns length and were based on a 215-1 pseudo random binary sequence (PRBS). The slot time in which each packet was inserted was 1.12μs. The packets were then amplified using an erbium-doped fiber amplifier (EDFA). Most of the amplified spontaneous emissions (ASE) are rejected out using an optical bandpass filter (BPF). A polarization controller (PC) was used to adjust the polarization of incoming signal when they were launched into the 4x4 OXS. A recirculating loop with a time delay of 1.12μs (equal to the time slot of each packet) is formed by the OXS and a FDL together with in-loop amplification.

Fig. 2. Experimental setup. (a) MZI-SOA performance curve. TLS: tunable laser source. PC: polarization controller. IM: intensity modulator. BPF: optical band pass filter. FDL: fiber delay line. EDFA: erbium-doped fiber amplifier. OXC: optical crosspoint. MZI-SOA: Mach-Zehnder Interferometer –

semiconductor optical amplifier.

The OXC was controlled by a complex programmable logic device (CPLD). This electronic control received the labels of the packets from the same pattern generator that provided the payload data. This CPLD set the switches of the OXC, hence routing the packet either through the recirculating loop or to the exits (dropping, deflection or routing). Thus, all the routing and network control relies on an electronic stage. At the exit port, an EDFA boosts the signal which after a PC is launched into the SOA-MZI wavelength converter. The pumping signal at the other branch of the SOA-MZI was generated by a fast widely tunable SG-DBR laser. An optical BPF was added to filter out the old original signal and remove the amplified spontaneous emission (ASE) noise produced by the SOA-MZI.

(5)

3. Experiment and results

We first assessed the wavelength dependence of our proposed system, by connecting the SG-DBR tunable laser as pumping signal for the SOA-MZI and tuning its signal to four different wavelengths (namely, 1542.14, 1550.11, 1555.74 and 1559.79 nm – Fig. 3(a)) out of the 85 possible ITU 50-GHz spacing C-Band wavelengths. The tuning time is less than 100 ns for 75% of wavelengths and 200 ns at most. Power flatness is 5% and side mode suppression ration (SMSR) is 35 dB. The optical buffer was set to recirculate the packet only once (hence buffering the packet only 1.12 μs). The bit-error rate (BER) measurements are shown in Fig. 3, along with the optical spectra of the pumping CW (Inset (a)). These measurements are based on the Q factor, calculated directly from the waveform trace [10].

Fig. 3. BER measurements for the back-to-back signal, pure wavelength conversion to 1550.12 nm , and for few wavelength conversion and one loop of optical buffering. BER values are derived from the Q factor.

The results show that the wavelength conversion operation provides 2R regeneration with around 8 dB receiver sensitivity improvement at 10-9 of BER [11]. Furthermore, the power penalty for each wavelength remains within less than a 2.5 dB boundary. The scenario considered so far actually reproduces a deflection and space-wavelength contention resolution situation, where an incoming packet is deflected via one circulation through the OXC to the desired output, or just routed to another wavelength/fiber.

Secondly, we assessed the combined operation focusing on one wavelength but for different amounts of optical buffering. In this case, the pumping signal at the MZI-SOA was generated by an SG-DBR, at 1550 nm. The optical spectra at different points of the setup are shown in Fig. 4. As it can be observed, due to the co-propagation operation of the SOA-MZI, the optical spectra at the output port of the SOA-MZI contain the converted signal along with the original one.

Figure 5 shows the waveform of the original packet, the ouput of the OXC buffer, and the output of the wavelength converter. As observed, the waveform traces are quite clean and free of pattern effect after 1 and 5 loops (1.12 μs and 5.6 μs of optical buffering). However, the trace after 9 loops (10.08μs of optical buffering) is blurring and shows some pattern effects.

(6)

Fig. 4. Optical spectra at different points of the setup (namely, the original signal, after time and wavelength contention and at the output of the system). A waveform of the packet is also shown. MZI-SOA: Mach-Zehnder

Interferometer – semiconductor optical amplifier.

Fig. 5. Waveform traces: back-to-back packets and the packets after being

buffered 1.12, 5.6 and 10.08μs, without and with wavelength conversion

contention resolution. Note the waveform reshaping after the wavelength conversion stage.

Figure 6 shows the BER performance of the signal at different points of the setup. The back-to-back signal has a receiver sensitivity of -29dBm at 10-9 BER, improved to -37 dBm after pure wavelength conversion. Hence, the wavelength converter is operating as 2-R

(7)

effects produced by the OXC. The BER performance after one loop (1.12 μs optical buffering) is degraded 0.5 dB. However, after wavelength conversion, it experiences signal regeneration which increases the receiver sensitivity to -32.5 dBm. For five and nine recirculations (5.6 and 10.08 μs of optical buffering), the sensitivity is degraded, but after wavelength conversion, a net power penalty of only 1 dB and 3 dB is experienced, respectively. Hence, packets arriving simultaneously to an optical node can be handled appropriately, optically buffered and wavelength converted in this setup with a low power penalty. It is envisaged that a better performance can be obtained if the insertion loss and polarization dependent losses of the OXC can be further reduced.

Fig. 6. BER measurements: back-to-back signal, pure wavelength conversion, and for few optical buffering and wavelength conversion. BER values are derived from the Q factor.

4. Conclusions

We have experimentally demonstrated an optical node with simultaneous time-space-and-wavelength domain contention resolution, deflection and dropping capability at the physical layer. The node is composed of an optical buffer based on an optical crossconnect and a wavelength converter. Although the experimental results are shown at 10 Gbit/s the bitrate can be increased substantially, since the OXC is bitrate independent and by using a high-speed SOA-MZI. BER measurements are shown, sustaining only 3.5 dB power penalty after 10μs of optical buffering and wavelength conversion over 18nm wavelength span. The wavelength converter utilized by the SG-DBR tunable laser and SOA-MZI gives conversion flexibility to any C-Band ITU channel and combined with fast tuning times (less than 100 ns for 75% of lambdas) demonstrates good characteristics for high bandwidth utilization in OPS networks. The scheme is compatible with recent developments showing larger delay variation [12]. It is envisaged that this node can be hybrid-integrated with delay lines using silica-on silicon technology to achieve better compactness and stability. Moreover, it can be further scaled for larger switch matrix, and can be integrated with in-loop optical 3R regenerators to maintain the signal performance for ultra-large optical buffer.

Acknowledgments

This work was done in the IST projects ePhoton/ONE and LASAGNE (All-optical LAbel-SwApping employing optical logic Gates in NEtwork nodes), funded by the IST Program of the European Commission. The package and electronic interface of the OXS device is funded by the SULIS fund.

Referenties

GERELATEERDE DOCUMENTEN

Ze somt zesenveertig voordelen op die zij als wit persoon geniet, zoals het voordeel om, mocht ze dat willen, er voor te zorgen dat ze vooral in het gezelschap van mensen

Dan één zet om de derde schijf naar paaltje 3 verplaatsen en vervolgens weer 3 zetten om de twee schijven van paaltje 2 naar paaltje 3

Het meest kenmerkende verschil tussen depressie en dementie is dat een depressieve cliënt vaak klachten uit over geheugen- of concentratiestoornissen, terwijl een

Met een ecogram brengen we de belangrijke sociale contacten van de cliënt in kaart. Het eco- gram houdt rekening met verschillende leefgebieden. Het is als een röntgenfoto van

In addition to domain heterogeneity, evaluation data for mutation prioritization algorithms also differ in terms of class skew, which is the ratio of positive to negative

These additional data emphasize that –in addition to a general biological variation among tissues in ribosomal protein mRNA expression- evolutionary conserved more profound

Al-Naffouri, “Multi-modulus algorithms using hyperbolic and Givens rotations for blind deconvolution of MIMO systems,” in Proceedings of the IEEE International Confer- ence

The following tools will be integrated: algorithms for preprocessing, feature extraction, clustering (De Smet et al., 2002), classification, and genetic network