• No results found

ARTICLE IN PRESS

N/A
N/A
Protected

Academic year: 2022

Share "ARTICLE IN PRESS"

Copied!
5
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Applied Surface Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Analysis of amplitude modulation atomic force microscopy in aqueous salt solutions

Pınar Karayaylalı

a

, Mehmet Z. Baykara

a,b,∗

aDepartmentofMechanicalEngineering,BilkentUniversity,Ankara06800,Turkey

bUNAM-InstituteofMaterialsScienceandNanotechnology,BilkentUniversity,Ankara06800,Turkey

a r t i c l e i n f o

Articlehistory:

Received13November2013

Receivedinrevisedform15January2014 Accepted6February2014

Availableonlinexxx

Keywords:

Atomicforcemicroscopy Imagingofbiomaterials Electrostaticdoublelayerforces

a b s t r a c t

Wepresentanumericalanalysisofamplitudemodulationatomicforcemicroscopyinaqueoussaltsolu- tions,byconsideringtheinteractionofthemicroscopetipwithamodelsamplesurfaceconsistingofa hardsubstrateandsoftbiologicalmaterialthroughHertzandelectrostaticdoublelayerforces.Despitethe significantimprovementsreportedintheliteratureconcerningcontact-modeatomicforcemicroscopy measurementsofbiologicalmaterialduetoelectrostaticinteractionsinaqueoussolutions,ourresults revealthatonlymodestgainsof∼15%inimagingcontrastathighamplitudesetpointsareexpected undertypicalexperimentalconditionsforamplitudemodulationatomicforcemicroscopy,togetherwith relativelyunaffectedsampleindentationandmaximumtip–sampleinteractionvalues.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Sinceitsinventionmorethantwodecadesago,atomicforce microscopy(AFM)hasbecomethemostwidelyutilizedmember ofthescanningprobemicroscopyfamilyinresearchandindustrial laboratoriesaroundtheworld[1,2].Akeyfactorinthewidespread useofAFMisitsabilitytoimagematerialsurfaceswith(sub)-nm resolutioninalargenumberofenvironmentalconditions,ranging fromultrahighvacuum(UHV)toambientandliquids.Whileimag- inginUHVusingcertainoperationalmodesofAFMhasallowed atomic-resolutionimagingofatomicallyflatandcleansurfaces[3], themainmotivationbehindoperatinginliquidshasbeenthegoal ofhigh-resolutionimagingofbiologicalmaterialsuchascellmem- branes,DNA, and variousfibrous andglobular proteinsin their naturalstates,withoutstructuraldeformationscausedbyvacuum conditionsneededfortransmissionelectronmicroscopy(TEM),the traditionalmethodofchoiceforhigh-resolutionimagingofbioma- terials[4–6].

AFMhasbeeninitiallyusedinthecontact-modeinliquidsto imagebiomaterialssuchaspurplemembraneand DNA[7,8].In thiscommonmodeofAFM,amicro-machinedcantileverwitha sharptip[9]isbroughtintosoftcontactwiththesamplesurface underinvestigation(withcontactforcesontheorderofafewnN) andscannedlaterallywithpmprecisionwhileverticaldeflections

∗ Correspondingauthorat:DepartmentofMechanicalEngineering,BilkentUni- versity,Ankara06800,Turkey.Tel.:+903122903428.

E-mailaddress:mehmet.baykara@bilkent.edu.tr(M.Z.Baykara).

ofthecantilevercausedbytopographicalfeaturesofthesample surfaceare detected,mostly byusingthelaserbeamdeflection (LBD)method[10].Thus,highresolutionmapsofbiologicalmate- rialsmaybeobtainedinliquidssuchaspurewaterorphosphate buffersolution(PBS).Onemajordrawbackofcontact-modeimag- ingofbiologicalmatteristheoccurrenceoflateralforcesbetween theprobetipandthesampleduringimaging,frequentlydamag- inganddisplacingthesoftbiologicalmatterunderinvestigation [4].To circumventthis problem, Mülleret al.have successfully demonstratedtheuseofrepulsiveelectrostaticinteractionforces occurringbetweentheprobetipandthesamplesurfaceinaque- oussaltsolutionsduetoaccumulatedsurfacecharges[11].Thus, attractiveinteractionforcesactinglocallybetweenthetipapexand sampleatcloseseparationsareelectrostaticallybalancedandsam- pledeformationissignificantlyreducedwithanoticeableincrease inresolution.

Analternativemethodtoreducetheinfluenceoflateralforces on biological material during imaging in liquids is to employ dynamic imaging modes of AFM [12,13]. In dynamic AFM, the cantilever with the probe tip is oscillated at or near its reso- nance frequency using various actuation methods [14–16] and changesinitsoscillationcharacteristics(suchasamplitude,phase orfrequency)duetotip–sampleinteractionsarerecorded.While frequencymodulationatomicforcemicroscopy(FM-AFM,where the oscillation amplitude is kept constant during imaging and changesinoscillationfrequencyaredetected)hasrecentlybeen employedtoperformmolecularresolutionimagingofbiomaterials inliquidsthankstoseveraladvancesininstrumentation[17–21], amplitudemodulationatomicforcemicroscopy(AM-AFM,where http://dx.doi.org/10.1016/j.apsusc.2014.02.016

0169-4332/©2014ElsevierB.V.Allrightsreserved.

(2)

Fig.1.Schematicdescribingthemodelusedinthenumericalsimulations.Thecan- tileverisoscillatingwithanamplitudeofAwhileitsbaseislocatedadistanced abovethehardsubstrate.Theheightofthesoftislandistakentobe2nm.

the excitation frequency is kept constant during imaging and changesinoscillationamplitudearedetected)isusuallypreferred duetoitsrelativetechnicalsimplicity[22].Accordingly,AM-AFM (oftenreferredtoastapping-modeAFM)hasbeenusedtoimage anumberofbiomaterialsinliquidsinthepast[23,24].Itshould beindicatedthatthemainexperimentalchallengeassociatedwith AM-AFMimaginginliquidsisthesignificantlyreducedQ-factorof thecantilever,leadingtolowsignal-to-noiseratios[25].Assuch, attemptstoimprovetheeffectiveQ-factorsuchasthemethodof Q-Controlhavebeenemployedinthepast,leadingtoimproved imagingcontrast,aswellasreducedsampledeformationandinter- actionforces[26,27].

Beinginspiredbytheadvancesin AFMmeasurementofbio- materialsinliquidssummarized above,wehave investigatedin thiscontributiontheeffectofoperatinginaqueoussaltsolutions onAM-AFMimagingofamodelbiologicalsampleusingnumer- icalsimulations.Contrarytocontact-modeoperation,ourresults indicateverymodestgainsinimagingcontrastduetoelectrostatic interactionsathighamplitudesetpoints,accompaniedbyrelatively unaffectedsampleindentationandmaximumtip–sampleinterac- tionvalues.

2. Theoreticalconsiderationsandmodeling

AM-AFMoperationinliquidconditionshasbeennumerically and theoretically analyzed in a number of studies in the past [27–30].Mostcommonly,theequationofmotionfortheoscillating cantileverisconsideredtobeinthefollowingform:

m¨z(t)+2f0m

Q ˙z(t)+k(z(t)−d)=kAextcos(2fextt)+Ftotal(z(t)) (1) where m is theeffective mass of the cantilever, z(t) the posi- tionoftheoscillatingtipofthecantileverrelativetothesample surface at time t, f0 theresonance frequency of the cantilever (f0=1/2



k/m),Qthequalityfactor,kthespringconstantand dthedistanceofthecantileverbasetothesamplesurface.The cantileverisoscillatedmechanically(e.g.,usingapiezoelectricele- ment)withaconstant drivingamplitudeofAext anda constant drivingfrequencyoffext.Ftotal(z(t)) isthetotalinteractionforce actingbetweenthetipandthesamplesurfaceatpositionz(t).

AsamodelsamplesystemappropriateforsimulatingAM-AFM experimentsinliquidsonbiologicalmaterial,wehaveconsidered asoft(Es,soft=1GPa)islandof2nmheightontopofahardsub- strate(Es,hard=130GPa),inaccordancewithpreviousstudies[27]

(seeFig.1).Theheightofthesoftislandroughlycoincideswith thatofDNA,whiletheelasticmodulusofthesubstratefollowsthat ofsilicon(Si),basedonthefactthatDNAadsorbedonSiormica

substratesarefrequentlyusedastestsamplesforliquidAM-AFM experiments[4].

When performing AFM measurements in deionized liquids, attractiveinteractionsincludingvanderWaals’forcesaregreatly reducedduetoscreening[27,31,32]andthemaininteractionforce isduetotheelasticcontactbetweentheprobetipandthesam- plesurfacewhichisappropriatelydescribedbyHertziancontact theory[33]asfollows:

FH(z)= 4 3E

R(z0−z)3/2 (2)

whereEisaparameterderivedfromYoung’smodulusandPois- son’sratiovaluesforthetipandsample(Et,Es,t,s)suchthat E=



(1−2s)/Es+(1−2t)/Et



−1

, R the radius of the AFM tip modeledasasphereandz0aconstantvaluedescribingtheheight ofthesamplesurface(forourmodelsamplesystem,z0=2nmfor thesoftislandandz0=0forthehardsubstrate).Naturally,repul- sivecontactforcesdescribedbyFH affectcantilevermotiononly whencontactbetweentipandsampleoccurs(i.e.,(z0−z)>0).For noncontactconditions((z0−z)≤0),FHbecomeszero.Itshouldbe notedherethattheaccuracyofHertziancontactforcescalculatedin oursimulationsarelimitedbyassumptionsinvolvinglinearelastic- ity,isotropyandhomogeneity,amongothers.Whilelinearlyelastic conditions may not always be satisfiedduring actual AM-AFM measurementsperformedonbiologicalmaterial,Hertziancontact theoryhasbeenusedintheliteraturetosuccessfullyestimatecon- tactforcestoafirstapproximationinsuchcases[22,27].Thus,it hasbeenemployedinthepresentdiscussionaswellforreasonsof comparability.Moreover,hydrodynamicreactionforceswhichare comparablysmallfortypicalcantilevertipdimensionsaswellas solvationforceshavebeenneglectedinouranalysisinaccordance withpreviousAM-AFMsimulationworkinliquids[22,27].

WhenperformingAM-AFMmeasurementsinaqueoussaltsolu- tions,boththeAFMtipandthesampledevelopanetsurfacecharge, basedonvariousmechanismssuchasthedissociationofcertain surfacegroupsandadsorptionofionsontothematerialsurface [34].Duetotheelectrostaticinteractionbetweenthechargedsur- facesandtheionsinthesaltsolution,aconcentrationgradient calledtheelectrical doublelayer (EDL)existsneartheimmersed surfaces.Anelectricaldoublelayerforce(FEDL)basedonmutually attractiveorrepulsiveelectrostaticinteractionsisthusobserved betweensampleandtipwhenthedistancebetweenthemisonthe orderofafewtensofnanometers.WhilethePoisson–Boltzmann theoretical framework provides an accurate description of the potential that develops between such surfacesand the associ- atedinteractionforces[35],itinvolvesthenumericalsolutionofa secondordernonlineardifferentialequation,complicatingitsuse- fulness.Alternatively,anapproximateformoftheEDLforcethat developsbetweenaplanaranda sphericalsurface(suchasthe sampleandthetipsurfacesinanAFMexperiment)maybeused as[36]

FEDL(z)=



4R

st

ε0ε



ıexp



z

0−z ı



(3) for (z0−z)≤0, where s andt are surface chargedensities of sampleandtip,respectively,ε0thepermittivityofvacuum,εthe dielectricconstantoftheliquidandıtheDebyelength,described by:

ı=



ε0εkBT e2

iciZi

(4)

wherekBistheBoltzmannconstant,Tthetemperature,etheelec- troniccharge,citheconcentrationoftheithtypeofioninthesalt solutionandZithevalencevalueforthesameiontype.Whileit shouldbeindicatedthattheapproximateformoftheEDLforce

(3)

providedbyEq.(3)isoflimitedaccuracyoncethedistancebetween thesurfacesisbelowtheDebyelength,it hasbeensuccessfully implementedinanumberofAFMstudiesinthepast,andhasthus beenadoptedforthepresentdiscussionaswell[36–38].Finally, combiningtheHertziancontactforceandtheEDLforce,thetotal tip–sampleinteractionforceisobtainedas

Ftotal=FEDL(z)=



4R

st

ε0ε



ıexp



z

0−z ı



when z≥z0 (5)

Ftotal=FH(z)+FEDL(0)= 4 3E

R(z0−z)3/2+



4R

st

ε0ε



ı

when z<z0 (6)

Experimentally appropriate parameters used in the simula- tionsfortheabovedescribedmodelsamplesurfaceandatypical Sicantileverareasfollows:Et=130GPa,t=s,soft=s,hard=0.3,

t=s,hard=−0.012C/m2, s,soft=−0.04C/m2, T=293K, ε=80.2, R=10nm,f0=20kHz,Q=5,k=1N/m,fext=f0=20kHz.Aextischo- sensuchthatthecantileverundergoesafreeoscillationamplitude ofA0=10nmfarfromthesamplesurfacewhentip–sampleinterac- tionsarenegligible,similartoearliersimulationwork[27].Please notef0=20kHzcorrespondstothewetresonancefrequencyofthe cantileverintheliquidmedium[30]anddoesnotimplyunusually largedimensions.Itshouldbenotedthatwhileithasbeenrecently demonstratedthatatomic-resolutionimagingofmineralsurfaces

suchasmicaismadepossiblebyasignificantreductionofoscilla- tionamplitudeinliquids[39],andtheuseofsmall,high-frequency cantileversinconjunctionwithhigh-speedAFMleadstoimpressive results[40,41],typicalexperimentalparametersforimagingbio- materialsusingAM-AFMremainsimilartothevaluesemployedin oursimulations.Tipandsurfacechargedensityvaluesforourmodel system–whichgenerallydisplayaratherweakdependenceonsalt concentrationdownto1mM[35]andhavethusbeentakentobe constantinthisstudy–havebeendeterminedbasedonexperi- mentalworkintheliterature[35,36]andresultinanetrepulsive EDLforce.AllresultspresentedinSection3havebeenobtainedby numericallysolvingEq.(1)forthevariablez(t)byapplyingafourth orderRunge–Kuttamethodforsetvaluesofd,representingfixed distancesbetweenthecantileverbaseandsamplesurface.

3. Resultsanddiscussion

In typical AM-AFM operation, the cantilever is driven with a fixed driving amplitude (Aext)and a fixed driving frequency (fext),whileshiftsintheoscillationamplitude(A)withdecreasing tip–sample distance due to increasing force interactions are detected.Imagingisusuallyperformedatafixedamplitudeset- point(usually10%to20%lowerthanthefreeoscillationamplitude A0)bytheutilizationofafeedbackloop.Assuch,theimagingcon- trastbetweendifferentregionsofasamplesurfacearedetermined by thevertical displacementof the cantileverbase required to keeptheamplitudesetpointconstantduringimaging.Therefore,

Fig.2.Comparisonofamplitudevs.distancecurvesforthehardsubstrateandthesoftislandatvaryingsaltconcentrationsof0mM(a),100mM(b),10mM(c)and5mM (d).Imagingcontrastisonlymarginallyaffectedbychangesinsaltconcentration,withanincreaseofabout15%atanamplitudesetpointof9nmforaconcentrationof5mM (d0mM=0.88nmwhiled5mM=1.02nm).Pleasenotethatthed0mMvalueof0.88nmreportedhereislowerthanthecorrespondingcontrastvaluepresentedinRef.[27]

duetoadifferenceintheYoung’sModuliofsubstratesemployedintherespectivesimulations.

(4)

itwouldbeappropriatetocompareamplitudevs.distance(Avs.d) curvesforthehardsubstrateandthesoftislandemployedinour modelsamplesurfaceforvaryingsaltconcentrationstoinvestigate theeffectofoperatinginaqueoussaltsolutionsonimagingperfor- manceofAM-AFMinliquids.Accordingly,numericallyobtained Avs.dcurvesformonovalentsaltconcentrationsof0mM,5mM, 10mM,and100mMareprovidedinFig.2foradistance(d)regime of7–13nm.Thereasonfortheconsiderationofmonovalent(e.g., NaCl,KCl)insteadofdivalent(e.g.,MgCl2,CaCl2)saltspeciesinthe presentcalculationsisthattheEDLforcescausedbyequalconcen- trationsofmonovalentsaltsarefoundtobesignificantlyhigher thandivalentsalts,basedonhigherDebyelengths[35].Assuch, monovalentsaltspeciesaremoreusefulforassessingtheeffects ofelectrostaticinteractionsonAM-AFMoperationinliquids.Let usnoteherethatasaltconcentrationof0mMcorrespondstothe completelydeionizedcasewheretheEDLcontributiontothetotal forceinteractioniszero.

ComparingtheplotsinFig.2,twomainconclusionsaremade:

(1)Asexpectedfromexperimentalworkintheliterature[11,35], theeffect ofsalt solutions onAvs. dcurves is strongest at lowsaltconcentrationssuchas5mMduetoincreasedDebye lengths.Consequently,theeffectof saltsolutionsonAvs.d curvesarenegligibleathighconcentrationssuchas100mM.

(2)Evenforlowsaltconcentrationsof,e.g.,5mM,theeffectofEDL forcesonAvs.dbehaviorissmall,resultinginanincreaseofonly about15%inheightcontrast(d)betweenthehardsubstrate andthesoftislandatarelativelyhighsetpointamplitudeof A=9nm.Asexpected,themodestincreaseincontrastduetothe earlieronsetofEDLforcesforthesoftisland(bothduetothefact thatthesoftislandisclosertothetipthanthehardsubstrateby 2nmandthefactthatthesurfacechargedensityishigheron thesoftisland)diminisheswithincreasingsaltconcentration.

Comparedtotheincreaseinheightcontrastofmorethan60%

providedbythemethodofQ-Controlonaverysimilarsample system[27],itisclearthatoperationinaqueoussaltsolutions doesnotleadtoasignificantimprovementinimagingcontrast forAM-AFM,despitethefactthatdifferencesinsurfacecharge densityhaveresultedindetectabledifferencesinthephaseshift signalinanearlierstudyintheliterature[42].

ThereasonforthemarginaleffectofEDLinteractionsonAM- AFMimagingbecomesclearwhenthemaximumcontributionsof theEDL(FEDL)andHertz(FH)interactionstothetotaltip–sample interaction(Ftotal)arecomparedforthesoftislandinourmodel samplesystem.Evenforarelativelylowsaltconcentrationof5mM, themaximumvalueforFEDL(∼0.4nN)ismorethananorderofmag- nitudelowerthanthatobservedforthecontactforceFH(∼10nN) intheinvestigateddistanceregime.Assuch,thetip–sampleinter- action is mainly dominated by contact forces during AM-AFM operationinaqueoussaltsolutions,limitingtheeffectofelectro- staticinteractionsonimaging.Itshouldbenotedthatthecalculated maximumvaluesfortheEDLinteractionareingoodquantitative agreementwithexperimentalresultsreportedintheliteraturefor monovalentsalts(takingintoaccountthedifferencesintipradius andsamplesurfacechargedensity)[35]despitetherelativelybasic natureofourmodelsamplesystemandcalculations.

Anotheraspectthat needstobeconsideredwhenevaluating AM-AFMmeasurements in liquidson biological materialis the issueofsampledeformation.Sincetypicallythebiologicalmate- rialtobeimagedismechanicallymuchweakerthanthesubstrate itis adsorbedon, low interactionforcesand indentationvalues aredesirable.Theresultsofthepresentnumericalanalysisindi- catethatmaximumtip–sampleinteractionforcesonlymarginally increase(againdue tothesignificantlylowermagnitudeofEDL forceswhencomparedtocontactforces)whilesampleindentation

Table1

Comparisonofmaximuminteractionforceandsampleindentationvaluesforthe softislandinourmodelsamplesystematvaryingsaltconcentrations(d=7nm).

Itisreadilyobservedthatsampleindentationvaluesareessentiallyunaffectedby changesinsaltconcentration,whilemaximuminteractionforcesonlymarginally increasewithdecreasingsaltconcentrationwhencomparedtothedeionizedliquid.

Saltconcentration(mM) Maximuminteraction force(nN)

Sampleindentation (nm)

0 10.2 1.7

100 10.2 1.7

10 10.4 1.7

5 10.5 1.7

valuesremainrelativelyunchangedwithdecreasingsaltconcentra- tion(seeTable1)whencomparedtoimagingindeionizedliquids.

4. Conclusions

Insummary,wehaveperformedamodelnumericalanalysisof amplitudemodulationatomicforcemicroscopyonsoftbiological materialsadsorbedonhardsubstratesinaqueoussaltsolutions.

Despitethesignificantadvantagesprovidedbyrepulsiveelectro- staticinteractionsincontact-modeimagingofsimilarsamples[11], ourresultsindicatethatonlymodestgainsinimagingcontrastat highamplitudesetpointsare expectedforAM-AFMundertypi- calexperimentalconditionsrepresentedbyoursimulations,while sampleindentationandmaximumtip–sampleinteractionvalues remainrelativelyunaffected.

References

[1]G.Binnig,C.F.Quate,C.Gerber,Phys.Rev.Lett.56(1986)930.

[2]P.J.Eaton,P.West,AtomicForceMicroscopy,OxfordUniversityPress,Oxford, 2010.

[3]S.Morita,R.Wiesendanger,E.Meyer,NoncontactAtomicForceMicroscopy, Springer,Berlin,2002.

[4]V.J.Morris,A.R.Kirby,A.P.Gunning,AtomicForceMicroscopyforBiologists, ImperialCollegePress,London,2010.

[5]A.M.Baro,R.G.Reifenberger,AtomicForceMicroscopyinLiquid:Biological Applications,Wiley-VCH,Weinheim,2012.

[6]P.Parot,Y.F.Dufrene,P.Hinterdorfer,C.LeGrimellee,D.Navajas,J.L.Pellequer, S.Scheuring,J.Mol.Recognit.20(2007)418.

[7]D.J.Muller,F.A.Schabert,G.Buldt,A.Engel,Biophys.J.68(1995)1681.

[8]H.G.Hansma,J.Vesenka,C.Siegerist,G.Kelderman,H.Morrett,R.L.Sinsheimer, V.Elings,C.Bustamante,P.K.Hansma,Science256(1992)1180.

[9]T.R.Albrecht,S.Akamine,T.E.Carver,C.F.Quate,J.Vac.Sci.Technol.,A8(1990) 3386.

[10]G.Meyer,N.M.Amer,Appl.Phys.Lett.53(1988)1045.

[11]D.J.Müller,D.Fotiadis,S.Scheuring,S.A.Muller,A.Engel,Biophys.J.76(1999) 1101.

[12]R.Garcia,R.Perez,Surf.Sci.Rep.47(2002)197.

[13]P.K.Hansma,etal.,Appl.Phys.Lett.64(1994)1738.

[14]M.Dreier,D.Anselmetti,T.Richmond,U.Dammer,H.J.Guntherodt,J.Appl.

Phys.76(1994)5095.

[15]W.H.Han,S.M.Lindsay,T.W.Jing,Appl.Phys.Lett.69(1996)4111.

[16]D.Ramos,J.Tamayo,J.Mertens,M.Calleja,J.Appl.Phys.99(2006)124904.

[17]H.Yamada,K.Kobayashi,T.Fukuma,Y.Hirata,T.Kajita,K.Matsushige,Appl.

Phys.Express2(2009)095007.

[18]H.Asakawa,T.Fukuma,Nanotechnology20(2009)264008.

[19]H.Asakawa,T.Fukuma,Rev.Sci.Instrum.80(2009)103703.

[20]T.Fukuma,Rev.Sci.Instrum.80(2009)023707.

[21]Y.Mitani,M.Kubo,K.Muramoto,T.Fukuma,Rev.Sci.Instrum.80(2009) 083705.

[22]R.CastroGarcía,AmplitudeModulationAtomicForceMicroscopy,Wiley-VCH, Weinheim,2010.

[23]C.Moller,M.Allen,V.Elings,A.Engel,D.J.Muller,Biophys.J.77(1999)1150.

[24]S.Kasas,etal.,Biochemistry36(1997)461.

[25]E.T.Herruzo,R.Garcia,Appl.Phys.Lett.91(2007)143113.

[26]D.Ebeling,H.Holscher,H.Fuchs,B.Anczykowski,U.D.Schwarz,Nanotechnol- ogy17(2006)S221.

[27]H.Holscher,U.D.Schwarz,Appl.Phys.Lett.89(2006)073117.

[28]J.Legleiter,T.Kowalewski,Appl.Phys.Lett.87(2005)163120.

[29]S.deBeer,D.vandenEnde,F.Mugele,Appl.Phys.Lett.93(2008)253106.

[30]S.Basak,A.Raman,Appl.Phys.Lett.91(2007)064107.

[31]J.Israelachvili,IntermolecularandSurfaceForces,AcademicPress,London, 1991.

[32]F.Ohnesorge,G.Binnig,Science260(1993)1451.

(5)

[33]H.Hertz,J.ReineAngew.Math.92(1881)156.

[34]H.J.Butt,Biophys.J.60(1991)1438.

[35]D.Ebeling,D.vandenEnde,F.Mugele,Nanotechnology22(2011)305706.

[36]J.Sotres,A.M.Baro,Biophys.J.98(1995)(2010).

[37]J.Sotres,A.Lostao,C.Gomez-Moreno,A.M.Baro,Ultramicroscopy107(2007) 1207.

[38]H.J.Butt,Biophys.J.63(1992)578.

[39]D.Ebeling,S.D.Solares,Nanotechnology24(2013)135702.

[40]N.Kodera,D.Yamamoto,R.Ishikawa,T.Ando,Nature468(2010)72.

[41]I.Casuso,etal.,Nat.Nanotechnol.7(2012)525.

[42]D.M.Czajkowsky,M.J.Allen,V.Elings,Z.F.Shao,Ultramicroscopy74(1998)1.

Referenties

GERELATEERDE DOCUMENTEN

Although the membranes appear to be densely packed with protein at lower resolution, the highest resolution images reveal large domains without protrusions to be present. These

S Online supplementary data available from stacks.iop.org /nano/28/085704/mmedia Keywords: heterodyne force microscopy, contrast mechanism, subsurface, friction, ultrasound,

Here, we use a zinc oxide 共ZnO兲 piezoelectric actuator to both drive the cantilever at its resonant frequency and to provide z actuation. The cantilever has been described

Vibrations of the third eigenmode of the cantilever for medium and high dissipation cases: 共a兲 amplitude and 共b兲 phase of the vibrations with respect to equivalent spring constant

Percentile change in normal contact stiffness for disbond between tungsten film and silicon half space as a function of defect depth for various force-radius of curvature

In summary, the initial experiments of enhanced higher- harmonic imaging pointed out that the amplitude of en- hanced third harmonic changes if there is a material differ- ence on

Furthermore, for a given sample elastic properties we can determine approximately the sample damping constant by measuring the average power dissipation.. Simulation results are

Now we have a complete formulation required to calcu- late the resonant harmonic response in tapping mode. We first calculate the tip-sample interaction forces and its har-