• No results found

University of Groningen From local adaptation to range sizes Alzate Vallejo, Adriana

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen From local adaptation to range sizes Alzate Vallejo, Adriana"

Copied!
29
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

From local adaptation to range sizes

Alzate Vallejo, Adriana

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Alzate Vallejo, A. (2018). From local adaptation to range sizes: Ecological and evolutionary consequences of dispersal. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

REFERENCES

1. Addis, D. T., Patterson III, W. F., Dance, M. A. & Ingram Jr, G. W. 2013. Im-plication of reef fish movement from unreported artificial reef sites in the northern Gulf of Mexico. Fisheries Research. 147, 349-358.

2. Aduse-Poku, K.,  Molleman, F.,  Oduro, W.,  Oppong, S.K.,  Lohman, D.J. &  Etienne, R.S. 2017.  Relative contribution of neutral and deterministic processes in shaping fruit-feeding butterfly assemblages in Afrotropical for-ests. Ecology and Evolution. 8(1), 296-308.

3. Agrawal, A.A. 2000. Host-range evolution: adaptation and trade-offs in fit-ness of mites on alternative hosts. Ecology. 81: 500-508.

4. Alzate, A. Zapata, F.A. & Giraldo, A. 2014. A comparison of visual and collec-tion-based methods for assessing for community structure of coral reef fishes in the Tropical Eastern Pacific. Revista de Biologia Tropical. 62(1), 359-371. 5. Alzate, A., Bisschop, K., Etienne, R. S. & Bonte, D. 2017. interspecific

compe-tition counteracts negative effects of dispersal on adaptation of an arthropod herbivore to a new host. Journal of Evolutionary Biology. 30 (11): 1966-1977. 6. Anderson, S. 1985. The theory of range-size (RS) distributions. American

Museum Novitates. 2833, 1-20.

7. Appeldoorn, R. S., Hensley, D. A., Shapiro, D. G., Kioroglou, S. & Sanderson, B. G. 1994. Egg dispersal in a Caribbean coral reef fish, Thalassoma bifas-ciatum. II. Dispersal off the reef platform. Bulletin of Marine Science. 54(1), 271-280.

8. Bancroft, J.S. & Margolies, D.C. 1999. An individual-based model of an acar-ine tritrophic system: lima bean, Phaseolus lunatus L., twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae). Ecological modelling, 123, 161-181.

9. Barlow, G. W. 1981. Patterns of parental investment, dispersal and size among coral-reef fishes. Environmental Biology of Fishes. 6(1), 65-85.

10. Barton, K. 2015. MuMIn: Multi-Model Inference. R package version 1.15.1. http://CRAN.R-project.org/package=MuMIn

11. Bates, D., Maechler, M., Bolker, B., Walker, S., Bojesen Christensen, R. H. & Singmann, H. 2014. Linear mixed-effects models using Eigen and S4. R pack-age version 1.1-6. http://lm4.r-forge.r-project.org/packpack-age=lm4.

12. Bates, D., Maechler, M., Bolker, B. & Walker, S. 2015. Fitting linear mixed-ef-fects models using lme4. Journal of Statistical Software. 67: 1-48.

(3)

metapop-ulations experiencing environmental deterioration. Science. 332: 1327-1330. 14. Bengtsson, J. 1989. Interspecific competition increases local extinction rate

in a metapopulation system. Nature. 340: 713-715.

15. Bitume, E.V.E.V.,  Bonte, D.,  Magalhães, S.,  Martin, G.S.G.S.,  van Dongen, S. & Bach, F., et al. 2011. Heritability and artificial selection on ambulatory dispersal distance in Tetranychus urticae: effects of density and maternal ef-fects. PLoS ONE. 6: E26927.

16. Bitume, E.V.V., Bonte, D., Ronce, O., Olivieri, I. & Nieberding, C.M.M. 2014. Dis-persal distance is influenced by parental and grand-parental density. Proceed-ing of the Royal Society B. 281: 20141061

17. Blackburn, T. M. & Gaston, K. J. (1998) Some methodological issues in mac-roecology. The American Naturalist. 151(1), 68-83.

18. Blanquart, F., Gandon, S. & Nuismer, S. L. 2012. The effect of migration and drift on local adaptation to a heterogeneous environment. Journal of Evolu-tionary Biology. 25: 1351- 1363.

19. Bolland, H.R., Gutierrez, J. & Flechtmann, C.H.W. 1998. World catalogue of the spider mite family (Acari: Tetranychidae). Brill Academic Publishers. Lei-den.

20. Bolnick, D.I. & Nosil, P. 2007. Natural selection in populations subject to a migration load. Evolution. 61: 2229-2243.

21. Bonato, O. 1999. The effect of temperature on life history parameters of Tetranychus evansi (Acari:Tetranychidae). Experimental and Applied Acarol-ogy. 23: 11-19.

22. Bonhomme, F. & Planes, S. 2000. Some evolutionary arguments about what maintains the pelagic larvae in reef fishes. Environmental Biology of Fishes. 59, 365-383.

23. Bonte, D., De Roissart, A., Vandegehuchte, M.L., Ballhorn, D.J., van Leeuwen, T. & de la Peña E. 2010. Local adaptation of aboveground herbivores towards plant phenotypes induced by soil biota. Plos One. 5: e11174.

24. Bonte, D., Van Dyck, H., Bullock, J. M., Coulon, A., Delgado, M., Gibbs, M., Lehouck, V., Matthysen, E., Mustin, K., Saastamoinen, M., Schtickzelle, N., Stevens, V. M., Vandewoestijne, S., Baguette, M., Barton, K., Benton, T. G., Chaput-Bardy, A., Clobert, J., Dytham, C., Hovestadt, T., Meier, C. M., Palm-er, S. C. F., Turlure, C. & Travis, J. M. J. 2012. Costs of dispersal. Biological Reviews. 87: 290–312.

25. Boyle, W. W. 1957. On the mode of dissemination of the two-spotted spider mite, Tetranychus telarius (L.). Proceedings of the Hawaiian Entomological So-ciety. 16: 261-268.

(4)

A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M. & Bolker, B. M. 2017. Modeling Zero-Inflated Count Data With glmmTMB. bioRxiv preprint bioRx-iv:132753; doi: https://doi.org/10.1101/132753

27. Brothers, E. B. & Thresher, R. E. (1985) Pelagic duration, dispersal, and the distribution of Indo-Pacific coral-reef fishes. The ecology of coral reefs, ed Reaka ML (Symposia Series for Undersea Research, NOAA’s Undersea Re-search Program, Vol.3, No. 1), pp 53-69.

28. Brown, J.H. & Kondric-Brown, A. 1977. Turnover rates in insular biogeogra-phy: effects of immigration on extinction. Ecology. 58: 445-449.

29. Brown, J. H., Stevens, C. G. & Kaufman, D. M. 1996. The geographic range: size, shape, boundaries and internal structure. Annual Review in Ecology and Systematic. 27: 597-623.

30. Burgess, S. C., Baskett, M. L., Grosberg, R. K., Morgan, S. G. & Strathmann, R. R. 2015. When dispersal is for dispersal? Unifying marine and terrestrial perspectives. Biological Reviews. 91(3): 867-882.

31. Ching, J., Musheyev, S.A., Chowdhury, D., Kim, J.A. & Choi, Y. 2012. Migra-tion enhances adaptaMigra-tion in bacteriophage populaMigra-tions evolving in ecological sinks. Evolution. 67: 10-17.

32. Clobert, J., Le Galliard, J. F., Cote, J., Meylan, S. & Massot, M. 2009. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecology Letters 12: 197–209.

33. Cuevas, J.M., Moya, A. & Elena, S.F. 2003. Evolution of RNA virus in spatially structured heterogeneous environments. Journal of Evolutionary Biology. 16: 456-466.

34. De Mazancourt, C., Johnson, E. & Barraclough, T.G. 2008. Biodiversity inhib-its species’ evolutionary responses to changing environments. Ecology Let-ters. 11: 380-388.

35. De Meester, L., Vanoverbeke, J., Kilsdonk, L.J. & Urban, M.C. 2016. Evolving perspectives on monopolization and priority effects. Trends in Ecology and Evolution. 31: 136-146.

36. De Roissart, A., Wang, S. & Bonte, D. 2015. Spatial and spatiotemporal var-iation in metapopulation structure affects population dynamics in a passive dispersing arthropod. Journal of Animal Ecology. 84: 1565-1574.

37. Dennis, R. L. H., Sparks, T. H. & Hardy, B. P. 1999. Bias in butterfly distri-bution maps: the effect of sampling effort. Journal of Insect Conservation. 3, 33–42.

38. Dennis, R. L. H., Donato, B., Sparks, T. H. & Pollard, E. 2000. Ecological cor-relates of island incidence and geographical range among British butterflies. Biodiversity and Conservation. 9, 343-359.

(5)

39. Edwards, W. & Westoby, M. 1996. Reserve mass and dispersal investment in relation to geographic range of plant species: phylogenetically independent contrast. Journal of Biogeography. 23, 329-338.

40. Egas, M. & Sabelis, M.W. 2001. Adaptive learning of host preference in a her-bivorous arthropod. Ecology Letters. 4: 190-195.

41. Fahrig, L. 1997. Relative effects of habitat loss and fragmentation on species extinction. Journal of Wildlife Management. 61: 603-610.

42. Floeter, S. R., Ferreira, C. E. L., Dominici-Arosemena, A. & Zalmon, I. R. 2004. Latitudinal gradients in Atlantic reef fish communities: trophic structure and spatial use patterns. Journal of Fish Biology. 64, 1680-1699.

43. Froese, R. & Pauly, D. P. (2011) FishBase. World Wide Web electronic publi-cation. www.fishbase.org.

44. Fry, J.D. 1990. Trade-offs in fitness on different hosts: evidence from a se-lection experiment with a phytophagous mite. The American Naturalist. 136: 569-580.

45. Garant, D., Forde, S.E. & Hendry, A.P. 2007. The multifarious effects of dis-persal and gene flow. Functional Ecology. 21: 434–443. 

46. Gaston, K. J. 1994. Measuring geographic range sizes. Ecography. 17(2), 198-205.

47. Gaston, K. J. 1996. The multiple forms of the interspecific abundance-distri-bution relationship. Oikos. 76: 211-220.

48. Gaston, K.J. 1996. Species-range-size distributions: patterns, mechanisms and implications. Trends in Ecology and Evolution. 11, 197-201.

49. Gaston, K. J. & Blackburn, T. M. 1996. Range size-body size relationships: evidence of scale dependence. Oikos, 75, 479-485.

50. Gaston, K. J. 2003. The structure and dynamics of geographic ranges. Oxford University Press, Oxford.

51. Gaston, K. J. 2009. Geographic range limits: achieving synthesis. Proceedings of the Royal Society B. 276: 1395-1406

52. Gaston, K. J., Blackburn, T. M. & Lawton, J. H. 1997. Interspecific abundance - range size relationship: an appraisal of mechanisms. Journal of Animal Ecol-ogy. 66: 579-601.

53. Gaston, K. J. & Blackburn, T. M. 2003. Dispersal and the interspecific abun-dance-occupancy relationship in British bird. Global Ecology and Biogeogra-phy. 12(5), 373-379.

54. Gaston, K.J. & Chown, S.L. 1999. Geographic range size and speciation. In Evolution of biological diversity. (ed. A.E. Magurran & R.M. May), pp. 236-259. Oxford University Press.

(6)

process. Proceedings of the Royal Society B269: 1079-1086.

56. Gaston, K. J. & Fuller, R. A. 2009. The sizes of species’ geographic ranges. Journal of Applied Ecology. 46: 1-9.

57. Gause, G.F. & Witt, A.A. 1935. Behaviour of mixed populations and the prob-lem of natural selection. The American Naturalist. 69: 596-609.

58. Gelman, A., Su, Y.-S., Yajima, M., Hill, J., Pittau, M.G., Kerman, J. et al. 2009. arm: data analysis using regression and multilevel⁄hierarchical models. R package, version 9.01. https://CRAN.R-project.org/package=arm.

59. Godinho, D.P., Janssen, A., Dias, T., Cruz, C. & Magalhães, S. 2015. Down-reg-ulation of plant defence in a resident spider mite species and its effect upon con- and heterospecifics. Oecologia. 180: 161-167.

60. Gonzalez-Suarez, M., Lucas, P. M. & Revilla, E. 2012. Biases in comparative analyses of extinction risk: mind the gap. Journal of Animal Ecology. 81, 1211-1222.

61. Gould, F. 1979. Rapid host range evolution in a population of a phytophagous mite Tetranychus urticae Koch. Evolution. 33: 791-802.

62. Gotoh, T., Bruin, J., Sabelis, M.W. & Menken, S.B.J. 1993. Host race formation in Tetranychus urticae - Genetic differentiation, host-plant preference, and mate choice in a tomato and a cucumber strain. Entomologia Experimentalis et Applicata. 68: 171-178.

63. Grbić, M., Van Leeuwen, T., Clark, R.M., Rombauts, S., Rouzé, P., Grbić, V. et al. 2011. The genome of Tetranychus urticae reveals herbivorous pest adapta-tions. Nature. 479: 487-492.

64. Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. 2011. Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evo-lutionary Biology. 24, 699-711

65. Gutierrez, D. & Menendez, R. 1997. Patterns in the distribution, abundance and body size of carabid beetles (Coleoptera: Caraboidea) in relation to dis-persal ability. Journal of Biogeography. 24, 903-914.

66. Hansen, T. H. (1980) Influence of larval dispersal and geographic distribu-tion on species longevities in neograstropods. Paleobiology. 6, 193-207. 67. Hanski, I. 1982. Dynamics of regional distribution: the core and satellite

spe-cies hypothesis. Oikos. 38: 210-221.

68. Harfoot, M.B.J., Newbold, T., Titterson, D.P., Emmott, S., Hutton, J., Ly-utsarev, V., Smith, M.J., Scharlemann, J.P.W. & Purves, D.W. 2014. Emergent global patterns of ecosystem structure and function from a mechanistic gen-eral ecosystem model. PLoS Biology. 12(4): e1001841.

69. Have, A. 1987. Experimental island biogeography: immigration and extinc-tion of ciliates in microcosms. Oikos. 50: 218 - 224.

(7)

70. Hawkins, J. P., Roberts, C. M. & Clark, V. (2000) The threatened status of re-stricted-range coral reef fish species. Animal Conservation. 3, 81-88.

71. Holt, R.D. & Gomulkiewicz, R. 1996. The evolution of species’ niches: a pop-ulation dynamic perspective. In: Case studies in mathematical modelling (H.G. Othmer., F.R. Adler., M.A. Lewis. & L.C. Dallon, eds), pp. 25-50. Saddle River, NJ: Prentice-Hall.

72. Holt, R. D. & Gomulkiewicz, R. 1997a. The evolution of species niches: a population dynamics perspective. In (Othmer, H.G., Adler, F. R., Lewis, J. C. & Dallon. J. C. eds): Case Studies in Mathematical Modeling—Ecology, Physi-ology, and Cell Biology. Prentice-Hall, New Jersey. Pp- 423.

73. Holt, R. D. & Gomulkiewicz, R. 1997b. How does immigration influence local adaptation? A re-examination of a familiar paradigm. The American Natural-ist. 149: 563-572.

74. Holt, R.D. 2003. On the evolutionary ecology of species’ ranges. Evolutionary Ecology Research. 5, 159-178.

75. Holt, R. D. & Keitt, T. H. 2005. Species’ borders: a unifying theme in ecology. Oikos. 108: 3-6.

76. Hothorn, T., Bretz, F. & Westfall, P. 2008. Simultaneous inference in general parametric models. Biometrical Journal. 50: 346-363.

77. Hubbell, S. P. 2001. The Unified Neutral Theory of Biodiversity and Biogeog-raphy. Princeton University Press, Princeton, NJ, pp. 392.

78. Hufbauer, R. A., Szűcs, M., Kasyon, E., Youngberg, C., Koontz, M. J., Rich-ards, C., Tuff, T. & Melbourne, B. A. 2015. Three types of rescue can avert extinction in a changing environment. Proceedings of the National Academy of Sciences of the United States of America. 112: 10557-10562.

79. Jablonski, D. & Lutz, R. A. (1983) Larval ecology of marine benthic inverte-brates: paleobiological implications. Biological Reviews. 58, 21-89.

80. Jacob, S., Legrand, D., Chaine, A. S., Bonte, D., Schtickzelle, N., Huet, M. & Clobert, J. 2017. Gene flow favors local adaptation under habitat choice in ciliate microcosm. Nature Ecology and Evolution. 1: 1407-1410.

81. Janzen, T., Haegeman, B. & Etienne, R.S. 2015. A sampling formula for eco-logical communities with multiple dispersal syndromes. Journal of Theoretical Biology. 374, 94-106.

82. Johansson, J. 2007. Evolutionary responses to environmental changes: how does competition affect adaptation? Evolution. 62: 421-435.

83. Johnson, C. N. 1997. Species extinction and the relationship between distri-bution and abundance. Nature. 394: 272-274.

84. Jones, A.G. 2008. A theoretical quantitative genetic study of negative ecolog-ical interactions and extinction times in changing environments. BMC Evol.

(8)

Biol. 8: 119.

85. Jones, G. P., Caley, M. J. & Munday, P. L. 2002. Rarity in coral reef fish com-munities. In Coral reef fishes: dynamics and diversity in a complex ecosystem (ed. P. F. Sale), pp. 81- 101. San Diego: Academic Press.

86. Juliano, S. A. (1983) Body size, dispersal ability, and range size in North American species of Brachinus (Coleoptera: Carabidae). Coleopterists Bulle-tin. 37, 232-238.

87. Kant, M.R., Ament, K., Sabelis, M.W., Haring, M.A. & Schuurink, R.C. 2004. Differential timing of spider mite-induced direct and indirect defenses in to-mato plants. Plant Physiology. 135: 483-495.

88. Kant, M.R., Sabelis, M.W., Haring, M.A. & Schuurink, R.C. 2008. Intraspecif-ic variation in a generalist herbivore accounts for differential induction and impact of host plant defences. Proceedings of the Royal Society B275: 443-452. 89. Kaunda-Arara, B. & Rose, G. A. 2004. Long-distance movements of coral reef

fishes. Coral Reefs. 23, 410-412.

90. Kavanaugh, D. H. 1985. On wing atrophy in carabid beetles (Coleoptera: Car-abidae), with special reference to Neartic Nebria. In Taxonomy, Phylogeny and zoogeography of beetles and ants (e.d. Ball, G.E.), pp.408-431, Junk, Dor-drecht.

91. Kawecki, T.J. & Ebert, D. 2004. Conceptual issues in local adaptation. Ecology Letters. 7: 1225-1241.

92. Kawecki, T.J. 1995. Demography of source-sink populations and the evolu-tion of ecological niches. Evoluevolu-tionary Ecology. 9: 38-44.

93. Kawecki, T.J. 2008. Adaptation to marginal habitats. Annual Review of Ecology, Evolution and Systematics. 39: 321-342.

94. Kawecki, T.J., Lenski, R.E., Ebert, D., Hollis, B., Olivieri, I. & Whitlock, M.C. 2012. Experimental evolution. Trends in Ecology and Evolution. 27: 547-560. 95. Kubisch, A., Holt, R. D., Poethke, H. & Fronhofer, E. A. 2014. Where am I

and why? Synthetizing range biology and the eco-evolutionary dynamics of dispersal. Oikos. 123: 5-22.

96. Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H.B. 2016. lmerTest: Tests in Linear Mixed Effects Models. R package version 2.0-33. https://CRAN.R-pro-ject.org/package=lmerTest.

97. Lachapelle J., Reid, J. & Colegrave, N. 2015. Repeatability of adaptation in experimental populations of different sizes. Proceeding of the Royal Society B. 282: 20143033.

98. Lawrence, D., Fiegna, F., Behrends, V., Bundy, J.G., Phillimore, A.B., Bell, T. et al. 2012. Species interactions alter evolutionary responses to a novel environ-ment. Plos Biology. 10: e1001330.

(9)

99. Leis, J.M. 1978. Systematics and zoogeography of the porcupinefishes (Di-odon, Diodontidae, Tetraodontiformes), with comments on egg and larvae development. Fishery Bulletin. 76 (3), 535-567.

100. Leis, J. M. 1991. The pelagic stage of reef fishes: the larval biology of coral reef fishes. The Ecology of Fishes on Coral Reefs, ed Sale PF (Academic Press, San Diego, CA), pp 183–230

101. Leis, J.M. 2006. Are larvae of demersal fishes plankton or nekton. Advances in Marine Biology. 51, 57-141.

102. Leis, J.M., Caselle, J.E., Bradbury, I.R., Kristiansen, T., Llopiz, J.K., Miller, M.J., O’Connor, M.I., Paris, C.B., Shanks, A.L., Sogard, S.M., Swearer, S.E., Treml, E.A., Vetter, R.D. & Warner, R.R. 2013. Does fish larvae dispersal differ be-tween high and low latitudes? Proceedings of the Royal Society B280: 20130327. 103. Lemon, J. 2006. Plotrix: a package in the red-light district of R. R-News, 6,

8-12.

104. Lenormand, T. 2012. Gene flow and the limits to natural selection. Trends in Ecology and Evolution. 17: 183-189.

105. MacArthur, R.H. & Wilson, E.O. 1967. The theory of island biogeography. Princeton University Press.

106. Lester, S. E. & Ruttenberg, B. I. 2005. The relationship between pelagic larval duration and range size in tropical reef fishes: a synthetic analysis. Proceed-ings of the Royal Society B72: 585-591.

107. Lester, S. E., Ruttenberg, B. I., Gaines, S. D. & Kinlan, B. P. 2007. The relation-ship between dispersal ability and geographic range size. Ecology Letters 10, 745–758.

108. Little, R. J. A. & Rubin, D. B. 2002. Statistical analysis with missing data. John Wiley & Sons, New York. pp, 408.

109. Luiz, O. J., Allen, A. P., Robertson, D. R., Floeter, S. R., Kulbicki, M., Vigliola, L., Becheler, R. & Madin, J. S. 2013. Adult and larval traits as determinants of geographic range size among tropical reef fishes. Proceedings of the National Academy of Sciences of the United States of America. 110(41): 16498-16502. 110. MacArthur, R. H. & Wilson, E. O. 1967. The theory of island biogeography.

Princeton University Press, Princeton, NJ. pp. 203.

111. Magalhães, S., Fayard, J., Janssen, A. & Olivieri, I. 2007. Adaptation in a spider mite population after long term evolution on a single host plant. Journal of Evolutionary Biology. 20: 2016-2027.

112. Magalhães, S., Blanchet, E., Egas, M. & Olivieri, I. 2009. Are adaptation costs necessary to build up a local adaptation pattern? BMC Evolutionary Biology. 9: 182.

(10)

on the detection of adaptation. Journal of Evolutionary Biology. 24: 2653-2662. 114. Magnusson, A. 2015. gmt: Interface between GMT map-making software and

R. R package version 1.2-0. http://CRAN.R-project.org/package=gmt. 115. Malmqvist, B. 2000. How does wing length relate to distribution patterns of

stoneflies (Plecoptera) and mayflies (Ephemeroptera)? Biological Conserva-tion. 93, 271-276.

116. McCauley, S. J., Davis, C. J., Werner, E. E. & Robeson II, M. S. 2014. Dispersal, niche breadth and population extinction: colonization rations predict range size in North American dragonflies. Journal of Animal Ecology. 83, 858-865. 117. Mora, C., Chittaro, P. M., Sale, P. F., Kritzer, J. P. & Ludsin, S. A. 2003. Patterns

and processes in reef fish diversity. Nature. 421, 933–936.

118. Mora, C., Treml, E., Robert. J., Crosby, K., Roy, D. & Titterson, D. P. 2012. High connectivity among habitats precludes the relationship between disper-sal and range size in tropical reef fishes. Ecography. 35(1), 89–96.

119. Munday, P. L. & Jones, G. P. 1998. The ecological implications of small body size among coral-reef fishes. Oceanography and Marine Biology: An Annual Review. 36, 373-411.

120. Nacimiento de Vasconcelos, G.J., de Moraes, G.J., Delalibera Junior, I. & Knapp M. 2008. Life history of the predatory mite Phytoseiulus fragariae on Tetranychus evansi and Tetranychus urticae (Acari: Phytoseiidae, Tetranychi-dae) at five temperatures. Experimental and Applied Acarology. 44: 27-36. 121. Nakagawa, S. & Freckleton, R. P. 2008. Missing inaction: the dangers of

ignor-ing missignor-ing data. Trends in Ecology and Evolution. 23, 592-596.

122. Navajas, M., de Moraes, G.J., Auger, P. & Migeon, A. 2013. Review of the in-vasion of Tetranychus evansi: biology, colonization pathways, potential expan-sion and prospects for biological control. Experimental and Applied Acarology. 59: 43–65.

123. Nosil, P., Crespi, B,J. & Sandoval, C.P. 2003. Reproductive isolation driven by the combined effects of ecological adaptation and reinforcement. Proceedings of the Royal Society B. 270: 1911-1918.

124. Osmond, M.M. & De Mazancourt, C. 2013. How competition affects evolution-ary rescue. Philosophical Transactions of the Royal Society B. 368: 20120085. 125. Pellissier, L., Leprieur, F., Parravicini, V., Cowman, P. F., Kulbicki, M., Litsios,

G., Olsen, S. M., Wisz, S. M., Bellwood, D. R. & Mouillot, D. 2014. Quaternary coral reef refugia preserved fish diversity. Science. 344, 1016-1019.

126. Peters, R. H. 1983. The ecological implications of body size. Cambridge Uni-versity Press, UK.

127. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. 2015. nlme: Lin-ear and NonlinLin-ear Mixed Effects Models. R package version 3.1-122. http://

(11)

CRAN.R-project.org/package=nlme

128. Price, T. D. & Kirkpatrick, M. 2009. Evolutionary stable range limits set by interspecific competition. Proceedings of the Royal Society B. 276: 1429-1434. 129. Rapoport, E.H. 1982. Aerography: Geographical Strategies of Species.

Perga-mon Press, New York, pp. 269.

130. Riginos, C., Douglas, C.E., Jin, Y., Shanahan, D.F. & Treml, E.A. 2011. Effects of geography and life history traits on genetic differentiation in benthic ma-rine fishes. Ecography. 34, 566-575.

131. Riginos, C., Buckley, Y.M., Blomberg, S.P. & Treml, E.A. 2014. Dispersal ca-pacity predicts both population genetic structure and species richness in reef fishes. The American Naturalist. 148, 52-64.

132. Ripple, W. J., Wolf, C., Newsome, T. M., Hoffmann, M., Wirsing, A. J. & Mc-Cauley, D. J. 2017. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proceedings of the National Academy of Sciences of the United States of America.14 (40): 201702078

133. Robertson, D. R. & Allen, G. 2016. Fishes: East Pacific. An Identification Guide to the Shore-Fish Fauna of the Tropical Eastern Pacific. (Copyright Smithsonian Institution, Left Coast R&C, Santa Cruz, California). http://bio-geodb.stri.si.edu/bioinformatics/sftep/taxon.php, accessed in 2016.

134. Ronce, O. 2007. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annual Review of Ecology, Evolution and Systemat-ics. 38: 231–253.

135. Rosindell, J., Wong, Y. & Etienne, R.S. 2008. A coalescence approach to spa-tial neutral ecology. Ecological Informatics. 3(3), 259-271.

136. Rosindell, J., Cornell, S. J., Hubbell, S.P. & Etienne, R.S. 2010. Protracted spe-ciation revitalizes the neutral theory of biodiversity. Ecology Letters. 13(6), 716-727.

137. Rosindell, J. & Phillimore, A.B. 2011. A unified model of island biogeography sheds light on the zone of radiation. Ecology Letters. 14, 552-560.

138. Ruttenberg, B.I. & Lester, S.E. 2015. Patterns and processes in geographic range size in coral reef fishes. Ecology of fishes on coral reefs, ed Mora C (Cambridge University Press, Cambridge, United Kingdom), pp 97-103. 139. Sarmento, R.A., Lemos, F., Bleeker, P.M., Schuurink, R.C., Pallini, A., Oliviera,

M.G.A. et al. 2011a. A herbivore that manipulates plant defence. Ecology Let-ters. 14: 229-236.

140. Sarmento, R.A., Lemos, F., Dias, C.R., Kikuchi, W.T., Rodrigues, J.C.P., Pallini, A. et al. 2011b. A herbivorous mite down-regulates plant defence and produc-es web to exclude competitor. Plos One. 6: e23757.

(12)

interfer-ence in the population dynamics of two congeneric species of herbivorous mites. Heredity. 113, 495-502.

142. Schoener, A. 1988. Experimental island biogeography. In: Analytical Bioge-ography (Myers, A.A. & Giller, P.S. eds). Springer, Dordrecht. pp 483-512. 143. Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. 2009. Evolution and

ecology of species range limits. Annual Review of Ecology, Evolution and Sys-tematics. 40, 415-436.

144. Stahl, U., Reu, B. & Wirth, C. 2014. Predicting species range limits from func-tional traits for the Trends in Ecology and Evolution flora of North America. Proceedings of the National Academy of Sciences of the United States of Ameri-ca.111, 13739-13744.

145. Stevens, G.C. 1989. The latitudinal gradient in geographical range: how so many species coexist in the tropics. The American Naturalist.133, 240-56. 146. Stobutzki, I. C. 1997. Energetic cost of sustained swimming in the late pelagic

stages of reef fishes. Marine Ecology Progress Series. 152, 249-259.

147. Stobutzki, I. C. & Bellwood, D. R. 1997. Sustained swimming abilities of the late pelagic stages of coral reef fishes. Marine Ecology Progress Series. 149, 35-41.

148. Stuart, Y.E., Campbell, T.S., Hohenlohe, P.A., Reynolds, R.G., Revell, L.J. & Losos, J.B. 2014. Rapid evolution of a native species following invasion by a congener. Science. 346: 463-466.

149. Therneau, T.M. 2015. A package for survival analysis in S. version 2.38. http://CRAN.R-project.org/package=survival.

150. Therneau, T.M. 2015. coxme: mixed effects cox models. R package version 2.2-5. http//CRAN.R-project.org./package=coxme

151. Thresher, R. E. 1984. Reproduction in reef fishes. TFH Publications, Neptune City, New Jersey.

152. Thresher, R. E. & Brothers, E. B. 1985. Reproductive ecology and biogeogra-phy of Indo-West Pacific angelfishes (Pisces: Pomacanthidae). Evolution. 39, 878-887.

153. Thresher, R. E., Colin, P. L. & Bell, L. J. 1989. Planktonic duration, distribution and population structure of western and central Pacific damselfishes (Poma-centridae). Copeia. 2, 420-434.

154. Tien, N.S.H., Sabelis, M.W. & Egas, M. 2010. The maintenance of genetic var-iation for oviposition rate in two-spotted spider mites: inference from artifi-cial selection. Evolution. 64: 2547-2557.

155. Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M.P.H. 2009. Approxi-mate Bayesian computation scheme for parameter inference and model selec-tion in dynamical systems.  Journal of the Royal Society Interface. 6, 187–202.

(13)

156. Treml, E. A., Roberts, J. J., Chao, Y., Halpin, P. N., Possingham, H. P. & Rig-inos, C. 2012. Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. Integrative and Comparative Biology. 52, 525-537.

157. Urban, M.C., De Meester, L., Vellend, M., Stoks, R. & Vanoverbeke, J. 2011. A crucial step towards realism: responses to climate change from an evolving metacommunity perspective. Evolutionary Applications. 5: 154-167.

158. Van Leeuwen, T., Vanholme, B., Van Pottelberge, S., Van Niuewenhuyse, P., Nauen, R., Tirry, L. et al. 2008. Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-mendelian inheritance in action. Proceedings of the National Academy of Sciences of the United States of America.105: 5980-5985.

159. Van Petegem, K., Moerman, F., Dahirel, M., Fronhofer, E. A., Vandegehuchte, M. L., Van Leeuwen, T., Wybouw, N., Stoks, R. & Bonte, D. 2017. Kin compe-tition accelerates experimental range expansion in an arthropod herbivore. Ecology Letters. 21: 225-234.

160. Van Petegem, K.H.P., Boeye, J., Stoks, R. & Bonte, D. 2016. Spatial selection and local adaptation jointly shape life-history evolution during range expan-sion. The American Naturalist. 188: 485–498.

161. Victor, B. C. 1991. Settlement strategies and biogeography of reef fishes. The ecology of fishes on coral reefs, ed Sale PF (Academic Press, San Diego, CA), pp 231–260.

162. Victor, B. C. & Wellington, G. M. 2000. Endemism and the pelagic larval dura-tion of reef fishes in the eastern Pacific Ocean. Marine Ecology Progress Series. 205, 241-248.

163. Webb, T.J. & Gaston, K.J. 2000. Geographic range size and evolutionary age in birds. Proceedings of the Royal Society B267 (1455), 1843-1850.

164. Wellington, G. M. & Victor, B. C. 1989. Planktonic larval duration of one hun-dred species of Pacific and Atlantic damselfishes (Pomacentridae). Marine Biology. 101, 557-568.

165. Welsh, J. Q. & Bellwood, D. R. 2014. Herbivorous fishes, ecosystem function and mobile links on coral reefs. Coral Reefs. 33, 303-311.

166. Wiegand, T., Revilla, E. & Moloney, K. A. 2005. Effects of habitat loss and fragmentation on population dynamics. Conservation Biology. 19: 108-121. 167. Wilson, E. O. 2010. Island biogeography in the 1960’s, theory and

experi-ment. In: The Theory of Island Biogeography Revisited (Losos, J. B & Rick-lefs, R. E. eds.). Princeton University Press, Princeton, NJ. pp 1-12.

168. Wootton, R. J. 1992. Fish Ecology. Chapman & Hall, New York, pp. 212. 169. Wybouw, N., Zhurov, V., Martel, C., Bruinsma, K. A., Hendrickx, F., Grbić, V.

(14)

& Van Leeuwen, T. 2015. Adaptation of a polyphagous herbivore to a novel host plant extensively shapes the transcriptome of herbivore and host. Molec-ular Ecology. 24: 4647–4663.

170. Zapata, F. A. 1990. Local and regional patterns of distribution and abundance in marine reef fishes, 102-150. PhD thesis, The University of Arizona, Tuc-son, AZ.

171. Zapata, F. A. & Herrón, P. A. 2002. Pelagic larval duration and geographic distribution of tropical eastern Pacific snappers (Pisces: Lutjanidae). Marine Ecology Progress Series. 230, 295–300.

172. Zuur, A.F., Ieno, E.N. & Elphick, C.S. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution. 1, 3-14.

(15)
(16)

SUMMARY

Why do some species occupy almost all of the Earth’s terrestrial (e.g. barn owl) or marine (e.g. moon fishes) systems, whereas others are only found in single fresh-water springs (like the devil‘s hole pupfish) or on small, isolated islands?. What is impeding species to occupy all of the Earth? Is it that species cannot reach all places because of reduced dispersal abilities? Or is it that geometric constraints and habitat availability plays an important role on how far species can go? Is it that species are adapted to certain abiotic conditions (e.g. salinity, temperature, etc) and they are unable to adapt to habitats where conditions are different? Or is it that they cannot successfully colonize habitats in which competitor species are already present? Is it that just given enough time all species will be able to occupy all places, so older species are more widespread than younger ones?

Ultimately, only a few processes are important in determining a species’ range size: speciation (creation/division of ranges) dispersal to a new habitat (expan-sion of the range), successful colonization of that habitat (successful dispersal) and (avoidance of) local extinctions. Among these processes, dispersal has a central role as it is important for population’ persistence in suboptimal habitats, by providing demographic rescue to populations that otherwise would go extinct. Furthermore, dispersal also promotes gene flow, bringing the genetic variability necessary for ad-aptation, which is important for successful colonization and ultimately range expan-sion. In this thesis, using a wide variety of approaches and model systems, I study how these various mechanisms can act together to eventually determine range sizes.

Firstly, I used two evolutionary experiments (with spider mites) to investigate how dispersal drives local adaptation and survival of organisms to a new habitat, and how the effects of dispersal are mediated by habitat size and by the competition with a locally co-occurring species. Secondly, I used a process-based model in which I in-corporate all processes affecting geographical species ranges (dispersal, speciation, birth-death dynamics) to explain the emergence of the empirical patterns of range size distributions of reef fishes. Thirdly, I used a correlational study to explore how important dispersal is compared to other factors in driving range size in reef fishes.

The two experimental studies showed that dispersal (of immigrans that are not adapted to the local conditions) exerts both positive and negative effects on colo-nization, extinction and local adaptation. Positive effects occur, even though most immigrants might not be well adapted to the new conditions, when by chance some of the immigrants might bring alleles that confer an advantage to the individual to cope with the new local conditions, thus spreading these advantageous alleles to the

(17)

island population. Negative effects occur when too high levels of dispersal will bring too many non-adapted individuals that by reproducing with the local population (which is adapted or in the process of adaptation) will swamp the adaptation of the local population, thus hindering adaptation (migration load). The relationship bet-ween dispersal and adaptation can be described as a bell-shaped relationship, with an optimum at intermediate levels of dispersal.

Besides dispersal, there are many other factors that can affect colonization-ex-tinction dynamics and adaptation, and thus affect range expansion. Firstly, because the ideal habitat for a certain species is never homogeneously distributed (neither spatially nor temporary), the spatial configuration of the habitat (islands, reefs, patches of forest) can play an important role. Some of the first recognizing the im-portance of geographical features on biodiversity were MacArthur and Wilson in their Island Biogeography Theory (IBT).Thus island size and isolation from a main-land (that can be translated in differences in dispersal) can drive biodiversity, ad-aptation and speciation via colonization-extinction dynamics. Although the effects of colonization and extinction on species richness were already demonstrated by many other theoretical, empirical and experimental studies, the role of evolution in island biogeography has never been experimentally tested before. Using experimen-tal biogeography, I confirmed that dispersal increases colonization success and that island size affects extinction. More importantly, I showed how the same factors that influence extinction and colonization can affect local adaptation. The smaller the habitat and the closer the habitat to the mainland (thus more immigration), the less likely adaptation occurrs.

Not only physical or abiotic factors, but also biotic factors can affect the suc-cess of a population in colonizing and adapting to a new habitat, and consequently in expanding its range. For example, interspecific competition can reduce popula-tion size and increase extincpopula-tion risk, because stochastic demographic fluctuapopula-tions are likely to affect smaller populations more than larger ones. Using experimental evolution, I showed that strong competition can lead to unsuccessful colonization, low population sizes and high extinction risk. Competition will therefore negatively impact range expansion, as these island populations do not have a chance to adapt to the local habitat. However, I observed that competition can be beneficial in some circumstances. When populations are receiving a large influx of immigrants, which otherwise will negatively impact adaptation (via genetic load), competition allows adaptation by purging the population of most of the maladapted immigrants. As the realized immigration is lower and selection is stronger, this allows for the benefits of dispersal on local adaptation.

With the first two experimental studies on spider mites (chapters 2 and 3), I illustrated several mechanisms through which dispersal can affect range expansion.

(18)

However, to understand how important these mechanisms are in the real world, ob-servational studies jointly examining how dispersal and other factors drive species range sizes might provide a more complete picture. Using a spatially explicit neutral model (chapter 4), I showed that species range size distributions in reef fishes can be explained by a combination of stochastic birth, death, speciation and variable dispersal abilities. In a scenario with strong dispersal limitation a large proportion of the species of the metacommunity attained small ranges and very few occupied the complete region. In contrast, in a scenario of low dispersal limitation, most of the species attained very large range sizes. I confirmed the positive effect of dispersal on range size by using a correlational study (chapter 5), which shows that range size is positively correlated with traits that are related to dispersal ability in reef fishes. Fishes that have pelagic eggs, high adult mobility and have large body size attain larger range sizes than fishes that have non-pelagic eggs and low adult mobility and are smaller.

To summarize, in this thesis I investigated the role of dispersal in driving ad-aptation to new habitats and ultimately, range sizes. Although it is clear that disper-sal is a key trait (or set of traits) that strongly affects the ability of species to reach new habitats, to locally adapt and to obtain large range sizes, there is still a lot that we do not understand. For example, within species with similar dispersal abilities, there is still a large variation of geographical ranges, which might be more related to differences in adaptation and to the community context (e.g. biological interac-tions). Understanding what drives the ability of species to adapt and maintain large ranges is one of the greatest scientific challenges and it is not only of fundamental interest, but also of high applied value. Range size is one of the strongest predictors of extinction rates, so explaining what drives range sizes will also help explaining what drives species’ vulnerability to extinctions. Furthermore, ongoing global chan-ges such as habitat loss and climate change will likely not only affect the need, but also the ability of species to adapt to novel environments.

(19)
(20)

NEDERLANDSE SAMENVATTING

Weinig soorten komen op Aarde overal voor. De kerkuil en maanvis zijn notoire uitzonderingen met een kosmopolitische verspreiding op land of in de oceanen. An-dere soorten komen echter enkel voor in één zeer lokale zoetwaterbron, of op kleine sterk geïsoleerde eilanden. Wat beperkt hun verspreiding? Kan het zijn dat deze soorten over zo’n geringe mobiliteit beschikken dat ze nergens anders geraken? Of wordt hun verspreiding vooral bepaald door landschappelijke factoren en de bes-chikbaarheid van habitat? Of kunnen soorten zich gewoonweg niet aanpassen aan andere omgevingsomstandigheden? Of zijn het net andere soorten die hun verspre-iding belemmeren? Misschien is het wel zo dat veel soorten evolutionair zo jong zijn dat ze de tijd nog niet hebben gehad om zich te verspreiden?

Volgens de huidige inzichten bepalen slechts enkele ecologische factoren de grootte van de verspreidingsgebieden -de arealen- van soorten: speciatie of soort-vorming (leidend tot nieuwe arealen of de opsplitsing van een gemeenschappelijk areaal), dispersie of verbreiding (expansie van het areaal) en extinctie of uitster-ven (inkrimping van een areaal). Het dispersievermogen van soorten speelt hierbij steeds een centrale rol. Het laat bijvoorbeeld toe dat soorten kunnen overleven in marginaal habitat (putpopulaties) door de toevoer van nieuwe individuen uit bron-populaties. Dispersie zorgt echter niet alleen voor demografische fluxen, het zorgt ook voor de verspreiding van genen en de opbouw van de nodige genetische variatie om evolutionaire aanpassingen te mogelijk te maken. Deze evolutionaire dynamiek-en zulldynamiek-en dan finaal sterk terugkoppeldynamiek-en op de mogelijke expansie van het areaal. Ik bestudeerde de manier waarop deze processen samen arealen vormen door de integratie van experimenten aan de hand van modelorganismen (proces-gebaseerd) en diverse modelleertechnieken (patroon-georiënteerd).

Ik maakte gebruik van experimentele evolutie aan de hand van spintmijten om de na te gaan op welke manier dispersie de mogelijkheden van lokale adaptatie aan nieuwe omgevingscondities beïnvloedt, en hoe dit proces afhangt van de grootte van de leefgebieden en de aanwezigheid van concurrerende soorten. Daarnaast bouwde ik de mechanismen van dispersie, speciatie en demografie in mechanistische mod-ellen in die me toelieten om de gekende verspreidingspatronen van koraalvissen te verklaren. Aan de hand van correlatieve modellen bepaalde ik finaal in welke mate dispersie dan wel andere soortkenmerken de huidige waargenomen arealen van ko-raalvissen best konden verklaren.

Mijn experimentele studies toonden aan dat de hoeveelheid immigranten die niet aangepast zijn aan de nieuwe omgevingscondities zowel een positieve als

(21)

negatieve impact kan hebben op de vestiging en kans op uitsterven, maar ook op de sterkte en snelheid van de genetische aanpassingen (lokale adaptatie). Positieve ef-fecten zijn het gevolg van de toevallige inbreng van genen die een selectief voordeel hebben onder de nieuwe omstandigheden. Wanneer door systematisch hoge dis-persie echter teveel niet-aangepaste immigranten zich vestigen zullen deze ervoor zorgen dat de voordelige genen zich niet kunnen verspreiden (de adaptaties ver-drinken in figuurlijke zin). De combinatie van beide mechanismen resulteert dan in een parabolisch verband tussen dispersie en adaptatie, waarbij adaptatie maximaal is wanneer de influx van nieuwe individuen niet te laag of te hoog is.

De dispersiecapaciteit van soorten zal echter sterk bepaald worden door de ruimtelijke spreiding van het habitat. Het belang van geografische factoren voor pa-tronen in soortenrijkdom werd vastgelegd in de biogeografische eilandtheorie van Mac Arthur & Wilson. Volgens deze theorie zal de isolatie van eilanden direct de immigratiekans van soorten bepalen, en dus ook de opbouw van soorten-diversiteit via demografische (kolonisatie-uitstervingsbalans) en evolutionaire processen (ad-aptatie en soortvorming). Alhoewel het belang van deze theorie reeds werd aange-toond voor patronen van soortenrijkdom, bestond er nog geen formele experiment-ele test omtrent haar belang voor evolutionaire dynamieken. Door gebruik te maken van experimentele evolutie binnen een kader van biogeografie (vasteland-eiland systeem) kon ik de hypothese dat isolatie en eilandgrootte de mate van adaptatie bepalen, aantonen.

Ook biotische interacties beïnvloeden de kolonisatiekansen en adaptieve pro-cessen aan nieuwe omgevingscondities. Ze zullen bijgevolg een grote invloed heb-ben op areaaluitbreidingen. Competitie met andere soorten kan bijvoorbeeld een rem zetten op de populatiegroei en daardoor de kans op lokaal uitsterven vergroten omdat stochastische demografische schommelingen nu eenmaal een hogere kans hebben te leiden tot extinctie wanneer populatiegroottes laag zijn. Ik kon dit aanto-nen aan de hand van experimentele evolutie. Omdat competitie daarom leidt tot een verlaging van de adaptieve capaciteiten zal ze iedere areaaluitbreiding vertragen of tegengaan. Ik observeerde echter ook dat competitie voordelig kan zijn: bij een hoge immigratie van niet-aangepaste individuen zal de anders negatieve impact op adap-tatie (zie hoger) net teniet gedaan worden. Omdat selectie verhoogt en de effectieve vestiging verlaagt wordt de verspreiding van de niet-voordelige genen verhinderd.

Aan de hand van experimenteel werk waarbij ik spintmijten als model gebruikte kon ik dus aantonen dat dispersie kan leiden tot de uitbreiding van arealen door de effectieve kolonisatie van habitats die qua omgevingsomstandigheden grondig ver-schillen van deze in het oorspronkelijk areaal (hoofdstukken 2,3). Om te begrijpen of deze factoren ook waargenomen patronen in de natuur verklaren ontwikkelde ik een modelmatige en patroongerichte aanpak. Door in eerste instantie gebruik te

(22)

maken van een ruimtelijk expliciet neutraal model (hoofdstuk 4), kon ik aantonen dat de gerealiseerde arealen van koraalvissen best verklaard konden worden door een combinatie van stochastische demografische processen, speciatie en variatie in dispersiemogelijkheden. Wanneer dispersie sterk gelimiteerd is, zal een groot deel van de soorten uit de metagemeenschap een klein areaal bezetten, terwijl slechts een minderheid van de soorten een echte globale verspreiding kunnen innemen. Wan-neer alle soorten over een heel groot verspreidingsvermogen beschikken werd een logisch omgekeerd patroon waargenomen. Deze theoretische voorspelling kon ik hard maken aan de hand van een correlatieve studie (hoofdstuk 5), waaruit bleek dat de grootte van de arealen bij koraalvissen positief geassocieerd was met kenmerken die op een goed verbreidingsvermogen duiden: pelagische eieren, een hoge adulte mobiliteit en een hoge lichaamsgrootte.

Ik bestudeerde dus het belang van dispersie voor genetische aanpassingen aan nieuwe omgevingen en haar effect op arealen. Alhoewel uit mijn onderzoek volgt dat dispersie hierbij een centraal proces is, blijkt tevens dat er nog grote kennis-lacunes zijn. Zo is de grote variatie in areaal tussen soorten met een vergelijkbare dispersiecapaciteit mogelijks het gevolg van verschillen in gemeenschapssamenstel-ling en dus biotische interacties. Het verkrijgen van inzichten in de mechanismen die soorten toelaten zich aan te passen aan veranderende omgevingen en daarbij dus hun verspreiding te maximaliseren is niet alleen een prangende vraag vanuit een fundamenteel academisch, maar zeker ook vanuit een toegepast perspectief. Aangezien de areaalgrootte het best de overlevingsmogelijkheden van soorten kan voorspellen, zullen inzichten die ons toelaten processen van areaalveranderingen te begrijpen finaal gebruikt kunnen worden om de uitstervingskansen en dus kwets-baarheid van soorten in te schatten. Uit mijn onderzoek bleek immers niet alleen dat globale veranderingen zoals klimaatsverandering en habitatfragmentatie niet enkel de noodzaak, maar ook de effectiviteit van evolutionaire aanpassingen aan nieuwe omgevingen bepalen.

(23)
(24)

ACKNOWLEDGMENTS

I would like to thank here to the people, researchers, institutions that (directly or indirectly) made the conclusion of this thesis possible.

My first two years I was hosted by the Terrestrial Ecology Unit (TEREC) of Ghent University. I would like to thank my colleagues there that made (scientif-ic) life much more enjoyable: Katrien, Jeroen, Steven, Jasmin, Laurence, Hans, Alexandre, Irene, Alejandro, Eduardo and Karen. I also want to thank to Angelica Alcantara for her continuous efforts to solve all my administrative problems. I thank Hans, Viki and Pieter for their technical assistance. I would like to thank Karen Bisschop (at that time a master student) and Jelle van den Bergh for the amount of effort they put into the evolutionary experiments, for taking care of the spider mites (they really spoilt them) and the tomato plants (up to the point that they developed tomato allergies!). Without their work chapters 2 and 3 would not have been possible. I also thank to Pieter de Pauw for making life outside the university possible.

My last two years (which turned out to be three) I was hosted by the Theo-retical Research in Evolutionary Life Sciences group (TRÊS) from the University of Groningen. I would like to thank my colleagues for amenable discussions (sci-entific or not): Cyrus, Liang, Leonel, Paul, Karen, Pancho, Joss, Kasper, Hanno and Richel. Thanks as well to Ingeborg Jansen, which is always keen to help with a smile on her face. I especially would like to thank Corine Eising for helping me out so many times I can’t even remember.

I already had a long history with life in Groningen, so my thanks go back to past times. I would like to thank the 2009 cohort of the top master program in evolution-ary biology: Andres, Hernan, Jordi, Lotte, Alex, Rienk, Froukje and Michiel. I like to thank all Dutch people during the course period, for a 6 month (or even longer) immersion course into the Dutch culture of single-ingredient sandwiches and the use of weather apps. My special thanks go to Jordi for showing (or pretending to show) interest in my innumerable non-sense ideas. I also thank Andres and Hernan for making feel Groningen a bit more like home. Also thank to Linda and Jelle for the extra Dutch and Frisian culture lessons.

I would also like to thank many people for making the last few months of my PhD studies, which I spent in Leipzig, more enjoyable. My thanks go to Roel, Corin-na, Camilo and Julius (thanks for teaching me how to use photoshop and a pad for making the cover of this thesis!). I would also like to thank Jonathan Chase for or-ganizing a workspace for me at iDiv.

(25)

scientific thesis.

Thanks to the people that were directly involve in my research: my coauthors. I thank Thijs Janzen, Fons van der Plas, Karen Bisschop, Fernando A. Zapata, James Rosindell, Dries Bonte and Rampal Etienne. I especially thank James Rosindell for his effort, his hours of mentoring and long skype meetings and discussions that help the realization of chapter 4. Most importantly, I would like to thank my supervisors: Dries and Rampal. Dries for being always available for either a quick question or long discussions and in addition for translating my summary to Dutch. Thanks to Rampal for encouraging me to apply for the top master program in Evo-lutionary Biology one week before the deadline! Also, thanks for offering me solu-tions and help when I needed it (like when he offered me the PhD position) and for the innumerable useful discussions.

I also would like to thank my parents (Mariela and Manuel), as they are the ultimate cause of this thesis. Thanks to my brother (Juan Manuel) for… being my brother ;). I also would like to thank my adoptive family (Liesbeth, Kees, Ruben, Irene, Maarten and OmaOma) for welcoming me and making me feel at home.

Finally, I would like to thank Fons and Fiona for making life happier and more exciting!

(26)

PUBLICATIONS

1. Alzate, A., Etienne, R. S. & Bonte, D. Experimental island biogeography demonstrates the importance of island size and dispersal for the adaptation to novel habitats. In press. Global Ecology and Biogeography. DOI: 10.1111/ geb.12846

2. Alzate, A., Janzen, T., Bonte, D., Rosindell, J. & Etienne, R. S. A simple spa-tially explicit neutral model explains range size distributions of reef fishes. Global Ecology and Biogeography. Under review. (also on bioRxiv, 238600, DOI: 10.1101/238600)

3. Alzate, A., van der Plas, F., Zapata, F.A., Bonte, D., & Etienne, R. S. Incom-plete datasets obscure correlations between traits related to dispersal and ge-ographic range size of reef fishes in the Tropical Eastern Pacific. Ecology and Evolution. Under review.

4. Alzate, A., Bisschop, K., Etienne, R. S. & Bonte, D. 2017. Interspecific compe-tition counteracts negative effects of dispersal on adaptation of an arthropod herbivore to a new host. Journal of Evolutionary Biology. 30(11):1966-1977. 5. Janzen, T., Alzate, A., Muschick, M., Maan, M. E., van der Plas, F. & Etienne,

R. S. 2017. Community assembly in Lake Tanganyika cichlid fish: quantify-ing the contribution of both niche-based and neutral processes. Ecology and Evolution. 7(4): 1057-1067.

CURRICULUM VITAE

Adriana Alzate Vallejo was born on the 25th of Au-gust 1982 in Cali, Colombia. She studied Biology at Universidad del Valle (Cali, Colombia), finishing her bachelor with emphasis on Ecology in 2005. In 2009 she was awarded a talent grant to follow the

Topmas-ter Program in Evolutionary Biology at the University of Groningen, the Neth-erlands. She obtained her master’s degree in Ecology and Evolution in 2011. She started a joint PhD program from the Universities of Groningen and Ghent in 2013. Currently, she is part of the Adaptation and Evolution Research Group of the German Center for Integrative Biodiversity Research (iDiv) Halle-Je-na-Leipzig, in Leipzig, Germany.

(27)

6. Kölzsch, A., Alzate, A., Bartumeus, F., de Jager, M., Weerman, E., Hengeveld, G.M., Naguib, M., Nolet, B.A. & van de Koppel, J. 2015. Experimental evi-dence for inherent Lévy search behaviour in foranging animals. Proceedings of the Royal Society B. 282(1807): 20150424.

7. Alzate, A., Zapata, F. A. & Giraldo, A. 2014. A comparison of visual and col-lection-based methods for assessing community structure of coral reef fishes in the Tropical Eastern Pacific. Revista de Biologia Tropical. 62: 359-371. 8. Alzate, A., Muñoz, G. G., Zapata, F. A. & Giraldo, A. 2012. New records of

cryptobenthic fishes in coral reef habitats of Gorgona island, Colombia, Trop-ical Eastern Pacific. Bulletin of Marine and Coastal Research. 41: 229-235. 9. Alzate, A. & F. A. Zapata. 2007. Estructura de la comunidad de peces en dos

formaciones coralinas de Isla Malpelo: 98-104. In: INVEMAR. 2007. Informe del estado de los ambientes marinos y costeros en Colombia: Año 2006. Serie de publicaciones periódicas Nº 8. Santa Marta, 378 p.

10. Alzate, A. & F. A. Zapata. 2007. Estructura de la comunidad de peces de ar-recifes rocosos en ambientes marinos y estuarinos del Pacífico: 191-195. In: INVEMAR. 2007. Informe del estado de los ambientes marinos y costeros en Colombia: Año 2006. Serie de publicaciones periódicas Nº 8. Santa Marta, 378 p.

11. Alzate, A., Llanes, T. J., Rodríguez-Moreno, M., Zapata, F.A. 2006. Contri-buciones al Conocimiento del Estado, Funcionamiento y Dinámica de las Comunidades de Peces en Formaciones Coralinas del Pacifico Colombiano: 127-134. In: INVEMAR. 2006. Informe del estado de los ambientes marinos y costeros en Colombia: Año 2005. Serie de publicaciones periódicas No 8. Santa Marta, 360p.

(28)

AUTHOR AFFILIATION AND CONTACT INFORMATION

Adriana Alzate Vallejo

Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands. Terrestrial Ecology Unit, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium.

e-mail: adria.alzate@gmail.com

Karen Bisschop

Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life

Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.

Terrestrial Ecology Unit, Department of Biology, Ghent University, K. L. Ledeganckstraat

35, B-9000 Ghent, Belgium. e-mail: karen.bisschop@ugent.be

Dries Bonte

Terrestrial Ecology Unit, Department of Biology, Ghent University,

K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium. e-mail: dries.bonte@ugent.be

Rampal Etienne

Theoretical Research in Evolutionary Life Sciences, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands. e-mail: r.s.etienne@rug.nl

Thijs Janzen

Institut für Biologie und Umweltwissenschaften. Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky-Str. 9-11, 26111 Oldenburg, Germany.

e-mail: thijsjanzen@gmail.com

James Rosindell

Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK.

(29)

Fons van der Plas

Institut für Spezielle Botanik und Funktionelle Biodiversität, Universität Leipzig, Johannis-allee 21,

04103 Leipzig, Germany.

e-mail: fonsvanderplas@gmail.com

Fernando A. Zapata

Coral Reef Ecology Research Group, Departamento de Biología, Universidad del Valle, Apartado Aéreo 25360, Cali, Colombia.

Referenties

GERELATEERDE DOCUMENTEN

The research reported in this thesis was carried out at the Theoretical Research in Evolutionary Life Sciences group (TRÊS), which is part of the Groningen Institute for

Ultimately, only a few ecological processes should be important in determin- ing a species range size: dispersal to a new habitat, successful colonization of that habitat

Effect of island size and dispersal on female fecundity after 11 (a) and 20 generations (b) of ad- aptation to tomato. After 11 generations, none of the populations that had

petition that an increase of dispersal has a negative effect on adaptation (presumably due to genetic load). We find that this negative effect is counteracted by competition

Our neutral model predicts range size distributions with a close fit to the empirical distri- butions for six different dispersal guilds of reef fishes in the TEP, and for each guild

Here, we investigate the roles of three dispersal-related traits (adult mobili- ty, spawning mode, pelagic larval duration (PLD)), as well as five other potentially important

1 Effect of dispersal (low vs high) and sampling intensity on the range size-abundance relationship. The effect of dispersal was explored for two contrasting dispersal kernels

Ultimately, only a few ecological processes are important in determining a species range size: dispersal to a new habitat, successful colonization of that habitat and (avoidance