• No results found

Simulation of reactive contaminant transport with non-equilibrium sorption by mixed finite elements and Newton method

N/A
N/A
Protected

Academic year: 2021

Share "Simulation of reactive contaminant transport with non-equilibrium sorption by mixed finite elements and Newton method"

Copied!
31
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Simulation of reactive contaminant transport with

non-equilibrium sorption by mixed finite elements and Newton

method

Citation for published version (APA):

Radu, F. A., & Pop, I. S. (2009). Simulation of reactive contaminant transport with non-equilibrium sorption by

mixed finite elements and Newton method. (CASA-report; Vol. 0934). Technische Universiteit Eindhoven.

Document status and date:

Published: 01/01/2009

Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be

important differences between the submitted version and the official published version of record. People

interested in the research are advised to contact the author for the final version of the publication, or visit the

DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page

numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners

and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

• You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please

follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

(2)

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics and Computer Science

CASA-Report 09-34

October 2009

Simulation of reactive contaminant transport with

non-equilibrium sorption by mixed finite

elements and Newton method

by

F.A. Radu, I.S. Pop

Centre for Analysis, Scientific computing and Applications

Department of Mathematics and Computer Science

Eindhoven University of Technology

P.O. Box 513

5600 MB Eindhoven, The Netherlands

ISSN: 0926-4507

(3)
(4)

Simulation of rea tive ontaminant transport with

non-equilibrium sorption by mixed nite elements and

Newton method

Florin A.Radu

1;2

 Iuliu Sorin Pop

3

Re eived:date/A epted:date

Abstra t We present a omputational numeri al s heme for rea tive ontaminant

transportwithnon-equilibriumsorptioninporousmedia.Themass onservatives heme

isbasedonEulerimpli it,mixed niteelements(MFE)andNewtonmethod.We

on-siderthe aseof aFreundli htypesorption.Inthis asethe sorptionisothermis not

Lips hitz,butjustHolder ontinuous. Todeal withthis,we performaregularization

step. The onvergen e of the s heme is analysed. An expli it order of onvergen e

dependingonlyontheregularizationparameter,thetimestepandthemeshsizeis

de-rived.WegivealsoasuÆ ient onditionforthequadrati onvergen eoftheNewton

method.Finallyrelevantnumeri alresultsarepresented.

1Introdu tion

Waterpollutionisagraveproblemnowadays.Questionslikehowdangerousa

ontam-inatedsiteis,whether naturalattenutation ano urr, whi hpro essesaredominant

andwhetherana tiveremediationisne essarybe omerelevantforde issionsonwhat

wehavetodoinordertoproperlyprote tourselvesandthenextgenerations,aswell

as the environment. To answer these questions, predi tions based on mathemati al

modelling and numeri al simulationsare needed, requiring eÆ ient and reliable

nu-meri al odes. Besides modern dis retization tools and eÆ ient linear andnonlinear

solvers,itis veryimportantthat theimplementedmodelallows tosimulaterealisti ,

ompli ateds enarios.Themodelmustin lude: owinsaturated/unsaturated,

hetero-geneoussoilsandmulti omponentadve tive-di usive-rea tivetransportwithsorption

F.A.Radu

UFZ-HelmholtzCenter forEnvironmentalResear h,Permoserstr.15, D-04318Leipzig,

Ger-many

UniversityofJena,Wollnitzerstr.7,D-07749,Jena,Germany

E-mail: orin.raduufz.de

I.S.Pop

(5)

inporousmedia.Weespe iallyemphasizethatareliablesimulationtoolmust

ompre-hendthee e tsofsorptiononthetransportof ontaminantsinsoil,seee.g.[36,37℄.In

thispaperwepresentandanalyseamass onservativenumeri als hemetoeÆ iently

simulaterea tivesolute transportwithnon-equilibriumsorptioninaquifers.Herewe

ontinuetheworkin[32,33℄,wherethe aseofequilibriumsorptionwastreated.

Ageneralmathemati almodelfor rea tive solutetransportwithnon-equilibrium

sorptionis  S  t + b  t s r(D S r Q )= S r( ) in J; (1) ts=ks(( ) s) in J; (2)

with (t;x)denotingthe on entrationofthedissolvedspe ies,s(t;x)the on entration

oftheadsorbedspe ies,Dthe onstantdi usion oeÆ ient(wetakeforsimpli ityD=

1),r()area tionrateandkstheDamkohlernumberassumedalsoofmoderateorder.

Wefurtherassumethatthewater ontent

S

is onstant,asen ounteredforexamplein

thesaturated owregime,where

S

=1.IR

d

denotesthe omputationaldomain,

dthespa edimensionandJ=(0;T)thetimeinterval,T beingsome niteendtime.

Further,()isasorptionisotherm,withapossibleunboundedderivative.This hoi e

overstherealisti , pra ti al aseofaFreundli htypeisotherm,e.g.(x)=x

,with 2(0;1℄.Initial (0;x)= I (x);s(0;x)=s I

(x)andhomogeneousDiri hletboundary

onditions ompletethemodel.ThehomogeneousDiri hletboundary onditionswere

hosen justfor the sake of simpli ity,all the results presented inthis paper anbe

extendedtomoregeneralboundary onditions.Thewater uxQ(x)solves

rQ=0; (3)

Q= K

S

r( +z); (4)

in,with (x)beingthepressurehead,K

S

thehydrauli ondu tivityandztheheight

againstthe gravitationaldire tion.We onsiderhere onlythe ase offully saturated

ow,butthes hemeisimplementedfor thegeneralsaturated/unsaturated ow ase.

Furthermore,theanalysispresentedinthenextse tion anbeextendedalsotostri tly

unsaturated ow(seealso[32℄).

Inthis paperwe present an Euler-impli it, mixed nite element s heme for the

system(1){(2).ThesorptionisothermisassumedmonotoneandHolder ontinuous.

Choosingforamixed niteelementdis retizationensuresthelo almass onservation.

Be ause themodelis degenerate,itssolutionla ksregularity,therefore weonly

on-siderthelowestorderRaviart-Thomas niteelements.Thenonlinearproblemsarising

atea htimesteparesolvedbyaNewton method.Tothis aim,we dis retizea

regu-larizedapproximation ofthe original model. We provideerror estimates forthe fully

dis retesolutionandderiveanexpli it onditionforthe onvergen eofthes heme,in

termsofthedis retizationandtheregularizationparameters.This onditionallowsto

ontrolapriorithetimestep,theregularizationparameterandthemeshdiameter,so

thatanoptimal onvergen eisa hieved.Weusethesolutionoftheprevioustimestep

n 1asthestarting hoi efortheNewtoniterationatthe urrentstepn.Inthisway

theinitialerror anbequanti edduetoastabilityestimate,andanexpli it onstraint

onthedis retizationparamaters anbederivedtoensurethe ertainquadrati

(6)

time. In this sense we mention [14℄, proposing an adaptive methodthat takes into

a ounttheerrormadeinea hNewtonstepwithrespe ttothetotalerror,resulting

intoaveryfastmethod.

Inspiteoftheri hliteratureonnumeri almethodsfor solutetransportinporous

media (like [2,5{8,13,15{20,23,24,30,32 {3 5℄), only a few are onsidering nonlinear

sorption.Wereferto[5,6℄and[13℄ for onforming niteelementdis retization.There

boththe asesofnon-equilibriumandequilibriumsorptionare onsidered.Thewater

ow is assumedsaturated, with the ux Q being given analyti ally. A similar

situ-ation is also onsidered in [11℄. We also refer to [16℄ for a ombined nite

volume- nite element s heme for transport withequilibrium sorption. The mixed nite

ele-ment dis retizationfor equilibriumsorption is onsidered in[12℄and [32℄.Thelatter

also onsideredsaturated/unsaturated ow,takingexpli itlyintoa ountthelow

reg-ularity of the solutionto the Ri hards equation. Theresulting estimates dependon

thea ura yofthes hemefor thewater ow.Inall thisworksthenonlinearsystems

arising at ea h timestep are supposed to be solvedexa tly.The degenera y related

withaFreundli htypeisothermmakessolvingthesesystemsa ompli atedtask.The

resultingfullydis retenonlinearproblemsare ommonlysolvedbydi erentmethods:

theNewtons heme,whi hislo allyquadrati onvergent,somerobust rst-order

lin-earizations hemes(see[26,38℄),or theJager-Ka ur s heme[23,19℄. The onvergen e

of the Newton method applied to the system provided by a MFE dis retization of

anellipti problem is studied in[25℄. Con erning thesystems providedby theMFE

dis retization of degenerate paraboli equations we mention [26℄ for a robust linear

s hemeand[29,33℄for theNewtonmethod.

Thefollowingsarethenovelaspe tsinthispaper:

{ We analyze amixed nite element s heme for solute transportin porous media

withnon-equilibriumsorption.

{ We study the onvergen e of the Newton s heme solving the nonlinear systems

arizingatea htimestep.

{ Wederiveexpli it,suÆ ient onditionsonthethreeparameters(thetimestep,the

meshdiameterandtheregularizationparameter)ensuringtheoptimal onvergen e

ofthes heme.

Thepaperisstru turedasfollows:inthenextse tionthedis retizations hemeis

presented.The mainresults on erningthe onvergen e ofthe s hemeare givenand

dis ussed. InSe tion3 we presentstability estimatesand theproofs of thetheorems

statedinthepre edingse tion.Twonumeri alstudies:anexamplewithananalyti al

solutionandarealisti in ltrationproblemare giveninSe tion4.Inthelast se tion

wepresent on luding remarks.

2Dis retization and mainresults

Throughout thispaperwe use ommonnotations inthefun tional analysis. Byh;i

wemeantheinnerprodu tonL

2

().Further,kkandkk

L p

()

standforthenorms

inL

2

()andL

p

()respe tively.Thefun tionsinH(div;)areve torvalued,having

aL

2

divergen e.kk

1

standsforthe norminH

1

().C denotesapositive onstant,

not depending on the unknowns or the dis retization parameters. L

f

(7)

Forthedis retizationintimeweletN 2Nbestri tlypositive,andde nethetime step =T=N, as well as t n =n (n2f1;2;:::;Ng). Furthermore,T h is aregular de ompositionofR d

into losedd-simpli es;hstandsforthemeshdiameter.Here

weassume=[

T2T

h

T,hen eispolygonal.Correspondingly,wede nethedis rete

subspa esW h L 2 ()andV h H(div;): W h :=fp2L 2

()jpis onstantonea helementT 2T

h g; V h :=fq2H(div;)jq jT =a+bx forallT 2T h g: (5) Inotherwords,W h

denotesthespa eofpie ewise onstantfun tions,whileV

h

isthe

R T 0

spa e(see[10℄).

Inwhatfollows wemakeuseoftheusualL

2 proje tor: P h :L 2 ()!W h ; hP h w w;w h i=0; (6) forallw h 2W h .Furthermore,aproje tor h anbede nedon(H 1 ()) d (see[10,p. 131℄)su hthat  h :(H 1 ()) d !V h ; hr( h v v );w h i=0; (7) for all w h 2W h

.Following [27℄, p.237,this operator an beextendedto H(div;).

Fortheaboveoperatorsthereholds

kw P h wkChkwk 1 ; (8) kv  h v kChkv k 1 (9) foranyw2H 1 ()andv2(H 1 ()) d .

Mixed niteelementsareappliedforsolvingthe owproblem(3)-(4)numeri ally.

Onehas(see[28,31℄ fordetails)

k h k+kQ Q h k+kr(Q Q h )kCh; (10) where ( ;Q)L 2 ()H(div;) and( h ;Q h ) W h V h

denotethe ontinuous

and dis retesolutions respe tively.For errorestimates for MFE s hemesfor

unsatu-rated/saturated owwereferto[3,28,31℄ andforstri tlysaturated owto[3℄;abrief

review anbefoundin[32℄.Wementionthattheideasintheanalysis arriedoutin

thispaper analsobeappliedforthe onformal,mixedor nitevolumedis retization

ofthegroundwater ow,aslongastheyprovideestimateslike(10),andtheassumption

(A3)madebelowholds.

TheNewtoniteration onsideredhererequiresthatthederivativesofthenonlinear

fun tionsareboundedawayfrom0andin nity.Thereforeweperformaregularization

step.Forsimpli ityonlytheregularizationisothermfortheFreundli hisotherm(x)=

[x℄ +

isgiven,where 2(0;1℄and[x℄

+

standsforthepositive utofx.Ageneralization

tootherisothermsisstraightforward.

(x)=  (x) if x62[0;℄; ( 1) 2 x 2 +(2 ) 1 x if x2[0;℄: (11)

(8)

Lemma1 Theregularizedsorptionisothermisnonde reasing.Further,()and 0 

()

are Lips hitz ontinuous on[0;1)with theLips hitz onstants L

 =  1 , respe -tivelyL  0  =(2 2 ) 2 .Finally,wehave 0(x) (x)(1 ) (12) ifx2(0;),whereas(x)=  (x)whenever x2=(0;).

Towrite(1){(2)inamixedformwede nethe ontaminant uxq= r + Q.

Inthiswaytherea tivesolutetransportproblemisformulatedas

Problem1 ( ontinuousmixedvariationalformulation)

Find( ;q;s)2H 1 (J;L 2 ())L 2 (J;H(div;))H 1 (J;L 2 ()),with jt=0 = I and s jt=0 =s I

sothatforallt2Jwehave

h t ;wi+ b h t s;wi+hrq;wi=hr( );wi (13) hq;v i h ;rv i h Q;v i=0 (14) h t s;wi=k s (h( );wi hs;wi); (15) forallw2L 2 ()andv2H(div;).

Throughoutthispaperwemakeuseofthefollowingassumptions:

(A1) The rate fun tion r : IR ! IR is di erentiable with r

0

bounded and Lips hitz

ontinuous.Furthermore,r( )=0forall 0.

(A2) Theinitial

I ;s

I

areessentiallyboundedandpositive.

(A3) Thewater uxanditsnumeri alapproximationareessentiallybounded,Q;Q

h 2

L 1

().

(A4) Thesorption isotherm ()is nonde reasing, nonnegative and Holder ontinuous

withanexponent 2(0;1℄,i.e.j(a) (b)jCja bj

foralla;b2IR.Moreover,

( )=0if 0.

(A5) ForthesolutionofProblem1wehave 2L

1

(J),whilet andtsareHolder

ontinuousintwithexponent =2 and respe tively.Furthermore,thereholds

N X n=1 kq(tn)k 2 C : (16)

Remark1 Theregularity assumedin(A5)for 

t

and 

t

s isthe maximalregularity

one anexpe tfor transportproblemswithnon-equilibriumsorption,whenthe

sorp-tionisotherm isof Freundli htype.A ording to[21℄ Chapter II.4, ifthe initialand

boundarydataare ompatibleandsuÆ ientlysmoothwehave 2C

2+ ;1+ =2

(J)

and s 2 C

;1+

(J). Furthermore,Proposition 1below justi es(16) inthe one

dimensional ase, when H(div;) = H

1

(). For the essential bounds of one only

needstoassumethatthedataareessentiallybounded.Furthermore,toavoidnegative

valuesfor ands-whi harenonrealisti -theratesrandareextendedby0inthe

(9)

Problem2 (fullydis retevariationalformulation) Letn 2f1;:::;Ngand ( n 1 h ;s n 1 h )2W h V h be given.Find ( n h ;q n h ;s n h ) 2W h  V h W h

sothatforallt2J wehave

h n h n 1 h ;w h i+ b hs n h s n 1 h ;w h i+hrq n h ;w h i=hr( n h );w h i (17) hq n h ;v h i h n h ;rv h i h n h Q h ;v h i=0 (18) hs n h s n 1 h ;w h i=k s (h  ( n h );w h i hs n h ;w h i); (19) forallw h 2W h andv h 2V h .Wetakeattimet=0: 0 h =P h I ands 0 h =P h s I .

Thesystem(17){(19)isnonlinear.Tosolveitwe onsideraNewtonmethod,whi h

islo allyquadrati onvergent:

Problem3 (Newtoniterations)

Letn2f1;:::;Ngand( n 1 h ;s n 1 h )2W h V h

begivenandlet

n;0 h = n 1 h ;s n;0 h = s n 1 h .Fori1 nd( n;i h ;q n;i h ;s n;i h )2W h V h W h su hthat h n;i h n 1 h ;w h i+ b hs n;i h s n 1 h ;w h i+hrq n;i h ;w h i =hr( n;i 1 h )+r 0 ( n;i 1 h )( n;i h n;i 1 h );w h i (20) forallw h 2W h , hq n;i h ;v h i h n;i h ;rv h i h n;i h Q h ;v h i=0 (21) forallv h 2V h and hs n;i h s n 1 h ;w h i=ks(h( n;i 1 h )+ 0  ( n;i 1 h )( n;i h n;i 1 h );w h i hs n;i h ;w h i); (22) forallw h 2W h .

To xthe notations:n2 f1;:::;Ng always indexesthe timestep, whileiis usedto

indextheiteration.A ordingly,f

n h ;q n h ;s n h

gdenotesthesolutionofProblem2atthe

n th

timestepandf

n;i h ;q n;i h ;s n;i h

gstandsforthesolutiontripleatiterationi1.The

iterationpro essstartswith

n;0 h = n 1 h ,s n;0 h =s n 1 h

.Inprovingthe onvergen eof

thes hemeitissuÆ ienttoshowthat

k n n h k+kq n q n h k+ks n s n h k ;;h!0 ! 0; (23) whereas k n h n;i h k+kq n h q n;i h k+ks n h s n;i h k i!1 ! 0 (24)

quadrati ally. This will be a hieved for a suÆ iently smalltime step. A suÆ ient

onditiononthedis retizationparameters;;hisderivedtoensureboth onvergen es

statedabove.Themainresultsinthispaperare

{ Theorem1showingthe onvergen e(23).

{ Theorem2showingthequadrati onvergen e(24).

(10)

Theorem 1 Assuming(A1){(A5),wehave kP h (t N ) N h k 2 + N X n=1 k( (tn)) ( n h )k 1+ L 1+ + N X n=1 kP h (tn) n h k 2 + N X n=1 kq(tn) q n h k 2 C(h 1+ + + 1+ ): (25) and kP h s(t N ) s N h k 2 + N X n=1 kP h s(tn) s n h k 2  C( 2 r 1 + r (h 1+ + + 1+ )): (26) forany r2IR.

Remark2 Ifthesorption()anditsderivativeareLips hitz ontinuous(thus =1),

aslightlymodi edproofleadstooptimalerrorestimates

kP h (t N ) N h k 2 + N X n=1 k( (tn)) ( n h )k 2 + N X n=1 kP h (tn) n h k 2 + N X n=1 kq(t n ) q n h k 2 C(h 2 + 2 ): (27)

Remark3 Similarresults anbeobtainedinthestri tlyunsaturated owregime,or

for asteadyunsaturated ow,where istimeindependent(asassumedfor example

in[6,11℄).

Theorem 2 Assuming (A1){(A4),forsuÆ ientlysmall wehave

k n h n;i h k 2 +kq n h q n;i k 2 C 2 (L 2 r 0+L 2  0  )h d k n h n;i 1 h k 4 (28) and ks n h s n;i h k 2 C 2 (L 2  0  + 2 L 2  (L 2 r 0+L 2  0  ))h d k n h n;i 1 h k 4 : (29)

From(28) we anderivesuÆ ient onditionfor thequadrati onvergen e ofthe

Newtons heme C 2  2 4 h d k n h n 1 h k 2 1: (30)

Withthestabilityestimate

N X n=1 k n h n 1 h k 2 C   2(1 )

provedinProposition2,this onditionbe omes

C 3  4 6 h d 1: (31)

Using (31)and Theorem1,one an hoose apriori thetimestep, the regularization

parameterandthemeshsizeinsu hawaythattheoptimal onvergen eisguaranteed.

Inthissensenumeri alexamplesareprovidedinSe tion4.Referringto[14℄,wherethe

Newton-error is ontrolled adaptively withrespe t to the total error, ondition (31)

(11)

Remark4 The ondition(31)isderivedunderpessimisti onditions.Inthissensewe

mentionthethe stability estimatesinTheorem2,bounding tothesum

P N n=1 k n h n 1 h k 2

,wherefrom onlyoneterm, k

n h n 1 h k 2

is usedtoderive (31) from(30). In

aseallthetermshavesimilarorders,thiswouldprovidek

n h n 1 h k 2 C( 2  2 2 ), implying C 4  4 6 h d 1: (32)

In the numeri al al ulations presented at the end, (32) was always enough for the

quadrati onvergen e.

3Stability and onvergen eresults

In this se tion we derive stability estimates for both ontinuous,as well as dis rete

problems1and 2,and provethea priorierror estimatesstatedinTheorem1.Then

weproveTheorem2),showing the onvergen eoftheNewton method.Westart with

preliminaryresultsandnotations:

f n =f(tn) ; f n = 1  Z t n t n 1 f(t)dt e n =P h n n h ; e n s =P h s n s n h e n q =q n q n h ; e n;i = n h n;i h e n;i q =q n h q n;i h ; e n;i s =s n h s n;i h

We re allthat n 2f1;:::;Ngis indexing thetime step,while iis used for the

iter-ation. A ordingly,f n h ;q n h ;s n h

gstandsfor the solutionof Problem2at then

th time step,whereasf n;i h ;q n;i h ;s n;i h

gisthei-thiteration(i1)intheNewton s heme.The

iterationpro essstartswith

n;0 h = n 1 h ands n;0 h =s n 1 h .

Nextweusethefollowing elementarylemmas(see[22℄,p.350for theproofofthe

rstone; forthese ondoneiselementary):

Lemma2 Letf :IR!IR di erentiable with f

0

()Lips hitz ontinuous. Thenthere

holds jf(x) f(y) f 0 (y)(x y)j 2  L f 0 2 jx yj 2 ; 8x;y2IR: (33)

Lemma3 Foranysetofm-dimensionalrealve torsa

k ;b k 2R m (k2f0;:::;Ng;m

1)thefollowingidentitiesarevalid

N X n=1 ha n a n 1 ; N X k =n b k i= N X n=1 ha n ;b n i ha 0 ; N X n=1 b n i; (34) N X n=1 h N X k =n a k ;a n i= 1 2 k N X n=1 a n k 2 + 1 2 N X n=1 ka n k 2 ; (35) N X ha n a n 1 ;a n i= 1 2 ka N k 2 + 1 2 N X ka n a n 1 k 2 1 2 ka 0 k 2 : (36)

(12)

Thefollowinginequalitieswillbeusedsevertimesbelow:

theinequalityofmeans

ab 1 2Æ a 2 + Æ 2 b 2

; foranya;b2IRandÆ>0; (37)

andtheYounginequality

ab a p p + b q q

foranya;b>0andp;q2(1;1)su hthat

1 p + 1 q =1: (38)

Wealsoneedthefollowingte hni alLemma

Lemma4 Let 2(0;1)andf

n

2L

1+

();n2f1;:::;Ngsu hthat there holds

N X n=1 kf n k 1+ L 1+ () A: (39)

Forallr2R wehave

N X n=1 kf n k 2 C( 2 r 1 + r A): (40)

Proof. Sin e isbounded,L

1+ ()L 2 () ( <1),and kf n kCkf n k L 1+ ()

for all n2 f1;:::;Ng,where C >0onlydependson.ThentheYounginequality

(38)gives N X n=1 kfnk 2 C 1 r N X n=1  r kfnk 2 L 1+ () C N X n=1  rp+1 r p + N X n=1  1 r q kfnk 2q L 1+ () (41)

forall r2IR,andp;q>0with

1 p + 1 q =1.Takingp= 1+ 1 andq= 1+ 2 ,from(41) and(39)weget (40).  3.1 Stability estimates

WestartwiththestabilityestimatesforProblem1.Thesearesimilartothestandard

energyestimatesforparaboli problems,butrestri tedtothetimest

1 ,:::,t

N .

Proposition 1 Assuming(A1){(A5)there holds

N X n=1 k n k 2 1 + N X n=1 h( n ); n i+ N X n=1 kq n k 2 C ; (42) ks N k 2 + N X n=1 ks n s n 1 k 2 + N X n=1 ks n k 2 C ; (43) N X n=1 k n n 1 k 2 C; (44) N X krq n k 2 C: (45)

(13)

Proof.Wetakew= n in(13),v=qn in(14)andw=  b n in(15)toobtain ht ; n i+ b hts; n i+hrq n ; n i=hr( n ); n i; (46) kq n k 2 h n ;rq n i h n Q;q n i=0; (47)  b hts; n i=  b ks(h( n ); n i hs n ; n i): (48)

Adding the three equalities above, summing up the result from n = 1 to N, and

multiplyingby gives N X n=1 h n n 1 ; n i+ N X n=1 kq n k 2 + N X n=1  b ksh( n ); n i N X n=1 ks b hs n ; n i = N X n=1 h n n 1  t ; n i+ N X n=1 hr( n ); n i+ N X n=1 h n Q;q n i: (49) We nowtake w=ks 2 P N k =n k

in(13), sumup (14)for n=k toN and takeinthe

resultv=ks 2 q n toobatin ksh( n n 1 ); N X k =n k i+ksh t ( n n 1 ); N X k =n k i+ks 2 hrq n ; N X k =n k i +ks b h(s n s n 1 ); N X k =n k i+ks b h t s (s n s n 1 ); N X k =n k i=ks 2 hr( n ); N X k =n k i; (50) and ks 2 h N X k =n q k ;q n i ks 2 h N X k =n k ;rq n i=ks 2 hQ N X k =n k ;q n i: (51)

Adding(50)and(51),summingupfromn=1toN andusingLemma3yields

N X n=1 k s k n k 2 k s h 0 ; N X n=1 n i+ N X n=1 k s  b hs n ; n i k s  b hs 0 ; N X n=1 n i + ks 2 2 ( N X n=1 kq n k 2 +k N X n=1 q n k 2 )= N X n=1 h( n n 1 t ; N X k =n k i + N X n=1 h(s n s n 1  t s; N X k =n k i+ N X n=1 k s  2 hr( n ); N X k =n k i + N X n=1 k s  2 hQ N X k =n k ;q n i: (52)

From(49) and(52),byLemma3,theCau hy-S hwarzinequalityand(37)onegets

k N k 2 + N X n=1 k n k 2 + N X n=1 kq n k 2 + N X n=1 h( n ); n i C(k I k 2 +ks I k 2 + N X n=1 1  k n n 1  t k 2 + N X n=1 kr( n )k 2 ) +C( N X n=1 kQ n k 2 + N X n=1 1  ks n s n 1  t sk 2 + N X n=1 k n k 2 ):

(14)

Sin e I

;s I

andQarebounded,theLips hitz ontinuityofr(),theHolder ontinuity

of

t

and

t

swithrespe ttotime,aswellastheGronwall Lemmagive

k N k 2 + N X n=1 k n k 2 + N X n=1 h( n ); n i+ N X n=1 kq n k 2 C : (54)

Formoredetails onbounding thetermsinvolving thetimederivativewe refertothe

proofofTheorem1,estimates(85) ,(87)and(88) ,dealingwithsimilarterms.Further,

from(14)oneimmediatelyobtains

N X n=1 kr n k 2 C N X n=1 kq n k 2 + N X n=1 kQ n k 2 : (55)

Then(42)isfollows from(A3),thePoin areinequality,(54)and(55).

Toprove(43),wetestin(15)byw=s

n

andsumupfromn=1toN toobtain

N X n=1 hs n s n 1 ;s n i+ N X n=1 ksks n k 2 = N X n=1 hs n s n 1 ts;s n i+ N X n=1 ksh( n );s n i: (56)

Using(A2),Lemma3,theHolder ontinuityof

t

sand,aswellastheboundedness

of

n

(see(A5)),(56)givestheestimate(43).

Toshow(44)wetakew= n n 1 in(13),v=qn in(14)writtenfort=tnas wellasfort=t n 1 ,andw=  b ( n n 1 )in(15)toobtain h t ; n n 1 i+ b h t s; n n 1 i+hrq n ; n n 1 i=hr( n ); n n 1 i; hq n q n 1 ;q n i h n n 1 ;rq n i h( n n 1 )Q;q n i=0;  b h t s; n n 1 i+ b k s h( n ); n n 1 i= b k s hs n ; n n 1 i:

Addingtheabove,summingupfromn=1toN,multiplyingby andusingLemma

3leadsto N X n=1 k n n 1 k 2 +  2 kq N k 2 + N X n=1  2 kq n q n 1 k 2 = N X n=1 h n n 1  t ; n n 1 i+  2 kq 0 k 2 + N X n=1 hr( n ); n n 1 i + N X n=1 h( n n 1 )Q;q n i+ N X n=1  b k s h( n ); n n 1 i + N X n=1  b kshs n ; n n 1 i: (57)

UsingtheHolder ontinuityof

t

an,theLips hitz ontinuityofr,theboundedness

ofQand

n

andthestability estimate(43)weobtain(44).

Forproving(45),by(13) and(15) onegets

N X n=1 krq n k 2 C( N X n=1 1  k n n 1  t k 2 + N X n=1 1  k n n 1 k 2 ) +C( N X k( n )k 2 + N X kr( n )k 2 + N X ks n k 2 ): (58)

(15)

From(58),pro eedingasfor(44)andusingthestabilityestimatesobtainedbeforeone

obtains(45). 

We ontinuewiththestabilityestimatesfor thesolutionofProblem2.

Proposition 2 Assuming(A1){(A4)there holds

k N h k 2 + N X n=1 k n h k 2 + N X n=1 k n h n 1 h k 2 + N X n=1 h  ( n h ); n h i+ N X n=1 kq n k 2 C (59) and ks N h k 2 + N X n=1 ks n h k 2 + N X n=1 ks n h s n 1 h k 2 C 2 2 ; (60) N X n=1 k n h n 1 h k 2 +kq N h k 2 + N X n=1 kq n h q n 1 h k 2 C(+ 2 2 ): (61) Proof.Wetakew h = n h in(17),v h =q h n in(18)andw h =  b n h in(19)toobtain h n h n 1 h ; n h i+ b hs n h s n 1 h ; n h i+hrq n h ; n h i=hr( n h ); n h i (62) kq n h k 2 h n h ;rq h n i h n h Q h ;q h n i=0 (63)  b hs n h s n 1 h ; n h i+ b ksh( n h ); n h i= b kshs n h ; n h i; (64)

Adding(62),(63)and(64)andsumminguptheresultfromn=1toN weget

N X n=1 h n h n 1 h ; n h i+ N X n=1 kq n h k 2 + N X n=1  b k s h  ( n h ); n h i = N X n=1 hr( n h ); n h i+ N X n=1 h n h Q h ;q h n i+ N X n=1  b kshs n h ; n h i: (65) Testingwithv h =ks P N k =n k h

in(17)andsummingupfromn=1toN gives

ks N X n=1 h n h n 1 h ; N X k =n k h i+ N X n=1  b kshs n h s n 1 h ; N X k =n k h i + N X n=1  b ks 2 hrq n h ; N X k =n k h i= N X n=1  b ks 2 hr( n h ); N X k =n k h i: (66)

Further,wewrite(18) forn=k,sumupfromk=ntoN,testtheresultby

2 k s q n h

and nallysumupfromn=1toN toget

N X n=1  2 ksh N X q k h ;q n h i N X n=1  2 ksh N X k h ;rq n h i= N X n=1  2 kshQ h N X k h ;q n h i (67)

(16)

Weadd(65),(66)and(67),anduseLemma3toobtain 1 2 k N h k 2 + 1 2 N X n=1 k n h n 1 h k 2 + N X n=1 kq n h k 2 + N X n=1  b k s h  ( n h ); n h i  1 2 k 0 h k 2 + N X n=1 hr( n h ); n h i+ N X n=1 h n h Q h ;q h n i+ N X n=1  b ks 2 hr( n h ); N X k =n k h i +h 0 h ; N X n=1 n h i+hs 0 h ; N X n=1 n h i+ N X n=1  2  b k s hQ h N X k =n k h ;q n h i: (68)

Using(A1),(A2),(A3),theCau hy-S hwarzinequalityand(37)and nallythe

Gron-wallLemma,(59)follows from(68).

Toprove(60) wetest in(19) withw

h

=s

n

h

,sumtheresult upfromn =1 toN

anduseLemma3andtheCau hy-S hwarzinequality,aswellas(37)toobtain

ks N h k 2 + N X n=1 ks n h s n 1 h k 2 + N X n=1 ks n h k 2 Cks 0 h k 2 +C N X n=1 k  ( n h )k 2 : (69)

(60)follows immediatelyby(A2),(59),andtheLips hitz ontinuityof.

For (61) we subtra t (18) at t = t

n 1

from (18) at t = tn, take in the result

v h

=q

n

h

andaddtheresultingto(17)testedbyw

h = n h n 1 h .Thisgives k n h n 1 h k 2 + b hs n h s n 1 h ; n h n 1 h i+hq n h q n 1 h ;q n h i =hr( n h ); n h n 1 h i+hQ h ( n h n 1 h );q n h i: (70) Takingw h =  b ( n h n 1 h

)in(19), addingtheresultto (70) and summingup for

n=1;:::;N,byLemma3weobtain N X n=1 k n h n 1 h k 2 + 1 2 kq N h k 2 1 2 kq 0 h k 2 + 1 2 N X n=1 kq n h q n 1 h k 2 = N X n=1  b ksh( n h ); n h n 1 h i+ N X n=1  b kshs n h ; n h n 1 h i + N X n=1 hr( n h ); n h n 1 h i+hQ h ( n h n 1 h );q n h i: (71)

Fromequation(71),re alling(A3)oneimmediatelygets

N X n=1 k n h n 1 h k 2 +kq N h k 2 + N X n=1 kq n h q n 1 h k 2 Ckq 0 h k 2 +C N X n=1  2 k  ( n h )k 2 +C N X n=1  2 ks n h k 2 +C N X n=1  2 kr( n h )k 2 +C N X n=1 kq n h k 2 : (72)

(17)

3.2 Apriorierror estimates

Inthisse tionweprovetheapriorierrorestimatesstatedinSe tion2.

Theorem 1 Assuming (A1){(A4),wehave

ke N k 2 + N X n=1 ke n e n 1 k 2 + N X n=1 k( n ) ( n h )k 1+ L 1+ + N X n=1 ke n k 2 + P N n=1 ke n q k 2 + 2 k N X n=1 e n q k 2 C(h 1+ + + 1+ ): (73)

and,forallr2IR,

kP h s(t N ) s N h k 2 + N X n=1 kP h s(tn) s n h k 2 C( 2 r 1 + r (h 1+ + + 1+ )): (74)

Proof.We ombinetheideasin[6,11℄ withtheonesin[32,33℄.Considering Problem

1att=t

n

,wesubtra t(17)from(13),(18)from(14)and(19)from(15),andusethe

propertiesoftheproje tors P

h and h toobtain ht ( n h n 1 h );w h i+ b hts (s n h s n 1 h );w h i +hr h e n q ;w h i=hr( n ) r( n h );w h i (75) he n q ;v h i he n ;rv h i h n Q n h Q h ;v h i=0 (76) h t s (s n h s n 1 h );w h i+kshe n s ;w h i=ksh( n ) ( n h );w h i; (77) forallw h 2W h andv h 2V h .Wetakenoww h =e n 2W h in(75),v h = h q n 2V h in(76)andw h =  b e n 2W h in(77)toget h t ( n h n 1 h );e n i+ b h t s (s n h s n 1 h );e n i +hr h e n q ;e n i=hr( n ) r( n h );e n i (78) he n q ; h e n q i he n ;r h e n q i h n Q n h Q h ; h e n q i=0 (79)  b h t s (s n h s n 1 h );e n i  b k s he n s ;e n i=  b k s h( n )   ( n h );e n i: (80) Furthermore,wetakew h =ks N X k =n e n 2W h in(75)andobtain k s h t ( n h n 1 h ); N X k =n e k i+k s  b h t s (s n h s n 1 h ); N X k =n e k i +ks 2 hr h e n q ; N X e k i=ks 2 hr( n ) r( n h ); N X e k i: (81)

(18)

Writing(76) forn=k,summingitup fromk=ntoN andtakingv h =ks 2  h q n

intheresultleadsto

ks 2 h N X k =n e k q ; h e n q i ks 2 h N X k =n e k ;r h e n q i ks 2 h N X k =n ( k Q k h Q h ); h e n q i=0: (82)

Wesumup(78)to(82)forn=1toN,adtheresultanduseLemma3,aswellasthe

propertyhe 0 s ;e n

i=0foralln2f1;:::;Ngtoobtain

N X n=1 h t ( n h n 1 h );e n i+ N X n=1 ksh t ( n h n 1 h ); N X k =n e k i + N X n=1 ks b hts (s n s n 1 ); N X k =n e k i+ N X n=1 he n q ; h e n q i + N X n=1 ks 2 h N X k =n e k q ; h e n q i+ N X n=1 ks b h( n ) ( n h );e n i = N X n=1 hr( n ) r( n h );e n i+ N X n=1 k s  2 hr( n ) r( n h ); N X k =n e k i + N X n=1 k s h n Q n h Q h ; h e n q i+ N X n=1 k s  2 h N X k =n ( k Q k h Q h ); h e n q i: (83)

WedenotethetentermsintheabovebyT

1 ;:::;T

10

andpro eedbyestimatingea h

ofthemseparately.UsingLemma3,sin ee

0 =0wehave T 1 = N X n=1 ht ( n h n 1 h );e n i = N X n=1 h t ( n n 1 );e n i+ N X n=1 he n e n 1 ;e n i =T 11 + 1 2 ke N k 2 + 1 2 N X n=1 ke n e n 1 k 2 : (84) Sin e  t

is Holder ontinuous with exponent =2 (see (A5)), the Cau hy-S hwarz

inequalityand(37)give

jT 11 j N X n=1 1 2 Z ( Z t n t n 1 ( t (tn)  t (s))ds) 2 dx+ N X n=1  2 ke n k 2 C + N X n=1  2 ke n k 2 : (85) ToestimateT 2

weuseLemma3andobtain

T 2 = N X n=1 ksh t ( n n 1 ); N X k =n e k i+ N X n=1 kshe n e n 1 ; N X k =n e k i =T 21 + N X kske n k 2 : (86)

(19)

Asfor T 11 ,forT 21 wehave jT 21 j 1 2 N X n=1 k t ( n n 1 )k 2 +  3 2 N X n=1 k N X k =n e k k 2 C( + N X n=1 ke n k 2 ): (87) ForT 3 were allthat t

sisHolder ontinouswithexponent .Thisgives

T 3 = N X n=1 k s  b h t s (s n s n 1 ); N X k =n e k i  N X n=1 k s  b 2 k t s (s n s n 1 )k 2 +C N X n=1 ke n k 2 C( 2 + N X n=1 ke n k 2 ): (88) Further, T 4 = N X n=1 he n q ; h e n q i= N X n=1 he n q ; h e n q e n q i+ N X n=1 ke n q k 2 =T 41 + N X n=1 ke n q k 2 : (89)

Usingtheinequalities(9)and(37),byand(A5)-andmorepre isely(16)-onehas

jT 41 j Æ 41 2 N X n=1 ke n q k 2 + 1 2Æ 41 N X n=1 kq n  h q n k 2  Æ 41 2 N X n=1 ke n q k 2 +C 1 2Æ 41 N X n=1 h 2 kq n k 2 1  Æ 41 2 N X n=1 ke n q k 2 +Ch 2 ; (90) foranyÆ 41 >0. ByLemma3,forT 5 wehave T 5 = N X n=1 k s  2 h N X k =n e n q ; h e n q i = N X n=1 ks 2 h N X k =n e n q ;e n q i+ N X n=1 ks 2 h N X k =n e n q ; h e n q e n q i = ks 2 2 N X ke n q k 2 + ks 2 2 k N X e n q k 2 +T 51 : (91)

(20)

Asfor T 41 weimmediatelyget jT 51 j Æ 51  3 2 N X n=1 k N X k =n e n q k 2 +  2Æ 51 N X n=1 kq n  h q n k 2  Æ 51 T 2  2 N X n=1 ke n q k 2 +Ch 2 : (92)

Sin e()ismonotoneandHolder ontinuous,

T 6 = N X n=1 k s  b h( n )   ( n h );e n i = N X n=1  b k s h( n ) ( n h );e n i+ N X n=1 k s  b h( n h )   ( n h );e n i = N X n=1 k s  b h( n ) ( n h ); n n h i+ N X n=1 k s  b h( n ) ( n h );P h n n i + N X n=1 ks b h( n h ) ( n h );e n i  N X n=1 Ck( n ) ( n h )k 1+ 1+ +T 61 +T 62 : (93)

The Young inequality, the imbedding L

2

()  L

1+

(), the stability estimates in

Proposition1andtheestimate(8)imply

jT 61 j Æ 1+ 61 1+ N X n=1 k( n ) ( n h )k 1+ 1+ +  (1+ )Æ 1+ 61 N X n=1 kP h n n k 1+ 1+  Æ 1+ 61 1+ N X n=1 k( n ) ( n h )k 1+ 1+ +C(h 1+ + 2 + 4 1+ ) (94) foranyÆ 61 >0.ToestimateT 62

weuseLemma1andthepositivityofthe

on entra-tions: T 62 = N X n=1 k s  b h( n h )   ( n h );P h n i | {z } 0 N X n=1 k s  b h( n h )   ( n h ); n h i 1+

(21)

The estimates for the next terms are based on the Lips hitz ontinuity of the

degradationrater().WeuseProposition1and(8),

T 7 = N X n=1 hr( n ) r( n h );e n i  N X n=1 Lrk n n h kke n k  N X n=1 Lr 2 k n P h n k 2 + N X n=1 3Lr 2 ke n k 2 Ch 2 + N X n=1 3Lr 2 ke n k 2 : (96) Similarly, T 8 = N X n=1 k s  2 hr( n ) r( n h ); N X k =n e k i C(h 2 + N X n=1 ke n k 2 ): (97) ToestimateT 9

weuse(A3),theestimatesinProposition1,aswellasin(10),(8)and

(9),theessentialboundednessof ,andtheinequality(37)

T 9 = N X n=1 ksh n Q n h Q h ; h e n q i = N X n=1 ksh n (Q Q h ); h e n q i+ N X n=1 ksh( n n h )Q h ; h e n q i CkQ Q h k 2 +Æ 9 N X n=1 ke n q k 2 +Æ 9 N X n=1 kq n  h q n k 2 (98) +C N X n=1 ke n k 2 +C N X n=1 k n P h n k 2 Ch 2 +Æ 9 N X n=1 ke n q k 2 +C N X n=1 ke n k 2 : (99)

Similarly,thelasttermgives

T 10 = N X n=1 ks 2 h N X k =n ( n Q n h Q h ); h e n q i Ch 2 +Æ 10 N X ke n q k 2 +C N X ke n k 2 : (100)

(22)

From(83) {(100)weimmediatelyobtain ke N k 2 + N X n=1 ke n e n 1 k 2 + N X n=1 k( n ) ( n h )k 1+ L 1+ + N X n=1 ke n k 2 + N X n=1 ke n q k 2 + 2 k N X n=1 e n q k 2 C(h 2 +h 1+ + 2 + + 4 1+ + 1+ )+C N X n=1 ke n k 2 : (101)

The rstestimateinTheorem1isobtainedbyapplyingthedis reteGronwallLemma.

Toprovetheinequality(26)wetakew

h =e n s in(77)andobtain h t s (s n h s n 1 h );e n s i+k s ke n s k 2 =k s h( n )   ( n h );e n s i; (102) giving h t s (s n s n 1 );e n s i+he n s e n 1 s ;e n s i+k s ke n s k 2  ks 2 k( n ) ( n h )k 2 + ks 2 ke n s k 2 : (103)

Summingup the above for n=1;:::;N, sin ee

0 s

=0weuse Lemma3 and(37) to

obtain 1 2 ke N s k 2 + 1 2 N X n=1 ke n s e n 1 s k 2 + N X n=1 ks 2 ke n s k 2 C N X n=1 1  k t s (s n s n 1 )k 2 + N X n=1 ks 4 ke n s k 2 +C N X n=1 k( n ) ( n h )k 2 : (104) Sin e t

sisHolder ontinuous,the rsttermontherighthandin(104)isboundedby

C 2

.Forthelasttermweuse(25) andLemma4,yielding

N X n=1 k( n )   ( n h )k 2 2 N X n=1 k( n ) ( n h )k 2 +2 N X n=1 k( n h )   ( n h )k 2 C( 2 r 1 + r (h 2 +h 1+ + 2 + 2 + 4 1+ + 1+ )+ 2 ):

Now(26) followsfrom(104){(105)inastraightforwardmanner. 

3.3 Convergen eofthe Newtonmethod

Thequadrati onvergen eoftheNewtons heme(20){(22)isproveninthefollowing

Theorem 2 Assuming(A1){(A4),if issmallenoughwe have

ke n;i k 2 +ke n;i q k 2 C 2 (L 2 r 0+L 2  0  )h d ke n;i 1 k 4 (105) and ke n;i s k 2 C 2 (L 2  0 + 2 L 2  (L 2 r 0+L 2  0))h d ke n;i 1 k 4 (106)

(23)

Proof.From(19)wehave hs n h ;w h i= ks 1+ks h  ( n h );w h i+ 1 1+ks hs n 1 h ;w h i (107) forallw h 2W h

.Usingthisin(17)gives

h n h n 1 h ;w h i+  b ks 1+ks h( n h );w h i  b ks 1+ks hs n 1 h ;w h i+hrq n h ;w h i=hr( n h );w h i (108) forallw h 2W h .Similarly,by(20)and(22), h n;i h n 1 h ;w h i+  b ks 1+k s h  ( n;i 1 h )+ 0  ( n;i 1 h )( n;i h n;i 1 h );w h i  b ks 1+k s hs n 1 h ;w h i+hrq n;i h ;w h i=hr( n;i 1 h )+r 0 ( n;i 1 h )( n;i h n;i 1 h );w h i (109)

Subtra ting(109)and(21)from(108)and(18)respe tivelyleadsto

he n;i ;w h i+  b ks 1+k s h  ( n h )   ( n;i 1 h )  0  ( n;i 1 h )( n;i h n;i 1 h );w h i +hre n;i q ;w h i=hr( n h ) r( n;i 1 h ) r 0 ( n;i 1 h )( n;i h n;i 1 h );w h i; (110) forallw h 2W h ,and he n;i q ;v h i he n;i ;rv h i he n;i Q h ;v h i=0; (111) forallv h 2V h .Takingw h =e n;i 2W h in(110)andv h =e n;i q 2V h in(111),adding

theresultingyields

ke n;i k 2 +  b k s 1+k s h 0  ( n;i 1 h )e n;i ;e n;i i+ke n;i q k 2 =  b k s 1+k s h  ( n h )   ( n;i 1 h )  0  ( n;i 1 h )( n h n;i 1 h );e n;i i+he n;i Q h ;e n;i q i +hr 0 ( n;i 1 h )e n;i ;e n;i i+hr( n h ) r( n;i 1 h ) r 0 ( n;i 1 h )( n h n;i 1 h );e n;i i: (112) Sin er 0

() is bounded,whereas and jQ

h

j  M

Q

(see (A1) and (A3)), usingthe

in-equality(37)intheabovefurnishes

ke n;i k 2 +  b ks 1+k s h 0  ( n;i 1 h )e n;i ;e n;i i+  2 ke n;i q k 2   b k 1+k h  ( n h )   ( n;i 1 h )  0  ( n;i 1 h )e n;i 1 ;e n;i i+(L r +M 2 Q =2)ke n;i k 2 +hr( n h ) r( n;i 1 h ) r 0 ( n;i 1 h )e n;i 1 ;e n;i i: (113)

Wedenotethe rstand thelast termsontherightbyT

N1

and T

N2

andpro eedby

estimating themseparately. For T

N1

we use Lemmas 1 and 2,the assumption(A1)

andtheinequality(37):

T N1 C Z L  0  je n;i 1 j 2 je n;i jdx C 2 L 2  0  ke n;i 1 k 4 L 4 () + 1 ke n;i k 2 : (114)

(24)

Analogously,thereholds T N2 C 2 L 2 r 0ke n;i 1 k 4 L 4 () + 1 4 ke n;i k 2 : (115)

From(113){(115), usingalsothat

0  0weimmediatelyobtain  2 ke n;i k 2 +  2 ke n;i q k 2 (Lr+M 2 Q =2)ke n;i k 2 +C 2 (L 2  0  +L 2 r 0)ke n;i 1 k 4 L 4 () : (116)

Theresult(28)followsnowbyusingtheinverseestimate(seee.g[9℄)

ke i 1 k L 4 () Ch d=4 ke i 1 k:

Finally,forprovingtheinequality(29)weuse(19)and(22)andobtain

he n;i s ;w h i= k s 1+k s h( n h ) ( n;i 1 h )  0  ( n;i 1 h )( n;i h n;i 1 h );w h i (117) forallw h 2W h .Takingw h =e n;i s

andusingLemma2gives

ke n;i s kC(L  0  ke n;i 1 k 2 +L  ke n;i k 2 ); (118)

whi h,togetherwith(28), leadsto(29). 

4Numeri alResults

Inthisse tionwepresenttwonumeri alteststhatverifythetheoreti al ndingsinthe

pre edingse tions.The rstisaproblemofa ademi nature,admittingananalyti al

solution. These ondis arealisti in ltration problem.Spe i ally,wesolve(1){(2)

withasour etermf()andaFreundli htypesorptionisotherm(x)=x

:  S t + b ts r(D S r Q)= S r( )+f in J; (119)  t s=k s ( s) in J: (120)

In the rstexample the water uxis onstant, whereas inthe se ond exampleit is

obtainedbysolvingthe owequations(3){(4).

Example1.Wesolvetheproblemaboveintheunitsquare=[0;1℄[0;1℄.We

set

S

=1,

b

=1,D =1, ks=1 andtakea onstant water uxQ=(Q

1 ;Q 2 ) T . Herer( )= 0:1 .With f(t;x;y)= t 1= 1

x(1 x)y(1 y)+[x(1 x)y(1 y)℄

(1 e t ) +2[x(1 x)+y(1 y)℄t 1= +[Q 1 (1 2x)y(1 y)+Q 2 (1 2y)x(1 x)℄t 1= +0:1x(1 x)y(1 y)t 1= ;

andsuitableinitialandboundary onditions,(119){(120)admittheanalyti alsolution

(t;x;y)=t

1=

x(1 x)y(1 y); and (121)

(25)

The naltimeisT =1,andthewater uxQ=(0:01;0:01) T

.InspiredbyTheorem1

we omputetheerrors

E ;q= N X n=1 kP h (tn) n h k 2 + N X n=1 kq(tn) q n h k 2 ; and Es= N X n=1 kP h s(tn) s n h k 2 :

Inallsimulationswetake=h.Weperform omputationswith =0:75, =0:5and

=0:25. Inviewof Theorem2,moreexa tly ondition (31),taking  =h

2 ensures

the quadrati onvergen e of the Newton methodfor the rst two values of . The

results arepresentedinTables1and 2.Theinitial spatialgridhasameshdiameter

h =0:2, and is re neduniformly by halving h. Theother parameters, and , are

hangeda ordingly.

Thetheoreti alestimatesinTheorem1predi tanorderof onvergen eof =2

forE ;q,sotheerrorredu tionshouldbeofatleast2

2

.Thisisex eededforthe ase

=0:75, where =2isobtained. For =0:5 weobserve anorderof =1:7 for

E ;q

,sin ethis erroris redu edby afa torof3:24=2

1:7

.Again, thisis beyondthe

theoreti allypredi tedorder of2 =1.Oneof thereasonsforthis super onvergen e

isintheassumptionont ,namelyitsHolder ontinuitywithanexponent =2. This

a e tsthetheoreti alestimatesdire tly.Withrespe ttoEs,inall asesweobtainedan

orderof onvergen e s-andthereforearedu tionfa torof2

s

-thatismu hsmaller,

inagreementwiththeestimatesinTheorem1.Wementionthatforallthesimulations

maximalthreeNewtoniterationswereneededpertimestep,andthe onvergen ewas

quadrati (asexpe ted).

For the ase = 0:25 wetook again  =h

2

,whi h violatesthe ondition (31).

However,this hoi eisstillinagreementwiththeframeworkofRemark4.Again,the

Newtonmethod onvergesquadrati ally.Sin etheHolderexponent isnowsmaller,a

signi ant de rease in the onvergen e order of the dis retization error is expe ted.

Table3 on rmstheseexpe tations.

Table1 Numeri alresultsforExample1with=h

2 = 2 and =0:75. h E ;q Es s 1 0.2 1.552156e-04 | 1.405687e-05 | 2 0.1 3.975638e-05 1.96 7.307479e-06 0.94 3 0.05 9.941875e-06 1.99 2.755015e-06 1.40 4 0.025 2.478454e-06 2.00 7.970379e-07 1.78 5 0.0125 6.174740e-07 2.00 1.980325e-07 2.02

Example 2. Inthe se ond examplewe onsider the in ltration of benzenein a

saturated,heterogeneoussoil.A sket hofthissituationis displayedinFigure1.The

units are miligram, meter and day, and will be not written expli itly further. The

entire omputationaldomainis=[0;2℄[0;3℄,andin ludestwosubdomains,

1 =

[0:2;1:2℄[2:2;2:7℄and

2

=[1:3;1:7℄[0:8;1:8℄,havingamu hsmallerpermeability.

(26)

Table2 Numeri alresultsforExample1with=h 2 = 2 and =0:5. h E ;q Es s 1 0.2 1.789932e-04 | 2.864679e-04 | 2 0.1 5.431520e-05 1.71 1.733271e-04 0.72 3 0.05 1.655999e-05 1.70 8.845142e-05 0.96 4 0.025 5.130814e-06 1.68 3.790681e-05 1.22 5 0.0125 1.566092e-06 1.70 1.443045e-05 1.38

Table3 Numeri alresultsforExample1with=h

2 = 2 and =0:25. h E ;q Es s 1 0.2 5.832042e-04 | 2.864994e-03 | 2 0.1 2.963227e-04 0.97 2.005572e-03 0.50 3 0.05 1.420611e-04 1.05 1.295908e-03 0.62 4 0.025 6.243242e-05 1.18 7.598951e-04 0.76 5 0.0125 2.491041e-05 1.3 4.171508e-04 0.84

aregiveninFigure1.Theotherparametersinvolvedare

S

=0:5,

b

=1andD=1.

Thesour etermf in(119)iszero,andfortherea tiontermwehaver( )= 0:2 .

??? ... 1 2 1 (0,0) (2,0) (0,3) (2,3) 1 =[0:5;1:5℄f3:0g 1 =[2:2;2:7℄[0:2;1:2℄; 2 =[1:3;1:7℄[0:8;1:8℄; K Sj1 =K Sj2 =10 2 ,and K Sjn( 1 [ 2 ) =10. Boundary onditions: jy=3 =10; jy=0 =4,elsewhereQn=0, j 1 =1,elsewherer n=0. Initial onditions: jt=0 =s jt=0 =0.

Fig.1 Computational domainforsimulatingbenzenein ltration inaheterogeneous,

satu-ratedsoil.

The rstsetof omputationsareforh==0:05and =0:5.A ordingto(31),a

timestepoforderh

2

ensurestheoptimal onvergen eoftheNewtons heme.Therefore

wetook=0:0025.Figures2and3present ands,thedissolved,respe tivelyadsorbed

benzene on entration pro les,at di erent times.Asfollows fromTable 4presenting

thetotalresiduum,theiteration onvergesquadrati ally.

These ond set of al ulations is arried out again starting withh =  = 0:05,

butnow =0:25. A ording to (31), a timestep of orderh

2:3

is neededto ensure

theoptimal onvergen eoftheNewtonmethod.Thereforewetook =0:0015385. As

before,theNewtonmethod onvergesquadrati ally,seeTable5.Thedissolvedbenzene

(27)

Figures 3and4,mu hmore ontaminant isadsorbedinthese ond ase, for alower

valueof .Thentheadsorptionrateismu hhigherforsmallvaluesof .

9.99E-01

7.49E-01

5.00E-01

2.50E-01

2.18E-09

9.99E-01

7.49E-01

5.00E-01

2.50E-01

2.21E-09

1.00E-00

7.50E-01

5.00E-01

2.50E-01

2.35E-09

Fig.2 Benzene on entrationpro lesatT =0:025;T=0:05andT =1(days),for =0:5.

2.45E-02

1.84E-02

1.22E-02

6.12E-03

2.30E-10

4.85E-02

3.64E-02

2.43E-02

1.21E-02

5.89E-10

3.93E-01

2.95E-01

1.96E-01

9.82E-02

5.85E-09

Fig.3 Adsorbedbenzene on entration pro lesatT =0:025;T =0:05 andT =1(days),

for =0:5.

Table4 Convergen eoftheNewtonmethodfortheExample2,with =0:5,=h=0:05,

=0:0025.

T=0.025 T=0.05 T=0.125 T=0.5 T=1

2.4750291e-01 1.5140763e-01 3.1237680e-02 1.5634855e-03 9.7716344e-04

2.3360443e-03 1.4145270e-03 2.3762921e-04 6.1729415e-06 9.6888252e-06

1.5700407e-07 9.6783616e-08 9.1480894e-09 5.5553846e-11 6.7827843e-10

(28)

Table5 Convergen eoftheNewtonmethodfortheExample2,with =0:25,=h=0:05,

=0:0015385.

T=0.025 T=0.05 T=0.125 T=0.5 T=1

2.4922387e-01 1.4672717e-01 2.9511781e-02 1.8339098e-03 1.1342203e-03

1.8683306e-03 1.2922026e-03 1.7714809e-04 1.7319646e-05 1.0535939e-05

5.4130407e-08 4.5955634e-08 4.4530926e-09 9.2878094e-10 5.4116583e-10

2.42E-02

1.82E-02

1.21E-02

6.05E-03

4.82E-10

4.79E-02

3.59E-02

2.40E-02

1.20E-02

1.24E-09

6.32E-01

4.74E-01

3.16E-01

1.58E-01

2.20E-08

Fig.4 Adsorbedbenzene on entration pro lesatT =0:025;T =0:05 andT =1(days),

for =0:25.

5Con lusions

We analyzeda mass onservative s heme for solute transport with non-equilibrium

sorption inporousmedia. Thetimedis retization is Euler impli it,and mixed nite

elements are employed for the spatial one. At ea h time step, the emerging

nonlin-ear algebrai systemsare solvedbyaNewton method.A Holder ontinuoussorption

isothermisassumed,whi hmakestheanalysisvery hallenging.Thistypeofsorption

orresponds to thereal, pra ti al situations (like Freundli hisotherms) and weakens

the ommonlyassumedLips hitz ontinuity.Stabilityandapriorierrorestimatesare

shown,guaranteeingthe onvergen eofthes heme.Theorderof onvergen edepends

onlyonthedis retizationparameters.Moreover,asuÆ ient onditionforthequadrati

onvergen eoftheNewtons hemeisobtained.Espe iallythis onditionprovides

use-ful information for the pra ti al al ulations, by indi ating a priori how to ontrol

thedis retization parameters.Thissavesalotof omputationaltime.Tosustainthe

theoreti alresults, twonumeri al exampleshavebeen presented. The rst oneis an

a ademi examplehavingananalyti al solution, and the se ond represents a

realis-ti s enario.Thetheoreti alestimatesarenotne essarysharpbutratherpessimisti ,

thepra ti eshowingabetter onvergen ebehavior.However,the al ulationsreveala

leardependen eofthe onvergen eordersbytheHolderexponent,inthesensethat

values loseto0haveanegativein uen e.

Basedonthetheoreti alresultsand thenumeri alexperiments,we on ludethat

thepresentedmass onservativenumeri als hemeise e tiveand anbeemployedfor

(29)

A knowledgments

Partofthe workofISP was supportedbythe GermanResear hFoundation(DFG),

within the Clusterof Ex ellen einSimulationTe hnology (EXC310/1) atthe

Uni-versityofStuttgart.Thissupportisgratefullya knowledged.

Referen es

1. T.Arbogast,M.ObeyesekereandM.F.Wheeler,Numeri almethodsforthe

simu-lationof owinroot-soilsystems,SIAMJ.Numer.Anal.30(1993),pp.1677-1702.

2. T. Arbogast and M.F. Wheeler, A hara teristi s-mixed nite-element method for

adve tion-dominatedtransportproblems,SIAMJ.Numer.Anal.33(1995),pp.402-424.

3. T.Arbogast, M.F.Wheeler and Nai-YingZhang, A nonlinear mixed nite element

method for a degenerate paraboli equation arising in ow in porous media, SIAMJ.

Numer.Anal.33(1996),pp.1669-1687.

4. P.Bastian, K.Birken, K.Johanssen, S.Lang, N.Neu, H.Rentz-Rei hertand

C.Wieners,UG{a exibletoolboxforsolvingpartialdi erentialequations,Comput.

Vi-sualiz.S i.1(1997),pp.27-40.

5. J. W. Barrettand P. Knabner,Finite ElementApproximation of the Transport of

Rea tiveSolutesinPorousMedia.Part1:ErrorEstimatesforNonequilibriumAdsorption

Pro esses,SIAMJ.Numer.Anal.34(1997),pp.201-227.

6. J. W. Barrettand P. Knabner,Finite ElementApproximation of the Transport of

Rea tiveSolutesinPorousMedia.PartII:Error EstimatesforEquilibriumAdsorption

Pro esses,SIAMJ.Numer.Anal.34(1997),pp. 455-479.

7. M. Bause and P. Knabner,Numeri al simulation of ontaminant biodegradation by

higherordermethodsandadaptivetimestepping,Comput.Visualiz.S i.7(2004),pp.

61-78.

8. M. Bause, Higher and lowest order mixed nite element approximation of subsurfa e

owproblems withsolutionsofweakregularity,Advan edinWaterResour es31(2007),

pp.370-382.

9. S. C. Brenner and L.R S ott,The mathemati altheory of niteelement methods,

Springer-Verlag,NewYork,1991.

10. F.BrezziandM.Fortin,Mixed andHybridFiniteElementMethods,Springer-Verlag,

NewYork,1991.

11. C. Dawson,C.J.vanDuijnand M.F.Wheeler, Chara teristi -GalerkinMethods for

ContaminantTransportwithNonequilibriumAdsorptionKineti s,SIAMJ.Numer.Anal.

31(1994),pp.982-999

12. C.Dawson,Analysisofanupwind-mixed niteelementmethodfornonlinear ontaminant

transportequations,SIAMJ.Numer.Anal.35(1998),pp.1709-1724.

13. C.J.vanDuijnandP.Knabner,Solutetransportinporousmediawithequilibriumand

nonequilibrium multiple-site adsorption: travelling waves, J. Reine Angew. Math. 415

(1991),pp.1-49.

14. L. El Alaoui, A. Ern and M. Vohralik, Guaranteed and robust a posteriori error

estimates and balan ing dis retization and linearizationerrors for monotonenonlinear

problems,HALPreprint00410471,2009.

15. L. E. Alaoui, An adaptive nite volume box s heme for solving a lass of nonlinear

paraboli equations,AppliedMathemati sLetters22(2009),pp.291-296.

16. R. Eymard, D. Hilhorst and M. Vohral



k, A ombined nite

volume-non onforming/mixed-hybrid nite element s heme for degenerate paraboli problems,

Numer.Math.105(2006),pp.73{131.

17. R. Eymard, D.Hilhorst and M.Vohral



k,A ombined nitevolume- nite element

s heme for the dis retization of strongly nonlinear onve tion-di usion-rea tion

prob-lemsonnonmat hinggrids,Numer.MethodsPartialDi erentialEquations(2009),DOI:

10.1002/num.20449.

18. K. B. Fadimba, Alinearization of a ba kward Euler s hemefor a lass of degenerate

nonlinearadve tiondi usionequations,NonlinearAnalysis63(2005),pp.1097-1106.

19. J.

Ka

(30)

20. R. Kl

ofkorn, D.

Kr

onerand M.Ohlberger,Lo aladaptive methodsfor onve tion

dominatedproblems,Internat.J.Numer.MethodsFluids40(2002),pp.79-91.

21. P. Knabner, Mathematis he Modelle f ur Transport und Sorption geloster Sto e in

porosenMedien,MethodenundVerfahrendermathematis henPhysik,Band36,Verlag

PeterLang,Frankfurt/Main,1990.

22. P.Knabner and L.Angermann, Numeri al methodsfor ellipti and paraboli partial

di erentialequations,SpringerVerlag,2003.

23. W.

J

agerandJ.

Ka

ur,Solutionofdoublynonlinearanddegenerateparaboli problems

byrelaxations hemes,M

2

AN(Math.Model.Numer.Anal.)29(1995),pp.605-627.

24. S.Mi heletti,R.Sa oandF.Saleri,OnSomeMixedFiniteElementMethodswith

Numeri alIntegration,SIAMJ.S i.Comput.23(2001),pp.245-270.

25. E.J. Park,Mixed niteelementsfornonlinearse ond-orderellipti problems,SIAMJ.

Numer.Anal.32(1995),pp.865{885.

26. I.S.Pop,F.A.RaduandP.Knabner,Mixed niteelementsfortheRi hards'equation:

linearizationpro edure,J.Comput.Appl.Math.168(2004),pp.365-373.

27. A.QuarteroniandA.Valli,Numeri alapproximationsofpartialdi erentialequations,

Springer-Verlag,1994.

28. F.A. Radu, I.S. Pop and P. Knabner,Order of onvergen e estimates for anEuler

impli it,mixed niteelementdis retizationofRi hards'equation,SIAMJ.Numer.Anal.

42(2004),pp.1452-1478.

29. F.A.Radu,I.S.PopandP.Knabner,Onthe onvergen eoftheNewtonmethodforthe

mixed niteelementdis retizationofa lassofdegenerateparaboli equation,Numeri al

Mathemati sandAdvan edAppli ations,A.BermudezdeCastroetal.(editors),Springer

Verlag,2006,pp.1194-1200.

30. F.A.Radu, M.Bause, A.Pre htelandS. Attinger, Amixed hybrid niteelement

dis retizations hemeforrea tivetransportinporousmedia,Numeri alMathemati sand

Advan edAppli ations, K.Kunis h,G.OfandO.Steinba h(editors),SpringerVerlag,

2008,pp.513-520.

31. F.A.Radu, I.S.PopandP.Knabner,Errorestimatesforamixed niteelement

dis- retizationofsomedegenerateparaboli equations,Numer.Math.109(2008),pp.285-311.

32. F.A. Radu, I.S. Pop and S. Attinger, Analysis of an Euler impli it - mixed nite

element s hemefor rea tivesolute transport inporous media,Numer.Methods Partial

Di erentialEquations(2009),DOI:10.1002/num.20436.

33. F.A.RaduandI.S.Pop,Newtonmethod forrea tivesolutetransportwith equilibrium

sorptioninporousmedia,J.Comput.Appl.Math.(2009),DOI:10.1016/j. am.2009.08.070.

34. B. Riviereand M.F. Wheeler, Dis ontinuousGalerkin methodsfor owand

trans-portproblemsinporousmedia,Communi ationsinnumeri almethodsinengineering18

(2002),pp.63-68.

35. B.RiviereandM.F.Wheeler,Non onformingmethodsfortransportwithnonlinear

rea tion,Contemporanymathemati s295(2002),pp.421-432.

36. M. Wehrer and K-U. Tots he, E e tive rates of heavy metal release from alkaline

wastes- Quanti ed by olumn out owexperiments and inversesimulations,J.of

Con-taminantHydrology101(2008),pp.53-66.

37. M.WehrerandK-U.Tots he,Di eren einPAHreleasepro essesfromtar-oil

ontam-inatedsoilmaterialswithsimilar ontaminationhistory,ChemiederErde-Geo hemistry

69(2009),pp.109-124.

38. W.A.YongandI.S.Pop,Anumeri alapproa htoporousmediumequations,Preprint

(31)

Number Author(s)

Title

Month

09-30

09-31

09-32

09-33

09-34

M. Günther

G. Prokert

G. Díaz

J. Egea

S. Ferrer

J.C. van der Meer

J.A. Vera

J.H.M. ten Thije

Boonkkamp

M.J.H.Anthonissen

J. Hulshof

R. Nolet

G. Prokert

F.A. Radu

I.S. Pop

Existence of front solutions

for a nonlocal transport

problem describing gas

ionization

Relative equilibria and

bifurcations in the

generalized van der Waals

4-D oscillator

Extension of the complete

flux scheme to

time-dependent conservation laws

Existence and linear stability

of solutions of the ballistic

VSC model

Simulation of reactive

contaminant transport with

non-equilibrium sorption by

mixed finite elements and

Newton method

Sept. ‘09

Sept. ‘09

Sept. ‘09

Oct. ‘09

Oct. ‘09

Ontwerp: de Tantes,

Tobias Baanders, CWI

Referenties

GERELATEERDE DOCUMENTEN

• Er is geen synergistisch effect aan getoond van Curater en Stof PRI L (katoenluis) of Stof PRI E (boterbloemluis), maar deze stoffen alleen gaven wel een aanzienlijke doding van

de Majerou (Vieux-Virton) au Musée Luxembourgeois, Bull. Mertens, Le rejuge protoh is torique de Montauban-sous-Buzenol.. Quoiqu'il soit fort difficile de Ie próuver,

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

Er treedt nu voor de wisselspanning praktisch geen spanningsdeling meer op.lmmers,' we kunnen de transistor vergelijken met een stroombron met een zeer hoge

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

In het noorden van het terrein werden net onder de bovenste afgegraven laag de restanten aangetroffen van een bakstenen vloertje (werkput 3).. Dit was beperkt in oppervlakte en

Voor archeologische vindplaatsen die bedreigd worden door de geplande ruimtelijke ontwikkeling en die niet in situ bewaard kunnen blijven:?. Wat is de