• No results found

Standardized and modular microfluidic platform for fast Lab on Chip system development

N/A
N/A
Protected

Academic year: 2021

Share "Standardized and modular microfluidic platform for fast Lab on Chip system development"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

SensorsandActuatorsB269(2018)468–478

ContentslistsavailableatScienceDirect

Sensors

and

Actuators

B:

Chemical

j ourn a l h o m e pa g e :w w w . e l s e v i e r . c o m / l o c a t e / s n b

Standardized

and

modular

microfluidic

platform

for

fast

Lab

on

Chip

system

development

S.

Dekker

a

,

W.

Buesink

b

,

M.

Blom

b

,

M.

Alessio

c,d

,

N.

Verplanck

c,d

,

M.

Hihoud

e

,

C.

Dehan

e

,

W.

César

f

,

A.

Le

Nel

f

,

A.

van

den

Berg

a

,

M.

Odijk

a,∗

aBIOSLabonChipGroup,MESA+instituteforNanotechnology,UniversityofTwente,7500AE,Enschede,Netherlands bMicronitMicrotechnologiesB.V.,Colloseum15,7521PV,Enschede,Netherlands

cUniv.GrenobleAlpes,F-38000Grenoble,France dCEA,LETI,MINATECCampus,F-38054Grenoble,France

eEVEON,345rueLavoisier,38330Montbonnot-Saint-Martin,France fFluigent,1mailduProfesseurMathé,94800Villejuif,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received17October2017

Receivedinrevisedform27March2018 Accepted2April2018

Availableonline22April2018 Keywords: Microfluidicstandardization Platform Modular Commercialization Microfluidicdesign Characterization

a

b

s

t

r

a

c

t

SincetheLabonaChipconceptwasintroducedinthe1990s,alotofscientificadvancementshave occurred.However,largescalecommercialrealizationofmicrofluidictechnologyisbeingpreventedby thelackofstandardization.ThereseemstobeagapbetweenLabonaChipsystemsdevelopedinthelab andthosethataremanufacturableonalargescaleinafab.Inthispaper,weproposeamodularplatform whichmakesuseofstandardizedparts.Usingthisplatform,afunctional-basedmethodofdesigning microfluidicsystemsisenvisioned.Toobtainacertainmicrofluidicfunction,abottom-updesignismade. Thisresultsinmicrofluidicbuildingblocksthatperformamicrofluidicfunction.Thismicrofluidicbuilding blockisthenstoredinalibrary,readyforreuseinthefuture.Keycharacteristicsareshownforseveralbasic microfluidicbuildingblocks,developedaccordingtoafootprintandinterconnectstandardbyvarious playersinthemicrofluidicworld.Suchalibraryofreusableandinteroperablemicrofluidicbuilding blocksisimportanttofillthegapbetweenlabandfab,asitreducesthetime-to-marketbylowering prototypetimecycles.ThewidesupportofkeyEuropeanplayersactiveinmicrofluidics,whichisshown byanISOworkshopagreement(IWA23:2016),makesthisapproachmorelikelytosucceedcompared toearlierattemptsinmodularmicrofluidics.

©2018ElsevierB.V.Allrightsreserved.

1. Introduction

The concept of Lab ona Chip (LOC) and micro total analy-sis(␮TAS)systemswasintroducedin 1990by Manzet al.,one ofthe pioneersin thefield [1]. Seventeen yearslater, the field hasalreadyshowedmajoradvancementbydemonstratingmany promisingconceptsforthevariouscomponentssuchassample prep,separationanddetectionthatarecombinedintoa␮TAS.Yet in2006Whitesidesarguedthatthefieldhadnotyetfullyreachedits potential,discussingthetypicalstrugglesfacedbynew technolo-giesincludingtheeaseofusefornon-experts,andthetransferof technologyfromacademytoindustry[2].Today,microfluidic tech-nologystillhasnotfullybecomemainstreamtechnology.Itappears

∗ Correspondingauthor.

E-mailaddress:m.odijk@utwente.nl(M.Odijk).

thattherearestillmanyhurdlestoovercomewhenmigratingan ideafromacademicsintoaproductreadyforthemarket[3].

Tobridgethegapbetweenacademicresearcheffortsandthe utilizationofmicrofluidictechnologiestoaddressrealworld prob-lems,standardizationisessential[4].Often,monolithic,bywhich Imeanout ofonepart,LabonChipsaredeveloped,integrating severalfunctionsontoasingledevice.Thisapproachoftenleads totherepeateddevelopmentofalreadyexistingconcepts, result-ing inlong development times.The need forhigh investments makesitexclusivelyeconomicforlargevolumes.Instead,a modu-larapproachcouldsignificantlyspeedupdevelopmentandprevent thewasteofdevelopmentresourcesbynot“reinventingthewheel”. Lessdevelopmenteffortisneededinmodularsystemsas standard-izedpartsofthesystemcanbereused.Theelectronicsindustry canbetakenasa goodexample ofwhere suchstandardization workswell.Inthatindustry,standardsexistforalmosteveryaspect frompackagedimensions,tostandardclassesforprintedcircuit boardmanufacturing,tosolderjoints.Thedevelopmentof stan-https://doi.org/10.1016/j.snb.2018.04.005

(2)

S.Dekkeretal./SensorsandActuatorsB269(2018)468–478 469 dardsmovedtheelectronicsindustryfromtheearly“spiderweb

assembly”inthe1950stothecomplexsystem-on-a-chip technol-ogyoftoday.

Toshowthatstandardizationdoesn’texists,atleastuptothe levelofinteroperability,inthestateoftheartmodular microflu-idics,alistismadeinTable1.Severalpapersandindustrialefforts toproducemodularmicrofluidicsystemsareshown.Itcanbeseen thatalthoughthesystemsaremodular,theyaredefinitelynot stan-dardizedandtherebypreventinginteroperabilitybetweenvarious modularsystems.Thetableshowselementsneededtoobtaina functionalsystem,frominterconnectstofunctionalblocks.Inour approachstandardizedfootprintsandstandardizedinterconnect gridsareused,weseeafuturewithinteroperablemodularblocksto buildmicrofluidicsystems.Lookingtowardsthefutureandbigger productionvolumes,severalexamplesareincludedwhere modu-larityisusedduringthedesignphase;linkingfunctionstogether, butstillproducingamonolithicdevice.

Oneoftheearliestmodularconceptswasdevelopedby Lam-merinket al.,introducingtheconcept ofa MixedCircuit Board (MCB)[5].Theboardconsistedofaprintedcircuitboardanda poly-carbonatesubstrate,respectivelyresponsiblefortheelectricaland fluidicinterconnectsbetweenactuatorandsensormodules.Others focusedmoreontheinterconnectitselfGonzalezetal.[6]described aself-aligningreversibleinterconnect.Greyetal.[7]useda differ-entapproachusingplasticpressfitcouplerstoconnecttubingto asiliconsystem.Asystemsimilartothemixedcircuitboard,but usinganodicbondinginsteadofadhesives,tomountthefunctional partsontheinterconnectpartswasdevelopedbySchabmulleretal. [8]

Initialeffortstoproduceamodularmicrofluidicsystemoften usedsiliconorglass,wellknownfromMEMStechnology.However, adisadvantageofthesematerialsisthattheyareonlyeconomically feasibleiflargenumbersareproduced.Forthefunctionalmodules thisisnotaproblem,asthesecanbemanufacturedinhighnumbers. However,theinterconnect solutionis oftenapplication-specific andthustendstobeproducedinlowernumbers.

Wegoetal.[9]lookedatprinted circuitboardtechnologyto fabricateintegratedmicrosystems.Printedcircuitboard technol-ogyhasless accuratedimensionaltolerancesthen conventional fabricationmethodsusedinthemicrofluidicfield.Howeveritis cheaper,especiallywhenproducinglownumbervolumes.Bythe introductionofpolymerlayersinthestack,theywereableto per-formmicrofluidicfunctions.

Othermaterialswerealsoinvestigatedforuseinmodular sys-tems.Microfluidicassemblyblocks,(MABs)madefromPDMSwere introducedbyRheeetal.[10].Theyaremountedsidebysideand sealedbyanadhesive.

Lego©wasaninspirationforVittayarukskuletal.[15]who pro-ducedafullyreversiblemicrofluidicsystembasedonPDMSLego blocks.TheelasticityofPDMSwasusedtoprovideasealbetween theblocks.Anotherplug-and-playsystemwasdevelopedbyYuen [12].Stereolithography3Dprintingwasusedtofabricatetheblocks forthissystem,whichwereinterconnectedusingmini-Luer con-nections.Miserendino[23] showedasystemusedaclampingto seal,withpatternablesiliconemicrogasketsbetweenthebaseplate andfunctionalblocks.

Strohmeier et al. [11] used a differentapproach when they definedafunctionalunitcell.Withthesefunctionalunitcellsthey designedcentrifugalmicrofluidicsdevices.Usingmodularityinthe designphasewhilestillproducingamonolithicdevice.Milletetal. [17]achievedsomethingsimilar,butthenforPDMSdevices.On thepouringmoldtheyaddedAcrylonitrilebutadienestyrene(ABS) stringsbetweenthevariouscomponentstocreateintegrated tub-inginthecasting.

Themicrofluidicindustryitselfhasalsolookedforsolutionsto interconnectmicrofluidicsystems.Oneexampleofsuchasolution

istheMATASplatform[20,24].ThisplatformisbasedonPCB tech-nologywiththeadditionofanextralayerforthefluidics.Blocks implementingmicrofluidicfunctionsareplacedinsidemilled cav-itiesin thePCBand areconnectedtothefluidiclayerbyusing O-rings. The blocks are fixed in place by solder. Another plat-formwasdevelopedbyEpigem[21]thatissimilartotheMATAS platform,butinsteadofPCBtechnologyitisfullybasedon thermo-plastics.Labsmithoptedforaslightlydifferentsysteminwhichthe modulesaremountedonaboardandforinterconnectionstubing isused.

Fromtheaboveitisclearalargevarietyofmodularplatforms exists,bothintermsofthelevelofintegrationinasingle mod-uleandtheplacewherethemodularityisimplemented.Hereby, makingreuseofthemodulesofseveralplatformsdifficult.

Inthefuture weforesee modularityinboth;physicalblocks intheendproductandalreadyduringthedesignprocess.Atone endofthespectrumistheunitcelloperationapproachduringthe designphaseusedbyStrohmeieretal.[11]andtheplug-and-play systemsofYuenetal.[12–14]attheother.However,itwouldbe beneficialiftheseapproachescouldbeusedinconjunctionwith each other;forexampleiftheauxiliary componentsofthe sys-temarein aplug-and-play fashionwhilethemain chipcanbe designedusingfunctionalunits.Inthispaperwefocusonthe plug-and-play systemfor auxiliary components.To reachthis, some degreeofstandardizationisneeded.Unfortunately,developmentof thesemodularplatformsuntilnowisdonemostlyindependently bysmallgroupsofinterestedparties.Themodularplatform pro-posedin thispaper stronglyarguesforstandardization.A large multinationalconsortiumisbackingandco-developingthis stan-dard[25].Thefocusliesontheabilitytointerconnectpartsfrom varioussupplierstogether.Withthiswehopetoattaina flourish-ingecosysteminwhichmicrofluidicpartsproducedusingvarious techniques (polymer, glass,and silicon) are both available and interconnectable.Tohelptheenduser,alibraryofstandardized partsandfunctionalityisalsodeveloped,supportedbysoftware managingthecompletepipelinefromdesigntotheproductionofa microfluidicsystem[26].Ifwedrawanotheranalogyfromthe elec-tronicsindustry,thislibrarycouldberegardedasthecatalogofbig componentsupplierssuchasNewarkandFarnell.Using schemat-icsandroutingsoftware,thesecomponentstogetheraredesigned tofunctionascomplexelectronicsdevices.

Following our approach, we make use of a combination of microfluidic building blocks (MFBB) and fluidic circuit boards (FCBs).Inthisapproach,theMFBBcontainsthefluidic function-ality and the FCB connectsallthe buildingblock togetherin a microfluidicsystem.BoththeMFBBsandFCBsaredesignedand fab-ricatedbyindustrialandacademicpartnersaccordingtoguidelines, documentedinaISOworkshopagreement[27–29].This standard-izedapproachmakesitpossibletoreusemodulesandhavethem interoperablebetweenseveralpartners. Moreover,it allowsfor atop-downdesignapproachsavingvaluabledevelopmenttime. Havingindustrialpartnersinsidetheprojectgivestheprospectof havingcommercialofthe-shelf-partsavailableinthefuture.

2. Standardizationanddesignconcepts

2.1. Definespecificationfromrequirements

Whendesigningamicrofluidicsystemitis,ofcourse,important toknowwhattherequirementsfortheindividualsystemare. Mov-ingforward,decisionsaremadewithregardtothespecifications ofthemicrofluidicsystem.Fromthispoint,astartismadewith thephysicalrealizationofthesystem.Inthemicrofluidicworld,a bottomupapproachisoftenusedwherethefabricationtechnology playsalargeroleinthedesignconsiderations.Animportant

(3)

advan-470 S. Dekker et al. / Sensors and Actuators B 269 (2018) 468–478 Table1

overviewofmodularityinmicrofluidics.

Inventor(s) Typeoffluidicpart Mainmaterial Totalsystem Typicalapplicationfield ModularinPhysical part/design

Reversible

Academics

Lammerinketal.[5] Functionalblocks connectedbyabaseboard.

Si/Glass Yes Chemistry Modularityinphysicalsense No,modulesare

permanentlyfixedtothe baseboard

Gonzalezetal.[6] Interconnectsforassembly ofamodularsystem

Si/Glass No,onlyfocusedon interconnect

Broadapplication Modularityinphysicalsense Yes,SiliconeO-ringare usedsotheconnectionis reversible.

Grayetal.[7] Interconnectsforassembly ofamodular

system

SI/Glassdevice PlasticCoupler

No,onlyfocusedonworld tochipinterconnects

Broadapplication Modularityinphysicalsense Yes,butanewcoupler mightberequired Schabmulleretal.[8] Functionalblocks

connectedbyabaseboard.

Si/Glass Yes Chemistry Modularityinphysicalsense No,modulesareanodically

bondedtothebaseplate. Wego[9] Functionalblocksmadein

PCBtechnology

CopperplatedFR-4 No,afewcomponentare showninPCBtechnology

Broadapplication Modularityinphysicalsense Yes,tubingisusedfor interconnection. Rhee[10] Functionalblockconnected

directlytoeachother

PDMS Yes Biological,PCRandcellculturing Modularityinphysicalsense No,Adhesiveisusedto interconnecttheblocks Strohmeieretal.[11] Unitoperationsconnected

togetherinamonolithic centrifugaldevice

Mainlypolymer Yes Broadapplication Modularityindesign No,amonolithicdeviceis fabricated

Yuen[12–14] Systembuildentirelyout ofblocks

Polymerwith3dprintingas structuringmethod

Yes Simplesystems Modularityinphysicalsense Yes,aminiLuerormagnet isusedtoconnectthe blocks.

Vittayarukskuletal.[15] Systembuildentirelyout ofblocks

PDMS Yes Simplesystems Modularityinphysicalsense Yes,compressionofPDMS

isusedtomakeafluidic seal.

Shaikhetal.[16] Interconnectsaremadeon abaseplatecontaining multiplefunctionalities.

PDMS Silicon

Yes Biochemicalanalysis Modularityindesign Noteasy,asthePDMSis bondedtotheSilicon. Milletetal.[17] Functionalunitsare

connectedby3dtubes

PDMS Yes Biochemicalanalysis Modularityindesign No,amonolithicPDMS

deviceiscasted. Bhargavaetal.[18] Systembuildentirelyout

ofblocks

Polymerwith3dprintingas structuringmethod

Yes Dropletbasedapplications Modularityinphysicalsense Yes,anelasticreversible sealisused

Loskilletal.[19] Differentorganchambers, interconnectablewith connectors

PDMS Yes Organ-on-a-chip Modularityinphysicalsense Yes,connectionsmade

withtheconnectorblocks arereversible

Industry

Lionix[20] Functionalblocksare mountedinaPCB/base board

FR-4 Si/Glass

Yes Chemistry Modularityinphysicalsense Yes,modulesare

mechanicallyfixedby solderingandsealingis donewithO-rings. Epigem[21] Functionalblocks

connectedbyabaseboard

Polymerbased Yes Broadapplication Modularityinphysicalsense Yes,modulesare mechanicallyhelddown.A PTFEferruleprovidesthe seal

Labsmith[22] Functionalblocksmounted onabaseboard,connected bytubing

Several Yes Broadapplication Modularityinphysicalsense Yes,Tubingconnectorsare reversible

(4)

S.Dekkeretal./SensorsandActuatorsB269(2018)468–478 471

Fig.1.Standardizeddimensions:a.MFBBoutlinedimensions,b.Gridstartingposition,c.Gridpitchandd.Portannotationandpreferred(bold)portpositions.,e.cross sectionoffiguredinatypicalusagescenario,wheretheMFBBisclampedtotheFCBandthesealbetweenthemisfacilitatedbyanO-ring.

tageofusingamodularplatformisthatthefunctionaldesignand physicaldesigncanbedecoupled.Again,usingtheanalogywiththe electronicsindustry,thiswouldtranslatetothefunctionaldesign describedbyaschematic,whilethephysicaldesignisthelayout ofall thetransistorsinside anintegratedcircuit. Accordingly, a topdowndesignschemecanbeusedforthedevelopmentofthe microfluidicsystem.

2.2. Functionalvs.physicaldesign

Thisdecouplingofthefunctionaldesign andphysical design makesit possibletowork withstandardized functional blocks, whichonlyneedtobedesignedandcreatedonce.These standard-izedfunctionalblocksgiveamicrofluidicdesignertheopportunity tofocusmerelyonthefunctionofamicrofluidicsystem.Forthis systemofstandardizedmicrofluidicblocks,mostofthecommon functionsshouldbeavailabletothedesignerinastandardform. Thedesignershouldalsohavetheopportunitytodesignnewblocks thathaveaspecificfunctionality,butwhichstillconformstothe standard.AdesignercanbeassistedbymakinguseofaCAD sys-tem.Alibrarycontainingthefunctionalbuildingblockshelpsthe designertoquicklycreateanewmicrofluidicsystemandprevents thereinventionofthewheeloftenseeninmicrofluidics.

2.3. Flexibility

Theflexibilityinthissystemisthefreedomtochoosehowto interconnectthebuildingblockstogether.Thisflexibilityfindsits implementationintheFCB.Thismeansthateachsystemhasits owncustomimplementationofaFCB.Nevertheless,theinterface betweentheFCBandtheMFBBremainsstandardized.Thisprovides practicaladvantagessuchasthesecondsourcingofpartsfrom var-ioussuppliersandtheabilitytointerchangebuildingblocksthat haveslightlyvaryingfunctionality.Mostoftheinterfacing hard-wareissituatedintheFCB,sotheinterfacingcanbemadetofitthe requirementsthatarespecifictoaparticularapplication.

3. Standardizationinphysicaldimensions

TomakethisbuildingblockandFCBcombinationwork, inter-operabilitybetweenthevariouscomponentsisneeded.Therefore,

thereisaneedtostandardizetheoutsidedimensions.Thismakes itpossibletouseastandardizedsystemtoconnectthebuilding blockstotheFCB.Toaligntheports,a standardgridisusedas showninFig.1.Inletandoutletsareplacedonthisgrid. Further-more,thestandarddictatesthatthesealingbetweentheFCBand MFBBisrealizedintheFCB,whichsealstotheflatbottomofthe MFBB.Howthissealisrealizedisuptothemanufacturerofthe FCB,providingapossibilityforindustrialpartnerstodistinguish themselves.AnexamplewithO-ringsisshowninFig.1E.

Withinthestandardframework,thereareseveraloptions(see [28]forfulllist)fortheoutsidedimensionsoftheMFBB:forsmaller chips15×15mmoramultipleof15mmsuchas15×30mm.For largerchips,thestandardincludesouterdimensionsof75×25mm, 75×50mmand84×54mm.Theselargesizesaresimilartothe alreadycommonformatssuchasthemicroscopyslide,orthecredit cardinthemicrofluidicworld.

Thepitch,ascanbeseeninFig.1,isalsochosentobecompatible withalreadycurrentlyusedformats(e.g.microtiterplate)inthe microfluidicworld,whilestilltryingtoobtainasmallpitchsothat highinterconnectapplicationsarepossible.

Besidesfluidicinterconnects,amicrofluidicsystemsometimes needsaninterconnectwhichisdifferentthanafluidicone. Electri-calandopticalinterconnectsaretypicalexamples.Intheelectronic field,therearealreadyplentyofstandardsandproductsavailable asitisamuchmorematuremarket.Theguidelinesalso recom-mendusingthesestandardproductsforexampleconnectorsand springloadedprobes,buttogrouptheinterconnectsinaspecific areaontheMFBB.

4. Methods

Theaboveparagraphsdescribeanewwayofdesigning microflu-idicsandthecorrespondingnecessarystandardization,whichthe MFManufacturingconsortium[25]isattemptingtorealize.Inthis paper,thefocusisonvariouspartsneededtodesignaccordingto thisnewmethod,withafocusonthetypicalauxiliarypartsused inamicrofluidicsystem:inletreservoir,pump,flowandpressure measurementandinterfacing.Ourapproachwillalsotostaytrue totheLabonaChipconcept,ratherthantheChipinaLabwhich iscurrentlyoftenseen.Tobeabletodesignwiththisfunctionality drivenapproachasmallpartofalibraryofbasicbuildingblocksis

(5)

472 S.Dekkeretal./SensorsandActuatorsB269(2018)468–478 proposedinTable2.ForsixoftheMFBBs,amoredetailed

descrip-tion,includingfabricationdetailsanddevicecharacterizationtests, aregiveninthefollowingparagraphs.

4.1. DifferentialpressuresensorMFBB

The pressure sensor building block (as shown in Table 2A) is a package to connect to a Honeywell differential pressure (24PCAFA6D).Thispackagemakesitpossibletofitthissensortoa FCBusingastandardizedinterface.Togetherwithahydraulic resis-torintheFCB(e.g.asimplechannel),thisbuildingblockcanalso serveasaflowsensorbymeasuringadifferentialpressuredrop acrossthischannel.

ThematerialofchoiceforthesebuildingblocksisaCOC(Topas grade6013, Axxicon,The Netherlands).Thismaterial is chosen becauseofitschemicalresistancetoawiderangeofchemicalsand theopportunitytoscaleupproductionapplyingmethodssuchas hotembossingorevenroll-to-rollhot embossing.Thisprovides theabilitytosuitapplicationsthatwillbesubjecttohighchemical constraintsandhigherproductionvolumesinthefuture,whilefor quickprototypingmicro-millingwasused.Tobondthefourlayers together,solventassistedthermalbondingwasused[30].APCB wasmountedontopoftheMFBBtoprovideelectrical interconnec-tiontotheMFBBusingaflatflexcable.

4.2. ClampingMFBB

ToconnectthebuildingblocksfortheFCB,severalclamping connectorsaredeveloped.TheseclampsarescrewedontotheFCB tofixtheMFBBand ensureport alignmentand compressionof theO-ringstoachieveaneffectiveseal.ClampsA(Table2E)and B(Table2F)areusediffluidicconnectionsaremadebetweenFCB andMFBB.ClampC(Table2G)isusedifadirectfluidicconnection totheMFBBorFCBviatubingisrequired.Allclampsarefabricated bydirectmilling.ThetubingusedincombinationwithclampCis connectedusingferrulestoformatightfittotheMFBBorFCB. 4.3. ValveMFBB

CEA-LETIdevelopedapneumaticvalve(seeTable2B), consist-ingofanassemblyofCOClayers,includinganEPDMdiaphragm [31].Thisvalveispneumaticallyactuated.Thedesignisadaptedto theend-userapplication(flowrate,deadvolumes,anddiaphragm material). Depending on the design, the flowrate can reach 50mL/min,andthepneumaticpressuretoclosethevalveis engi-neeredtobebetween100kPaand500kPa.Thefootprint(layout, I/Oposition)isidenticalforallthevalves.

4.4. PumpMFBB

ThepumpMFBBisbasedonthepreviouslypatented[32] oscil-latingrotarypistonpumpprinciple(seeTable2D).Thispumpis manufacturedusingthermoplasticinjectionmoldingusing poly-mersandelastomersthatcanbeadaptedtotheapplication. 4.5. ReservoirMFBB

ThereservoirMFBB(seeTable2C)isfabricatedbymillingablock ofPMMAasatopholderfor1.5mLHPLCsamplevials.Thistopblock alsocontainsholesforthreeneedles;twooftheseneedlespuncture theseptumofthevialtobeabletoapplypressureinsidethevial andcollecttheresultingflowofliquid.Thethirdholeisusedfora bluntneedlethatfitsontotubingandconnectstheexternal pres-surepumptotheMFBB.Alayercontainingmicrofluidicchannelsis

Fig.2. FCBwithintegratedvalves.

solvent-bondedtothistopblocktoroutethefluidsorgasesfrom theseneedlestothedesiredpositions,asdefinedbythestandard. 4.6. ReactionchamberMFBB

Thereactionchamberisacustom30×15MFBB(seeTable2H). Thevolumeofthechamber,thefiltersandtheembeddedreagents (powders,beads...)areadaptedtotheapplication.Somedesigns integratepneumatic valves(seeTable2B).In theexample,two 20␮m stainless steelfilters are embeddedin thechamber and 50␮mbeadsarepackedbetweenthetwofilters.TheMFBBis com-posedoftwoCOClayers(orthreedependingonthedesigns).

5. Fluidiccircuitboard

TheFCBisalwaysacustompartthatfitsaspecificapplication andinterconnectsthebuildingblocksinaspecificway.Three differ-enttypesofFCBarediscussedwithdifferentlevelsofcomplexity. 5.1. Simplepolymer-basedFCB

ThisFCBwasdevelopedtotestthepressuresensorMFBB,to evaluatehowitfunctionsasaflowsensor.ThisFCBisfabricated inasimilarwaytotheMFBBandconsistsoftwolayersofZeonor 1020Rwhichcontainsaremilledcavitiesandchannels.An assem-bledversionofthisFCBisshowninFig.3.Thechannelsmilledinto thefirstlayerareclosedoffbythesecondlayerbymeansofsolvent bonding.Thecavitiesmilledinthetopsideofthesecondlayerare opentoacceptthebuildingblocksandtoensureaccurate align-mentbetweenthechannelsintheFCBandthoseinthebuilding block.TheinterconnectbetweentheFCBandthebuildingblockis formedbystandardVitonO-rings.TherearecavitiesintheFCBto holdtheO-ringsinplace.

5.2. Complexpolymer-basedFCB

ThisFCB shown inFig. 2incorporates integrated membrane valvesforcustomizedflowcontroltotheMFBBs.Thesemembrane valvescanbepneumaticallyactuatedtodirectflowbothfromand toMFBBsattachedtotheFCB.Thisallows,forinstance,the direct-ingoffluidstoamixerchamberandholdtheseliquidsinsidethe chamberduringthemixingprocessbeforedirectingthefluids fur-ther.ThisFCBisfabricatedinasimilarfashiontothatdescribedfor thesimpleFCBalsousingmillingandthermalcompressionsolvent bonding.WhatmakesthisFCBcomplexisthatitconsistofsix lay-ersincludingamembranelayer.Eachlayerconsistsof1.5mmclear

(6)

S. Dekker et al. / Sensors and Actuators B 269 (2018) 468–478 473 Table2

Overviewofbuildingblockswiththeircharacteristics

Buildingblockwithphoto Description Mostrelevantcharacteristics

A.Differentialpressuresensor Abuildingblocktomeasurepressure.Duetothe differentialnatureofthemeasurement,aflow

measurementisalsopossible,bymeasuringpressuredrop overalengthofchannel

Flowcharacterization(R2=0.98928),Errorbarsindicatethe hysteresisoverthe1repetitionofthereferencepattern.

B.Pneumaticvalve15×15mm Avalvebuildingblocktoconditionallyrouteliquidsina microfluidicsystem.Controlledbypneumaticactuation.

PressureneededtocloseMFBBvalve.Lineforvisualguidance.

C.1.5mLFluidreservoir A1.5mLfluidreservoirwhichcanbeusedtoactivelypush liquidtroughamicrofluidicsystembyapplyingaregulated pressureabovetheliquid.

InternalVolumeof1.5mL

D.Highvolumepump Apumpcapableofobtaininghighflowratesevenwhena largebackpressureexists.

Pumpingperformanceatconstantactuation,withrespectto changingbackpressure.

(7)

474 S. Dekker et al. / Sensors and Actuators B 269 (2018) 468–478 Table2(Continued)

Buildingblockwithphoto Description Mostrelevantcharacteristics

E.15×15mmclampMFBB AclamptomountaMFBBwith15×15mmouter dimensionstothefluidiccircuitboard.Alsocompresses theO-ringbetweentheFCBandtheMFBBtofacilitate sealing.

ThisclampissuitedtomountdevicesshowninTable2A–C toafluidiccircuitboard.

Toplineforincreasingpressure,bottomlinefordecreasing pressure.Lineforvisualguidance.

F.15×30mmclampMFBB AclamptomountaMFBBwith15×30mmouter dimensionstothefluidiccircuitboard.Alsocompresses theO-ringbetweentheFCBandtheMFBBtofacilitate sealing.

Thisclampissuitedtomountthedeviceshownin

Table2H.

Similarcharacteristicsto15×15mmclamp

G.Fluidicseal30×15mm clampMFBB

Abuildingblockusedtoconnect10individualtubestoa FCBatonce.Elastomericferulesareusedtosimultaneously facilitatesealingbetweentheFCBandthetubes.

Similarcharacteristicsto15×15mmclamp

H.Customreactionchamber 30×15mmMFBB

(8)

S.Dekkeretal./SensorsandActuatorsB269(2018)468–478 475 polystyreneplatesandaSEBS(styreneethylenebutyleneethylene)

membranelayer.ThisSEBSmembranewaspreciselycutbyaCO2 laser.

5.3. Glass-basedFCB

Insomecases,polymerscannotbeusedduetotheirmaterial properties.Foroneofthesecases,aglassFCBisdeveloped.This FCBconsistsoftwoborosilicateglasslayers.Bothglasslayershave wetetchedchannelsusingtwo depthsof75 and200␮m.After bondingofthesetwolayers,thefinalchannelswillbe approxi-mately150␮mand400␮mindiameter.Thetoplayerhaspowder blastedthrough-holesfortopdownaccess,whereasinasecond designincludedinthesamebatch,anotherFCBallowsfordirect capillarygluinginsidethedeepchannelsfromtheside.Onthetop surfaceoftheFCB,platinumelectrodesaresputteredtoathickness of125nm,usingatantalumseedlayerof15nmtoimprove adhe-sion.Theseplatinumelectrodesareusedtocreatearoutingforthe electricalactuationoftheMFBBvalvesusedincombinationwith thisFCBdesign.TheconnectionbetweentheseMFBBsandtheFCB aremadeusingwirebonds.ThisFCBtherebydemonstratesboth fluidicandelectricalfunctionalitybyprovidinginterconnectsfor bothdomains.

6. Testmethods

6.1. Differentialpressuresensor

Thepressuresensorbuildingblocksarecharacterizedbothas apressuresensorandasaflowsensor.Forboththepressureand flowcharacterization,aknownpressureorflowisappliedtothe systembyapressuredrivenpump(FluigentMFCS-4C,France).A flowsensor(FluigenttypeL,France)wasusedinacontrolloopto obtainareliableflowrate.Whileapplyingvariousflowratestothe system,theoutputsignalofthebuildingblockisrecordedwitha custom-madeLabview2014applicationandMyDAQdata acqui-sitionsystem(National Instruments,TheNetherlands).Boththe pressureand flow areappliedina staircasepattern whichwas cycledfourtimes.Thepressure/flowofeachstepinthestaircase patterniskeptconstantataplateauvaluefor30s.Fig.3showsthe completetestsystem,whichisbasedonthesimplepolymerFCB, andincludestheflowsensorMFBB.Itconsistsoffourstandardized buildingblocksconnectedserially,startingwithaninletblock, fol-lowedbythedifferentialpressuresensor,ablockingplatetoallow forfutureextensions,andanoutletblock.

6.2. ValvesintegratedinthecomplexpolymerPCB

Thevalvesintegratedinthecomplexpolymer-basedFCBare testedusingapressurepump(FluigentMFCS-EZ)fittedwithan in-lineflowsensor(FluigenttypeL).Thepressuretothevalvecontrol channelisvariedfrom0tomax.200kPa,whiletheresultingflow isrecorded.Thisisrepeatedforthreedifferentpressures(40,60, 80kPa)appliedtothereservoirholdingtheliquidflowingthrough thevalve.

6.3. ValveMFBB

AvalveMFBBischaracterizedusingacustomFluigenttest plat-formincludingatwo-channelpressure regulatorandanin-line flowsensor(FluigenttypeXL).Thesystemisrunthrougha ded-icatedLabVIEW(NationalInstrument)interfaceusingtheFluigent SDKthatprovidesafullyautomatedoperationanddataanalysis. Thepressureneededtoactuatethevalveisvariedfrom0to100kPa in5kPa steps.For eachstep,theflow rateis recordedduringa periodof1s(10pointsevery100ms)afterwaitingfor3stoensure

thesystemisinasteadystatecondition.Thisoperationisrepeated forthreefluidinletpressures(25kPa,50kPaand100kPa).

6.4. PumpMFBB

The pump MFBB is characterized using a measurement of thedisplacementvolumeinvariousbackpressureconditions.The backpressurepressureiscontrolledusingaclosedcontainer,the pumpisactuatedataspeedof30rpmforagivennumberofcycles. Theobtainedfluidvolumeallowsthemeasurementofthepump displacement.Thetestisrepeatedforseveraldownstream pres-sures.Theobtaineddisplacementwithabackpressureof0kPais normalizedto100%.Theefficiencyofthepumpiscalculatedbased ontheabilitytosustainthisdisplacementathigherbackpressures.

6.5. ClampingMFBB

ThesamesystemasthatshowninFig.3isusedforleaktesting. TheclampingMFBBwasattachedtotheFCBusingfourboltsfor eachMFBB.AVitonO-ring,placedinarecessintheFCB,provides thesealbetweentheMFBBsandtheFCB.Onlyaninletblockwas used,whiletheotherportsontheFCBwerecappedbyablocking plate.Totestforleaks,thesystemwasfilledwithDIwaterbefore positioningthefinalblockingplate.Thepressureattheinletwas appliedbyapressure-drivenpump(FluigentMFCS-4C,France)ina rangefrom0kPato600kPa.Aflowsensor(FluigenttypeL,France) wasplacedinlinetocheckiftheflowremainedatzero.Thepressure wasappliedinastaircasepatternbothupwardsanddownwards. Thesystemwasallowedtocometoequilibriumbeforetakinga flowmeasurement.

7. Resultsanddiscussion

7.1. Characterization

7.1.1. DifferentialpressuresensorMFBB

Repackagingthiscommercialpressuresensor,tocomplytothe new standard, does not negatively impact its excellent perfor-mance.Thepressureresponsestillbehaveshighlylinear.Withthe MFBBconnectedtothesystemshowninFig.3,itsperformance asaflowsensorwasalsoevaluated.ThefigureinTable2Ashows thesensoroutputvoltageforvaryingflowrates.Theoutputofthe flowsensorisverylinear(R2=0.98928).However,asmall devia-tionfromperfectlinearbehaviorcanbeobserved.Thisisprobably causedbythefactthatthereferenceflowsensor(FluigenttypeL) wasoperatingatlowflowrates,outsideofitsoptimumoperating range.Thissuspicionisconfirmedbycheckingthemeasuredflow bytheMFBBasafunctionoftheappliedpressurebythepump,we againseeahighlylineartrend.

7.1.2. HighvolumepumpMFBB

TheMFBBpumpisabletodisplace300␮Lpercycle,achieving flowratesupto90mL/min.Anotherkeyfeatureisitsself-priming, valveless, blockingnature:makingthepumpsuitedtoparticle loadedliquids.Moreimportantly,nofluidflowthroughthepump ispossiblewhenthepumpisnotdriven.Thisisanadvantagewhen eitherhighorlowpressuremustbemaintainedattheportsofthe pumpbeforeorafterpumpingphases.ThefigureinTable2Dshows asustaineddisplacementforvariousbackpressures.Thediaphragm pumpisnotabletosustainaconstantdisplacementforthevarious backpressures.Moreover,thepumpMFBBisalsoreversibleasit behavesinexactlythesamewaywhentheactuationdirectionis reversed;theinletbecomingtheoutletandviceversa.

(9)

476 S.Dekkeretal./SensorsandActuatorsB269(2018)468–478

Fig.3. CompletesystemtomeasureflowinfluidiccircuitboardwithmountedMFBBs.

Fig.4. Closingpressureofanintegratedvalve.Lineforvisualguidance.

7.1.3. ValveMFBB

ThefigureinTable2BshowstheclosurebehavioroftheMFBB valve.Theresultsshowsthatbyapplyingsufficientpressuretothe controlline,thevalvecanbeclosedforallthreeinputpressures. Whenpressureshigherthanthefluidpressureareappliedtothe controlline,theflowisreduced.

7.1.4. IntegratedFCBvalvefromthecomplexFCBdesign

Fig.4showstheclosurebehavioroftheintegratedvalvesinthe complexFCBdesign.In Fig.4,three linesarevisibleforvarious pressures(Ps)appliedtothereservoirholdingtheliquidflowing throughthevalve.Asexpected,thevalvesareabletocloseandstop theflowifsufficientpressureisappliedtothecontrolchannels.A controlpressureequaltothepressureappliedtotheliquidreservoir resultsinclosureofthevalve.

7.1.5. ClampingMFBB

ThefigureinTable2EshowstheO-ringsealsbetweentheFCB andMFBBuptoapressureofatleast600kPa.Whenthepressureis increasedfrom0to100kPathereisaslightpositiveflow,whereas forthedecreasingstepstheoppositeeffectisseen.Thiscanbe explainedbytheairthatwastrappedinthesystembeing com-pressedandrelaxing,allowingliquidtoflowintothesystemand outagain.

7.1.6. Designconsiderations

The current stateof standardization is compatible with fre-quently used fabrication technologies, including less accurate technologieslikedirectmilling.Thisresultsinrelativelylarge build-ingblocksformicrofluidicsystems,withlongchannelstoconnect theseblocks.Trade-offs betweenforexample dead-volumeand pressure dropover thechannelsneed tobemade. Thevarious 90◦ corners,thefluid encounters,traveling fromtheFCB tothe MFBBandbackcanhaveunintendedbehaviorlikebubbletrapping, addingdeadvolumeormixing.Thesedrawbacksofamodular plat-formarenotnecessarilyaproblem,byintegratingsensitiveparts intheMFBBandhavingrobustinputandoutputsontheMFBB.

8. Conclusions

Inthispaper,wehaveproposedamodularplatformthatuses standardmicrofluidicbuildingblocks.Togetherwitharapid man-ufacturing processes, this demonstrates a unique platform for quickandstraightforwardresearchanddevelopment.Thisis espe-cially important to reduce the existing gap for applicationsto bridgethelab-to-fabgap,byreducingthetime-to-market.Thisis mainlyachievedbyseparatingthefunctionalandphysicaldesign byusingatop-downdesign approach.We havedeveloped sev-eralbuildingblockswithbasicfunctionalityincludingreservoirs, valves,flowandpressuresensors,andahighvolumepump. Dur-ingdevelopment materialswerechosen tobe compatible with quickprototypingfabrication,butalsoscalabletoother manufac-turingtechniquestoachievehighervolumes.Weshowhowthese buildingblockscanbecombinedbyusingaFCB.Theuseof stan-dards,inboththeMFBBandinterconnects,allowsstraightforward andrapiddevelopmentofearlyprototypes.Moreover,it demon-stratesthecombineduseofavarietyoffabricationtechnologies inseveralmaterialssuchasglass,polymersandsilicon.The com-bineduseoftheseisdifficulttoachieveinatraditionalmonolithic lab-on-chipdevice.Inthefuture,wewilldevelopmorebuilding blockstoextendourlibrary.Thislibrarywillbemadeavailable in2017throughtheMicrofluidicsManufacturingwebsite[25]and on-linethroughamarketplace[26]toenablebroadadoptionbythe microfluidicscommunity.ThewidesupportofkeyEuropean play-ersthatareactiveinbothmanufacturing,designandequipmentfor microfluidicsiswhatwillmakethedifferencecomparedtoearlier attemptsatmodularmicrofluidicsdesign.

Acknowledgementsandcontributions

HennevanHeeren(EnablingMNT)isgratefullyacknowledged forhisinputonstandardizationinthispaper.HansdeBoerandJan vanNieuwkasteeleareacknowledgedfortechnicalsupport.

(10)

S.Dekkeretal./SensorsandActuatorsB269(2018)468–478 477 ThisworkwassupportedbyENIACJointUndertaking (JU),a

public-privatepartnershipfocusingonnanoelectronicsthatbrings together ENIAC Member/Associated States, the European Com-mission,andAENEAS(anassociationrepresentingEuropeanR&D actorsinthisfield).

ThevalveMFBBisdevelopedbyCEA,boththecomplexpolymer andglassFCB,andtheclampsaredevelopedbyMicronit.Eveon developedthehighvolumepumpMFBB,whilethepressure/flow sensor,liquidreservoir,andsimpleFCBisdevelopedbythe Uni-versityofTwente.

References

[1]A.Manz,N.Graber,H.M.Widmer,Miniaturizedtotalchemicalanalysis systems:anovelconceptforchemicalsensing,Sens.ActuatorsBChem.1 (1990)244–248,http://dx.doi.org/10.1016/0925-4005(90)80209-I. [2]G.M.Whitesides,Theoriginsandthefutureofmicrofluidics,Nature442

(2006)368–373,http://dx.doi.org/10.1038/nature05058.

[3]R.Mukhopadhyay,Microfluidicsontheslopeofenlightenment,Anal.Chem. 81(2009)4169–4173,http://dx.doi.org/10.1021/ac900638w.

[4]H.vanHeeren,Standardsforconnectingmicrofluidicdevices?LabChip12 (2012)1022,http://dx.doi.org/10.1039/c2lc20937c.

[5]T.S.J.Lammerink,V.L.Spiering,M.Elwenspoek,J.H.J.Fluitman,A.vanden Berg,Modularconceptforfluidhandlingsystems.Ademonstratormicro analysissystem,Proc.NinthInt.Work.MicroElectromechanicalSyst.,IEEE (1996)389–394,http://dx.doi.org/10.1109/MEMSYS.1996.494013. [6]C.González,S.D.Collins,R.L.Smith,Fluidicinterconnectsformodular

assemblyofchemicalmicrosystems,Sens.ActuatorsBChem.49(1998) 40–45,http://dx.doi.org/10.1016/S0925-4005(98)00035-5.

[7]B.L.Gray,D.Jaeggi,N.J.Mourlas,B.P.vanDrieënhuizen,K.R.Williams,N.I. Maluf,G.T.A.Kovacs,Novelinterconnectiontechnologiesforintegrated microfluidicsystems,Sens.ActuatorsAPhys.77(1999)57–65,http://dx.doi. org/10.1016/S0924-4247(99)00185-5.

[8]C.G.J.Schabmueller,M.Koch,A.G.R.Evans,A.Brunnschweiler,Designand fabricationofamicrofluidiccircuitboard,J.Micromech.Microeng.9(1999) 176–179,http://dx.doi.org/10.1088/0960-1317/9/2/318.

[9]A.Wego,S.Richter,L.Pagel,Fluidicmicrosystemsbasedonprintedcircuit boardtechnology,J.Micromech.Microeng.11(2001)528–531,http://dx.doi. org/10.1088/0960-1317/11/5/313.

[10]M.Rhee,M.A.Burns,Microfluidicassemblyblocks,LabChip8(2008)1365, http://dx.doi.org/10.1039/b805137b.

[11]O.Strohmeier,M.Keller,F.Schwemmer,S.Zehnle,D.Mark,F.vonStetten,R. Zengerle,N.Paust,Centrifugalmicrofluidicplatforms:advancedunit operationsandapplications,Chem.Soc.Rev.44(2015)6187–6229,http://dx. doi.org/10.1039/C4CS00371C.

[12]P.K.Yuen,SmartBuild–Atrulyplug-n-playmodularmicrofluidicsystem,Lab Chip8(2008)1374,http://dx.doi.org/10.1039/b805086d.

[13]P.K.Yuen,J.T.Bliss,C.C.Thompson,R.C.Peterson,Multidimensionalmodular microfluidicsystem,LabChip9(2009)3303,http://dx.doi.org/10.1039/ b912295h.

[14]P.K.Yuen,Areconfigurablestick-n-playmodularmicrofluidicsystemusing magneticinterconnects,LabChip16(2016)3700–3707,http://dx.doi.org/10. 1039/C6LC00741D.

[15]K.Vittayarukskul,A.P.Lee,AtrulyLego®

–likemodularmicrofluidics platform,J.Micromech.Microeng.27(2017)35004,http://dx.doi.org/10. 1088/1361-6439/aa53ed.

[16]K.A.Shaikh,K.S.Ryu,E.D.Goluch,J.-M.Nam,J.Liu,C.S.Thaxton,T.N.Chiesl, A.E.Barron,Y.Lu,C.A.Mirkin,C.Liu,Amodularmicrofluidicarchitecturefor integratedbiochemicalanalysis,Proc.Natl.Acad.Sci.102(2005)9745–9750, http://dx.doi.org/10.1073/pnas.0504082102.

[17]L.J.Millet,J.D.Lucheon,R.F.Standaert,S.T.Retterer,M.J.Doktycz,Modular microfluidicsforpoint-of-careproteinpurifications,LabChip15(2015) 1799–1811,http://dx.doi.org/10.1039/C5LC00094G.

[18]K.C.Bhargava,B.Thompson,N.Malmstadt,Discreteelementsfor3D microfluidics,Proc.Natl.Acad.Sci.U.S.A.111(2014)15013–15018,http://dx. doi.org/10.1073/pnas.1414764111.

[19]P.Loskill,S.G.Marcus,A.Mathur,W.M.Reese,K.E.Healy,␮organo:a Lego®

-likeplug&playsystemformodularmulti-organ-chips,PLoSOne10 (2015)1–13,http://dx.doi.org/10.1371/journal.pone.0139587.

[20]J.Wissink,MATAS.AModularAssemblyTechnologyforHybriduTAS,2000 (Accessed4August2014) http://www.lionixbv.nl/download/pdf/MSTnews-feb2000.pdf.

[21]FerrulesforMicro-fluidicConnectors,2016(Accessed3September2016) http://epigem.co.uk/technology/microfluidics/connectors.

[22]Y.Fintschenko,EducationAmodularapproachtomicrofluidicsintheteaching laboratory,LabChip11(2011)3394,http://dx.doi.org/10.1039/c1lc90069b. [23]S.Miserendino,Y.-C.Tai,Modularmicrofluidicinterconnectsusing

photodefinablesiliconemicrogasketsandMEMSO-rings,Sens.ActuatorsA Phys.143(2008)7–13,http://dx.doi.org/10.1016/j.sna.2007.07.019. [24]M.Gilde,H.vandenVlekkert,H.Leeuwis,A.Prak,Modulardesignapproach

forMicroFluidicsystems,Tech.Proc.2005NSTINanotechnol.Conf.Trade

Show(2005)684–687(Accessed3October2017). www.nsti.org/publications/Nanotech/2005/pdf/1201.pdf.

[25]MFManufacturingProject,2017(Accessed28October2017) http://mf-manufacturing.eu/.

[26]Microfluidicmarketplace,2017,(Accessed15March2017)http://www. makefluidics.com/.

[27]IWA23,InteroperabilityofMicrofluidicDevices–GuidelinesforPitch SpacingDimensionsandInitialDeviceClassification,2016http://www.iso. org/iso/home/store/cataloguetc/cataloguedetail.htm?csnumber=70603. [28]H.vanHeeren,T.Atkins,N.Verplanck,C.Peponnet,P.Hewkin,M.Blom,W.

Buesink,J.-E.Bullema,S.Dekker,DesignGuidelineforMicrofluidicDeviceand ComponentInterfaces(part1)Ver.2,2016,http://dx.doi.org/10.13140/RG.2. 1.1698.5206.

[29]H.vanHeeren,D.Verhoeven,T.Atkins,A.Tzannis,H.Becker,W.Beusink,P. Chen,DesignGuidelineforMicrofluidicDeviceandComponentInterfaces (Part2)Ver.1.2,2016,http://dx.doi.org/10.13140/RG.2.1.3318.9364. [30]I.R.G.Ogilvie,V.J.Sieben,C.F.A.Floquet,R.Zmijan,M.C.Mowlem,H.Morgan,

SolventprocessingofPMMAandCOCchipsforbondingdeviceswithoptical qualitysurfaces,14thInt.Conf.MiniaturizedSyst.Chem.LifeSci.(2010) 1244–1246.

[31]N.VErplanck,N.Sarrut,F.Boizot,M.Alessio,FluidCardComprisingAtLeast OneFluidValve,WO029348(A1),2017(Accessed16March2017)https:// worldwide.espacenet.com/publicationDetails/

biblio?FT=D&date=20170223&DB=EPODOC&locale=fr EP&CC=WO&NR=2017029348A1&KC=A1&ND=4.

[32]A.Wattellier,C.Dehan,Rotary-oscillatingSubassemblyAnd

Rotary-oscillatingVolumetricPumpingDeviceForVolumetricallyPumpingA Fluid,WO011384,2015,pp.

2015(Accessed14March2017)https://patentscope.wipo.int/search/en/detail. jsf?docId=WO2015011384&recNum=1&maxRec=&office=&prevFilter=&sortOption= &queryString=&tab=PCT+Biblio.

Biographies

S.DekkerStefanDekkerisaPhDstudentattheUniversityofTwente.Heobtained hismasterinElectricalEngineeringattheUniversityofTwente(2014).Currently, heisworkingonstandardizationinthefieldofmicrofluidics.

W.BuesinkWilfredBuesinkisHeadofProductDesignatMicronit Microtechnolo-giesBV,leadingthedesignteamandcoordinatingthemicrofluidicsbusinessunit. HereceivedaMSc.inmechanicalengineeringfromtheUniversityofTwentein2007, focusingoninterfacingformicrofluidics.

M.BlomMarkoBlom(M),PhDisCTOatMicronit.Priortothisheworkedasa researchscientistforPolymerLaboratoriesaftercompletinghisPhDentitled “On-chipseparationandsensingsystemsforhydrodynamicchromatography”in2002. DuringhisPhDandsubsequentworkMarkohasfocusedonenablingandapplying microfabricationandmicrofluidicstechniquesforsolvingchallengesinthe lab-on-a-chipandBioMEMSfields.

M.AlessioM.AlessiograduatedfromJ.FourierUniversityofGrenobleinthephysical measurementsdepartment(IUT1)andobtainedaprofessionallicense(Optronic)in 2006.Since2009heisworkingasmanufacturingandpackagingtechnicianat CEA-Letiinthemicro-technologiesforbiologyandhealthcaredivisiontodesignand producemicrofluidiccomponentsandpackagesiliconmicrosystems.

N.VerplanckNicolasVerplanckobtained hisMScinInstrumentationat Poly-tech’Lille,anengineerschoolfromtheUniversityofLille(France)in2004inparallel withhisMScinMicrotechnologyandhisPhDattheIEMN/UniversityofLille(France) in2007.Hisworkwasfocusedonelectrowettingonsuperhydrophobicsurfaces formassspectrometry.Followingthis,hejoinedVariopticinLyon(France)asa projectleaderanddeveloped,fromtheprototypetotheindustrialization,aliquid lensforopticalimagestabilization.From2011–2013,heheldacustomerproject managementpositionatSMCPneumaticswhereheworkedwithworldleading medicalcompaniestoprovideassembledfluidiccomponents.Sincesummer2013, heisworkingasresearchengineerandprojectmanageratCEA-LETIinthe micro-technologiesforbiologyandhealthcaredivisiontomanage(i)thedevelopmentand theproductionofmicrofluidiccomponents(lab-on-a-chipsandpoint-of-care)and (ii)thestandardizationinmicrofluidics(MFManufacturingproject,AFNORB35A, ISOTC48/WG3).

M.HihoudMajidHIHOUDisMechanicalEngineeratEVEONspecializedinactuation andmechatronics.Afterworkinginvariousfieldslikeaeronautics,spaceanddefense industries,hejoinedEVEONwherehecontributestomedicaldevicesdesignand tests.

C.DehanChristopheDehanisBusinessDevelopperandIPManageratEVEON.He graduatedfromParisTechArtsetMetiers(1987)andobtainedhisMasterofScience inMaterialsatVPI&SUUSA(1989).Hehassincepursuedcustomerandoutcome focusedmultidisciplinaryinnovationinseveralindustriesacrosspositionsfromR&D DirectortoProductManagement.AsR&DDirectorwhenhejoinedEveon,hewas theco-inventorofcoretechnologiesformedicalmicropumpsandautomatedmixing andreconstitutionssystems.

W.CésarWilliamCésarisanR&DprojectmanageratFluigent,workingonvarious projectonflowcontrolsystemsformicrofluidics.HerecievedaPh.D.in

(11)

engineer-478 S.Dekkeretal./SensorsandActuatorsB269(2018)468–478 ingworkingonmicro-chromatographsandnumericalmodelsforindoorairquality

monitoring.

A.LeNelDr.AnneLeNel,previouslyCSOofFluigent,hasbeenactiveformorethan12 yearsinthedevelopmentandmanufacturingofspecificinstrumentsandcustomized productsdedicatedtodifferentapplicationsinmicrofluidic.DrLeNelledteamsthat developmicrofluidicinstrumentsandplatformsforR&Dandoemmarkets.Shehas ledprojectsacrossflowcontrolfromproofofconceptthroughproductintroduction andsupport.Shewasinchargeofthedevelopmentandreleaseofthenewproduct rangesofthecompanyfrom2012to2015(>15products,hardware&software). Beforethat,shewasinchargeofthedevelopmentofsamplepreparation instru-mentsforabigFrenchactorinthedefensesectorintegratingpreconcentration, lysisandpurificationstepsinvolvingmolecularbiology,electronics,microfluidics, andmechanics.SheisnowresponsiblegloballyofindustrialprojectsandtheOEM business.

A.vandenBergAlbertvandenBergreceivedMScinappliedphysicsin1983,andhis PhDin1988bothattheUniversityofTwente,theNetherlands.From1988–1993he

workedinNeuchatel,Switzerland,attheCSEMandtheUniversity(IMT)on minia-turizedchemicalsensors.From1993until1999hewasresearchdirectorMicroTotal AnalysisSystems(␮TAS)atMESA,UniversityofTwente.In1998hewasappointed aspart-timeprofessor“BiochemicalAnalysisSystems”,andlaterin2000asfull pro-fessoronMiniaturizedSystemsfor(Bio)ChemicalAnalysisinthefacultyofElectrical Engineering.

M.OdijkMathieuOdijkisanassociateprofessorattheUniversityofTwente,leading theresearchthemeonmicro-andnanodevicesforChemicalAnalysis.Hereceived aPh.D.inelectricalengineeringfromtheUniversityofTwentein2011, develop-ingelectrochemicallab-on-chipstostudydrugmetabolismreactions.Hiscurrent researchfocussesonthedesigningnovelnano-andmicrofabricatedtoolstotackle challenginganalyticalmeasurementproblems,unsolvablebytraditionalmethods duetotheirslowspeed,lackofsensitivity,orpoorspatialresolution.

Referenties

GERELATEERDE DOCUMENTEN

Uit de deelnemers van de eerste ronde zal een nader te bepalen aantal (b.v. 60) worden geselec- teerd om aan de tweede ronde deel te nemén. In beide ronden be- staat de taak van

A detailed investigation of reactivity requires a reliable determination of the monomer reactivi- ty ratios (r values) describing the copolymerization behavior of

*Frank Wesselingh, Naturalis, Postbus 9517, 2300 RA, Leiden e-mail: wesselingh@naturalis.nl *Adrie Kerkhof, Lutmastraat IOB, 1072 JR Amsterdam, tel?. 020-6252699,

Deze en andere elementen van de brief zijn niet specifiek gericht op patiëntervaringen, maar wel relevant, bijvoorbeeld omdat de ervaringen van andere patiënten gebruikt kunnen

This study was designed to examine the occurrence of abnormal muscular coupling during functional, ADL-like reaching movements of chronic stroke patients at the level of

In hun onderzoek wordt echter niet gekeken naar de daadwerkelijke invloed van de publieke opinie op beleid, maar naar de manier waarop een democratisch individu

During the crisis, I find that the bidding firms’ shareholders earn a 0.50% abnormal return in the 10 days around the M&A announcement, suggesting that the

Seven of the eight teams had the most difficulty predicting preferences in “years” and the least difficulty doing so in “weeks.” The teams’ predictive validities differed