• No results found

An assessment of Pinus contorta seed production in British Columbia: Geographic variation and dynamically-downscaled climate correlates from the Canadian Regional Climate Model

N/A
N/A
Protected

Academic year: 2021

Share "An assessment of Pinus contorta seed production in British Columbia: Geographic variation and dynamically-downscaled climate correlates from the Canadian Regional Climate Model"

Copied!
18
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation for this paper:

Lew, A., von Aderkas, P., Berland, A., Curry, C.L., Lacourse, T., Tencer, B. &

Weaver, A. (2017). An assessment of Pinus contorta seed production in British

Columbia: Geographic variation and dynamically-downscaled climate correlates

from the Canadian Regional Climate Model. Agricultural and Forest Meteorology,

236(April), 194-210.

https://doi.org/10.1016/j.agrformet.2016.12.013

UVicSPACE: Research & Learning Repository

_____________________________________________________________

Faculty of Science

Faculty Publications

_____________________________________________________________

An assessment of Pinus contorta seed production in British Columbia: Geographic

variation and dynamically-downscaled climate correlates from the Canadian

Regional Climate Model

Alicia Lew, Patrick von Aderkas, Anne Berland, Charles L. Curry, Terri Lacourse,

Bárbara Tencer, Andrew Weaver

April 2017

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY license (

http://creativecommons.org/licenses/by/4.0/

).

This article was originally published at:

https://doi.org/10.1016/j.agrformet.2016.12.013

(2)

ContentslistsavailableatScienceDirect

Agricultural

and

Forest

Meteorology

jou rn al h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / a g r f o r m e t

An

assessment

of

Pinus

contorta

seed

production

in

British

Columbia:

Geographic

variation

and

dynamically-downscaled

climate

correlates

from

the

Canadian

Regional

Climate

Model

Alicia

Lew

a

,

Patrick

von

Aderkas

b,∗

,

Anne

Berland

a

,

Charles

L.

Curry

a

,

Terri

Lacourse

b

,

Bárbara

Tencer

a

,

Andrew

Weaver

a

aSchoolofEarthandOceanSciences,UniversityofVictoria,3800FinnertyRoad,Victoria,BC,V8P5C2,Canada bDepartmentofBiology,UniversityofVictoria,3800FinnertyRoad,Victoria,BC,V8P5C2,Canada

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16August2016

Receivedinrevisedform5December2016 Accepted18December2016

Availableonline26January2017 Keywords:

Lodgepolepine Seedyield Climate BritishColumbia Seedplanningzones Naturalpopulations

a

b

s

t

r

a

c

t

Theecologicalandeconomicimportanceoflodgepolepine(PinuscontortaDouglasexLouden)inBritish Columbia(BC)hasheightenedinterestintheadaptabilityandeffectivemanagementofthespecies, especiallyasclimatechanges.Therelationshipbetweenclimateandtheseedproductionofnatural pop-ulationsisakeymanagementissuethathasyettobeassessed.Thepurposeofthisstudyistodetermine ifvariationinP.contortaseedyieldisrelatedtotheclimateofBC.

Regionaldifferencesintheseedproductionoflodgepolepinewereexaminedusing1924archived seedlotcollectionsacross18differentnaturalstandseedplanningzones(SPZs)inBC.Therelationship betweenclimatevariationandtheseedproductionofP.contortawasthenevaluatedusing dynamically-downscaledoutputfromtheCanadianRegionalClimateModel(CRCM).

SeedproductionisrelativelyconsistentacrossSPZsspanningawiderangeofclimateregimes,with theexceptionofNassSkeenaTransition(NST)whereseedyieldisanorderofmagnitudehigherthan elsewhere.Significanttemporalcorrelationsbetweenoveralltrendsinseedproductionandboth tem-peratureandprecipitationwerefoundusingtheCRCMoutput.However,onlythreeofthe18SPZsshowed asignificantoveralltrendinmeanannualseedyieldbasedonconecollectionsmadebetween1963and 2013,suggestingthatthereproductivecapacityofnaturalpopulationsiswelladaptedtodecadal-scale climatechange.Tolerancetosignificantvariationinclimatelikelyplaysanimportantroleinexplaining theabilityofthisspeciestothrivewelloutsideitsnaturalrange.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Lodgepole pine (Pinus contorta Douglas ex Louden), known for its exceptional latitudinal range from 31◦N in Baja Califor-niato 64◦N in Yukon (Koch, 1996), has theability to grow in awide range of ecosystems(Richardson, 2000).Threedifferent varieties—P.contorta var. latifolia Engelm., P. contorta var. con-tortaDoug.exLoud.,andP.contortavar.murrayana(Balf.)Engelm. (Kral,1993)—occupyabroadelevationalrangefrom0to3900m (WheelerandCritchfield,1985)andareadaptedtomaritime,

conti-Abbreviations:CRCM,CanadianRegionalClimateModel;GCM,General Circula-tionModel;NST,NassSkeenaTransition;SPZ,seedplanningzone.

∗ Correspondingauthor.

E-mailaddresses:[email protected](A.Lew),[email protected](P.vonAderkas),

[email protected](A.Berland),[email protected](C.L.Curry),[email protected]

(T.Lacourse),[email protected](B.Tencer),[email protected](A.Weaver).

nental,andsubalpineconditions(Rehfeldtetal.,1999;Richardson, 2000).

Inareaswithfrequentforestfires,P.contortaregenerationhas furtheradaptedthroughthedevelopmentofclosed,orserotinous, cones(Elfvingetal.,2001),whichdonotopenuponmaturity,but remainsealeduntiltheyaresubjectedtosufficientlyhigh tem-peratures.Consequently,lodgepolepineplaysanimportantrole incolonizingpost-firelandscapes(Lotan,1970;PerryandLotan, 1977).The pioneercharacteristicsofthespecies, alongwithits edaphicandclimatictolerance,givetheprerequisitesforawide ecologicamplitude(CaseandPeterson,2007;Richardson,2000).

Thecommercialimportanceofinteriorlodgepolepine(P. con-torta var. latifolia)in BC hasresulted in heightened interest in itsadaptationsandgrowthpotentialundervarious environmen-talconditions(Wangetal.,2004).Extensivereforestationandtree improvementprogramshavebeendevelopedtoensuresustainable forestrypracticesforthespecies(YingandYanchuk,2006).Tohelp

http://dx.doi.org/10.1016/j.agrformet.2016.12.013

(3)

meettheincreasingreforestationdemandsoftheprovince,seed orchardshavebeenestablishedtoprovidehighquality,genetically selectedseed(Owensetal.,2005);however,theseorchards con-tinuetobeunabletomeetthehighreforestationdemands(Anon., 2015).Themajorityoflodgepolepineseedlingsareproducedfrom seedobtainedfromwildstands(Hadleyetal.,2001).

DespiteitsimportancetoreforestationinBC,geographic varia-tionintheseedproductionofnaturallodgepolepinepopulationsis notfullyunderstood.Earlierresearchonconeproductionandseed yieldinnaturalstandsindicatedthatseedproductioncouldvary considerablybetweenregionsandyears(Critchfield,1980).Bates (1930)reportedanannualmeanof180,000germinableseedsper hectareforasouthernWyomingstand.Overa10-yearperiodof col-lections,seedproductionrangedbetween0and336,000seedper hectare.Duringthesamedecade,theannualmeanseedproduction foraColoradostandwasreportedas790,000germinableseedsper hectare,witharangeof74,000to2,042,000(Bates,1930).Despite theseapparentdifferences,moreextensiveresearchonthespatial variationinwildstandlodgepolepinereproductionhasbeen prob-lematicduetothisspecies’widedistribution,longlifespan,and relativelyslowreproductiveturnover(Mátyás,1996). Understand-inghowreproductionmayvarygeographicallyinnaturalstands providesavaluablebaselinetopotentiallyimprovereforestation stockandpractices,particularlywhenfacedwithfuture environ-mentalchallenges.

Climatechangewill likely havesevere implicationsfor both nativeandplantationpopulations.ForBC,futuresummersare gen-erallyexpectedtobewarmeranddrier,whilewinterswilllikelybe warmerandwetterthanpresent;however,thechangesinclimate areexpectedtovaryacrosstheprovince(Werner,2011).In addi-tion,climatechangeisexpectedtoincreasetheseverityofforest firesinBC(Flanniganetal.,2005)aswellastheincidenceoffoliar disease(Woodsetal.,2005)andpests(Bentzetal.,2010). Infor-mationabouthowforestsrespondtoclimaticvariabilitywillallow managerstobetteranticipateandplanforfuturechangesto ecosys-temdynamics.Althoughitispossibleforvegetationtonaturally remainoutofbalancewithclimateforhundredsoreventhousands ofyears,it isnotclearhowforestswillrespondtothe acceler-atedpaceofanthropogenicclimatechange(Adams,2007).InBC, concernsoverthemaladaptationofforestspeciesbasedontheir currentdistributionsandslowreproductiveturnoverhasinspired researchonmoreactiveforestryresponses,includinghuman inter-ventionthroughassisted migration (O’Neillet al.,2008b;Leech etal.,2011).

Muchoftheresearchtodatehasfocusedonclimateresponses pertainingtogrowth.Thegrowthandsurvivalofindividualtrees appearstoberelatedtotheclimaticconditionsofthelocal environ-ment(Rehfeldtetal.,1999;Wuetal.,2005;O’Neilletal.,2008a). UsingtestsitesfromtheIllingworthprovenancetrials(Illingworth, 1978),Berland(2013)foundthemeannumberofseedspercone appearedtoberelativelystableacrossclimateregimes,incontrast totreegrowthandsurvival,whichvariedwidelyacrossthesesame regimes.Furtherresearchfromnaturalstandsisneededto under-standthechallengesthatforestsmightfaceinachangingclimate. Understandinghistoricalclimatetrendsisessentialinordertoput futureprojections incontext. GlobalCirculationModels(GCMs) arecapableofsimulatinghistoricalandfuturechangesinclimate regimes,typicallyonscalesofhundredsofkilometers.However, theseanalysesareoftenoflittleusetodecisionmakers,whorequire informationonsmallerscalestoevaluaterisksanddevelop adapta-tionstrategies(Mearnsetal.,2003).Theissueofmodelscalecanbe addressedbydownscalinginformationusingeitherastatisticalor dynamicaltechnique.Todate,studiesexaminingpopulation-scale responsesofP.contortatoclimatehavebeenprimarilyconducted usingstatistically-downscaledclimateoutputfromClimateWNA (Rehfeldtetal.,1999;Wangetal.,2006;Berland,2013).Although

therearesomeadvantagestothistechnique,themethodological constraintsofstatisticaldownscalingcannotaccountforchanges inclimatevariabilityovertime(Fowleretal.,2007).Analternative technique,whichprovidessimilaroutcomes,utilizes dynamically-downscaledclimateoutputgeneratedbyRegionalClimateModels (RCMs).

Here, we characterize the spatial and temporal pattern of seed yield in 18 natural stand seed planning zones in BC, in order to establish a baseline estimate of how the reproduc-tive capabilities of P. contorta may vary geographically. Then, dynamically-downscaledoutputfromtheCanadianRegional Cli-mateModel(CRCM)version4.2.4(Sushamaetal.,2010)isused toexaminetherelationshipbetweenclimatevariationandnatural standP.contortaseedproductioninBC.

2. Materialsandmethods

2.1. Seedyieldofnaturalstands

Historical cone collectiondata wereobtainedfrom archived recordsof1948seedlotsin22differentnaturalstandseed plan-ningzones(SPZs):BigBar(BB),Bulkley(BLK),Bush(BSH),Chilcotin (CHL),CentralPlateau(CP),CaribooTransition(CT),DeaseKlappan (DK), East Kootenay (EK), Finlay (FIN), Fort Nelson (FN), Hud-sonHope(HH),McGregor(MGR),Mica(MIC),Mt.Robson(MRB), Nechako(NCH),NassSkeenaTransition(NST),QuesnelLakes(QL), ShuswapAdams(SA),Submaritime(SM),ThompsonOkanaganArid (TOA),ThompsonOkanaganDry(TOD)andWestKootenay(WK) (Fig.1).These22naturalstandSPZswereestablishedbytheBC MinistryofForestsbasedonprovenanceperformanceinfieldtests (Anon.,1987).SPZsinuseinBCwereoriginallycreatedby overlay-ingclinaladaptivegeneticvariationdeterminedfromthesefield tests onto an ecological classificationof forestlands (Ying and Yanchuk,2006).TheboundariesofthesenaturalstandSPZs cor-respondtobiogeoclimaticsubzones(Anon.,1987)andrepresent regionsthataremoreorlessenvironmentallyuniform(Yingand Yanchuk,2006).AllnaturalstandlodgepolepineSPZsusedinthis study,withtheexception of thecoastalSubmaritime zone,are categorizedasinteriorregions.

ConeswerecollectedaccordingtoguidelinesbyLavenderetal. (1990).Sampleswereprocessedintheyearofcollection; standard-izedmethodsforhandlingconesandextractingseedwereused (Koloteloetal.,2001).SeedlotswerecollectedforeachSPZbetween 1963and2013andaminimumconecollectionfrom10treeswas requiredforeachseedlot.Eachofthe1948seedlotswascollected onasingleoccasion.Thefreshweightoftheseeds(inkilograms,kg), alongwiththevolumeofcones(inhectolitres,hL),wasdetermined foreachseedlotcollection.Freshseedmasseswerestandardizedto acommonmoisturecontentof7%inordertominimizevariation associatedwiththedryingprocess.Seedyield(kgfreshseed/hL cone)foreachseedlotwasthendeterminedbydividingthe stan-dardizedweightoffreshseedbythevolumeofconescollected. SeedlotswerearrangedintotheirrespectiveSPZandupdatesfrom theBCMinistryofForestsSEEDMAPGISsoftwareensuredthatall seedlotsreceivedtheappropriateSPZdesignationbasedontheir geographiccoordinates.

2.2. AnalysisofregionalvariationinPinuscontortaseed production

Seedplanningzoneswithfewerthan10totalseedlot collec-tionsoverthefivedecades—SM,DK,MICandFN—wereexcluded fromstatisticalanalysesduetotheirsmallsamplesizeand insuf-ficienttemporalcoverage.Consequently,thefinalsamplesizewas 1924seedlots.TheBrown-Forsythetest(␣significancelevel=0.05),

(4)

Fig.1. Naturalstandlodgepolepine(PinuscontortaDouglasexLouden)seedplanningzonesinBritishColumbiaandthelocationsof1948seedlotssampledbetween1963 and2013.SM,DK,MICandFNwereexcludedfromsubsequentstatisticalanalysesduetosmallsamplesizes.

basedonabsolutedeviationsfromthemedian,wasperformedon untransformeddatatotestforhomogeneityofvariance.Inorder toaccountforheterogeneityofvarianceandunequalsamplesize, Welch’sanalysisofvariance(ANOVA)andpost-hocGames-Howell tests(␣=0.05)wereconductedonlog-transformedseedyieldsto testfordifferencesbetweenthemeanseedyieldofeachzone.Log transformationwasusedtonormalizethedataandreduceskew. AllstatisticalanalyseswerecarriedoutinRversion3.1.0(RCore Team,2015).

2.3. Climateoutput

RegionalClimateModeloutputis quitetemporallyrealitistic whenreanalysesareinputastheboundaryconditions,primarily becausereanalysisintegratesmeteorologicalobservations(Kalnay etal.,1996).However,thelimitedavailabilityofthesereanalyses restrictsthenumberofrealizationsoftheRCMthatcanbe gen-erated.Whenimplementedasboundaryconditions,GCMsallow formanymorerealizationsusingtheRCM(Pierceetal.,2009),but introducetemporalambiguitytotheoutput(Kendonetal.,2010). Model output fromCRCM version 4.2.4 (Sushamaet al., 2010) servedastheclimateinformationforthisstudy.Outputwas uti-lizedfromtworunswithNCEP-DOEReanalysis2boundaryforcing atbotha15km(CRCM15-NREA)and45km(CRCM45-NREA) res-olutionandfromeight45kmresolutionrunswithGCMboundary forcing.BoundaryforcingfortheGCM-drivenrunswereprovided bythreerealizationsoftheECHAM5coupledGCM(Roeckneretal., 2003)andfiverealizationsoftheCGCM3coupledGCM(McFarlane etal.,2005).Theseeightensemblemembersimulationsare sub-sequentlyreferredtoasCRCM45-GCM.Thereanalysis-drivenruns ofCRCMextendedfrom1979to2004,whiletheGCM-drivenruns

wereanalyzedfrom1958to2000.TheGCM-drivenCRCM realiza-tionsweretruncatedattheyear2000,becausethatdaterepresents theendofthemodel’shistoricalemissionsscenario.Thetwo cli-matevariablesofinterestwere2-msurfaceairtemperature(◦C) and total precipitation (rain & snow,mm),henceforth referred toassurface temperatureand precipitation,respectively. Mean annual,winter(December–February),andsummer(June–August) temperatureandprecipitationwerecalculatedusingeachmodel simulation.

ThereasonwhyRCMmodeloutputwasusedratherthana grid-dedobservationproduct,likeClimateWNA,wasbecausethehigh resolutionofthishistoricaloutputisachievedthroughuseofPRISM (Dalyetal.,2002),whichemploysaclimate-elevationinterpolation scheme.Assuch,thereisnoapriorirequirementfordynamicand thermodynamicconsistencyofthedownscaledproduct.In addi-tion,ourgoalwastoeventuallyexplore thepotentialeffects of futureclimatechangeonlodgepolepineseedproduction.Assuch, itwasimportantthatweretainedthesamemodellingframework throughoutouranalysis

2.4. Lodgepolepineserotiny

Anygivennaturalstandmayincludebothserotinoustreesand treeswithconesthatopenatmaturity(Tinkeretal.,1994). How-ever,serotinycancomplicateassessmentsofconeage,asthree yearsaretypicallyrequiredforconestoreachmaturity,andclosed conesandviableseedsmayremainonthetreesforseveralyears fol-lowingmaturation(Lotan,1970).Inthepresentstudy,theagerange ofconesrepresentedineachseedlotcollectionwasunclear.Thus, theclimatecorrespondingtoeachcollectionhadtobeassigned moreconservatively usinga meanvalue.Amoving window,or

(5)

trailing-mean,of3,5and10yearswascalculatedforeachclimate variableusingeachCRCMsimulationinordertoaccountforthe serotinyoflodgepolepine.Inthecaseofannualmeans,the previ-ous3,5or10yearsofoutputwereaveragedandassignedtothefinal yearofthewindow.Forthewinter(summer)mean,theprevious 3,5or10winter(summer)meanswereaveragedandassignedto thefinalwinter(summer)ofthewindow.Werefertoeachunique combinationofmodeloutput,trailing-meanandseasonalorannual averageasaclimatescheme.

2.5. Climateanalyses

Foreachclimatescheme,the1924seedlotswereindividually assignedanappropriatevalueofeachclimatevariablebasedon twocriteria:theyearofcollectionandtheSPZ.First,the collec-tionyearisolatedthecorrecttimesliceoftheclimateoutputfor thatseedlot.Next,theapplicableSPZdesignationforthat seed-lotfurtherisolatedgridcellsofaparticularlongitudeandlatitude. Thesegridcellswerethenweightedwithrespecttotheirarea cov-erageandthespatially-weightedmeanoftheclimatevariablewas assignedtotheseedlotofinterest.Thisprocedurewasrepeatedfor eachseedlotundereachclimatescheme.

Oncetheappropriateclimatevariablevalueswereassignedto eachseedlot,theseedlotsweregroupedbySPZ.Theseedyieldsof seedlotscollectedinthesameSPZduringthesameyearwere aver-agedtodetermineameanannualseedyieldforthatregion.Within individualSPZs,theanomalyfromthemeanwasthencalculated forboththemeanannualseedyieldandtheclimatevariableof interestusingeachsetofclimateoutput.Climateanomalies calcu-latedfromreanalysis-drivenCRCMoutputwererepresentedunder eachofthethreetrailing-means,i.e.3,5and10years.Anomalies ofclimatemodeloutputwereindependentlycalculatedforeach oftheeightCRCM45-GCMensemblemembersbeforeaveraging themtogethertogiveamulti-modelensemblemeananomalyand a±2standarddeviationenvelopebasedontheensemblespread. TheCRCM45-GCMoutputwasalsorepresentedundereachofthe threetrailing-means.

ClimatevariableanomaliescalculatedfromCRCM45-NREA out-putwereinvestigatedfirst.Thetemporalcorrelationbetweeneach climatevariableanomalyandthemeanannualseedyieldanomaly ineachSPZwascalculatedusingSpearman’srankcorrelation, pri-marilyduetoconcernssurroundingbothsmallsamplesizesand non-normality.Correlationcoefficients(rs)andp-values(␣=0.05)

fromindependenttestsforeachSPZwerecomparedgeographically usingmapsforeachclimatevariable.SPZswithfewerthan10 dis-creteyearsofseedyielddatafortheaffiliatedclimateschemewere excludedfromthestatisticalanalysisduetotheirsmallsamplesize andinsufficienttemporalcoverage.Globalhypothesesof signifi-cantcorrelation(␣global=0.05)weretestedusingtheMonteCarlo

approachdevelopedbyLivezeyandChen(1983).Thisapproach accountsforthepossibilitythatSPZsinclosespatialproximityto eachothermaybecorrelated.Specifically,itallowsonetoassess theminimumfractionalareaofthedomainoverwhichlocal sta-tisticalsignificanceatagivenlevel,say95%,needstobeachieved inorderthatthesetoflocallysignificantcorrelationsnotbedueto chancealone.

ClimatevariableanomaliescalculatedfromCRCM45-GCM sim-ulations were then analyzed. Instead of temporal correlations, overalltrendsinclimatevariablesweredeterminedineach SPZ asameansofdealingwiththeasynchronousnatureofthese real-izations.SPZswithfewerthan10discreteyearsofseedyielddata fortheaffiliatedclimateschemewereonceagainexcludedfromthe analysisduetotheirsmallsamplesize.Thetrendwasdetermined byfittingalinearregressiontoeachclimatevariableanomaly.The slope(␤)oftheensemblemeananomalywasofprimaryinterestin eachSPZ,buttheslopesofindividualensemblememberanomalies

Table1

Summaryofthenumberofseedlotsanddescriptivestatistics(mean,standarderror andvariance)ofnaturalstandlodgepolepine(PinuscontortaDouglasexLouden) seedyield(kgseed/hLcone)for18seedplanningzones(SPZ)inBritishColumbia, Canada.

SPZ NumberofSeedlots MeanSeedYield

(kg/hL)±S.E. Variance NST 43 0.378±0.0030 0.0199 HH 51 0.296±0.0002 0.0012 WK 184 0.285±0.0003 0.0045 NCH 160 0.283±0.0001 0.0011 EK 117 0.278±0.0004 0.0044 CHL 128 0.275±0.0001 0.0014 CT 62 0.274±0.0003 0.0021 MGR 62 0.271±0.0002 0.0014 TOA 250 0.270±0.0002 0.0026 MRB 17 0.267±0.0012 0.0048 CP 115 0.263±0.0002 0.0019 SA 148 0.262±0.0004 0.0047 TOD 170 0.262±0.0002 0.0031 BSH 30 0.261±0.0005 0.0027 FIN 99 0.261±0.0002 0.0022 BLK 163 0.255±0.0001 0.0017 QL 29 0.254±0.0001 0.0007 BB 96 0.242±0.0002 0.0021

werealsocalculatedasawayofgaugingthevariabilityinslopes. Forcomparison,alinearregressionwasalsofittothemeanannual seedyieldanomalyoverthesameinterval.Eachslopewasthen testedtoseeifitwassignificantlydifferentfromzeroatthe5% level.Multi-modelagreementwasdeclarediffiveormore indi-vidualensemblemembersshowedasignificanttrendthatagreed withthesignofthesignificantensemblemeantrend(Tebaldietal., 2011).Thesignandsignificanceoftheensemblemeanandmean annualseedyieldlinearregressionswerecomparedgeographically betweenzonesusingmapsforeachclimatescheme.InSPZswhere themajorityofGCM-drivenensemblemembersshoweda signifi-canttrendand,additionally,asignificanttemporalcorrelationwas previouslyfoundwithCRCM45-NREAoutput,linearregressions werefitandtestedforCRCM45-NREAoutputoverthesametime periodasCRCM45-GCM.

3. Resultsanddiscussion

3.1. RegionalvariationinPinuscontortaseedproduction

The Brown-Forsythe test indicated unequal variances (F

(17,1906)=16.61,p<0.0001)betweentheseedyieldsofthe18SPZs

includedinthestatisticalanalysis.Inparticular,thevarianceinseed yieldforNassSkeenaTransition(NST)wasanorderofmagnitude higherthanthatofotherSPZs(Table1;Fig.2).Inaddition,themean seedyieldofNST(0.378kgseed/hLcone)wasconsiderablyhigher thanthemeanseedyieldofthe17otherzones(0.268kgseed/hL cone)(Table1).Welch’sANOVAindicatedsignificantdifferences inmeanseedyieldbetweenseedplanningzones(F(17,398)=11.2,

p<0.0001).Post-hocanalysesusingpairwiseGames-Howelltests revealedthatmeanseedyieldwassignificantlyhigherinNST com-paredtoallotherzones(Table2)exceptHH(t(49)=3.3,p=0.1260).

Whenthe sameanalysis wasperformed ontheuntransformed data,NSTseedyieldwassignificantlyhigherthanallotherzones (F(17,398)=10.2,p<0.0001),includingHH,thoughthedifference

betweenNSTandHHwasbarelysignificant(t(46)=3.7,p=0.0461).

SinceNSTisnearthecoastandHHisintheBCInterior,theseregions representverydifferentconditions.

Asaresultofitsgeography,NSThasaheterogeneous, transi-tionalclimatewithbothmaritimeandcontinentalcharacteristics (Bennuah et al., 2004). Consequently, its steep environmen-talgradientsmakes NSTawell-known hotspotfor interspecific

(6)

Fig.2. Probabilitydensityfunctionsofnaturalstandlodgepolepine(PinuscontortaDouglasexLouden)seedyield(kgseed/hLcone)for18seedplanningzonesinBritish Columbia,Canada.

hybridizationandintrogressionbetweencoastalandinterior conif-erousspecies(Hamiltonetal.,2013).Inparticular,introgressive hybridization is known to occur between Sitka spruce (Picea sitchensisBong.) andwhitespruce(Picea glauca(Moench) Voss) inthisregion(Roche,1969), resultinginincreasedgenetic vari-ability(Hamiltonand Aitken2013),pestresistance(Ying,1991; KingandAlfaro,2009)andhighertoleranceofenvironmentalstress (Fanetal.,1997).Althoughlesswell-studiedinNSTthanspruce, lodgepolepineisrepresentedbytwovarieties—shorepine(Pinus contortavar.contorta)andinteriorlodgepolepine(P.contortavar. latifolia)(Koch,1996).Analysisofgeographicalvariationof lodge-polepinemonoterpenesshowedsubstantialchemicaldifferences betweencoastalandinteriorvarieties,withpopulationsofunique intermediatecharacterin areassuchastheSkeenaRiverregion (Forrest, 1980). Concentrations of foliar secondary metabolites, knowntobeactiveinregulatingabioticandbioticstress,arealso

consistentlyhigherinstandsofP.contortavar.latifoliafoundin theInteriorCedar-Hemlockbiogeoclimaticzone(Meidingerand Pojar,1991)ofNSTcomparedtootherinteriorstands(Wallisetal., 2011).Theextendedgrowingseasonprovidedbythemild,moist, transitionalclimateofthisregionmayreduceabioticstresssuchas drought,therebyallowingthetreestoallocateadditionalresources toreproduction(HermsandMattson,1992).

AlthoughNSTisconsideredaninteriornaturalstandSPZ,gene flowbetweencoastaland interior varietiesoflodgepolepine is assumedtooccur(Koch,1996).Forinstance,geneticinfluencefrom thesmaller-sizedcoastalvarietywassuspectedtocontributeto thelowerheightsattainedbyinteriorlodgepolepinetrees near thecoast-interiortransitionzoneinwesternCanada(XieandYing, 1995).Themaritimepopulationsoflodgepolepinearegenetically morevariable(Wheelerand Guries,1982a)and tendtoexhibit higherseedyieldsthantheinteriorvariety(Anon.,2010).These

(7)

Fig.3.Naturalstandlodgepolepine(PinuscontortaDouglasexLouden)seedyield(kgseed/hLcone)for18seedplanningzonesinBritishColumbia,Canada,withcollections between1963and2013.

twovarietiesoflodgepolepineintergradealongthecoastalrange ofBC(ArnoandHammerly,1978),soitispossiblethatinfluence fromthecoastalvarietymayberesponsiblefortheexceptionalseed yieldsintheinteriorNSTzone(Figs.2and3).

Inadditiontovarietaldifferences,thelackofserotinyincones inNSTcomparedtothoseininteriorSPZsmayalsoexplainthe dif-ferencesinseedproduction.Fire-inducedserotinyisecologically importantforlodgepolepine,ensuringthatitremainsanaggressive pioneerspecies(Muir,1993).Serotinyiscommoninlodgepolepine intheBCInterior.Incontrast,serotinyisrarelyfoundinthe mar-itimeregion(Fowells,1965)wherefireislessprevalent(Lertzman etal.,2002).Individualtreesmayneedtoproducefewerseedsin ordertohavethesamereforestationimpactinareaswhereserotiny isrelativelyubiquitousandfiredominatesthelandscape.Onthe PacificNorthwestCoast—aregionwithoutfrequentfire—lodgepole pinetendstobereplacedbymoreshade-tolerantspeciessuchas Sitkaspruce(Piceasitchensis(Bong.)Carr.)(ReebandShaw,2015) andmayrequirealargerseedsettoremaincompetitive.

HudsonHope(HH)SPZissituatedinanareainwhichextensive interspecifichybridizationoccursbetweenlodgepolepineandjack pine,PinusbanksianaLamb.(WheelerandGuries,1987).Although naturalhybridzonesareknowntobeimportantsourcesofnovel geneticvariationinwhichrecombinantsmaybecomesuperiorly adapted(Hamiltonetal.,2013),itisnotknownwhetherlodgepole pineseedproductionisinfluenced.Enhancedseedproductionin

HHandNSTmayalsobeattributedtophenotypicplasticity,i.e.the abilityofagivengenotypetoprovidearangeofphysiologicalor morphologicalphenotypesinresponsetodifferentenvironmental conditions(Voltasetal.,2008).Itisdifficulttodistinguishbetween geneticadaptationandphenotypicplasticity,butbothare impor-tantmechanismsbywhichlong-livedorganismsareboundmore stronglytotheirenvironment(Mátyás,1996).

SeedyieldsinHHandNSTcontrastedwiththoseinotherSPZs. Bothenvironmentalandgeneticfactorsmayhelptoexplainthe geographicdifferences.Inapreviousstudy,correlationsbetween climateandgrowthwerefoundtovaryregionally(McLaneetal., 2011).Whengrownincommontestsites,i.e.theIllingworth lodge-polepineprovenancetrial,populationsfromwarmregionswere affectedmorestronglybysummeraridity,whereaspopulations originatingfromcoldregionswereaffectedmorebyannual tem-perature. According toMcLane et al. (2011),the differences in sensitivityamongpopulationsgrownundersimilar environmen-talconditionsprovideameasureoftheinfluenceofbothgenetics andsiteclimate.Incontrast,astudyofreproductivetraitsof lodge-polepineinIllingworthprovenancetestsitesfoundthatthemean numberofseedsperconeremainedrelativelystableregardlessof provenanceorclimate(Berland,2013).Inourstudy,asimilarlackof variabilityinseedyieldwasgenerallyobservedwithinandbetween naturalstandSPZs(Tables1and2;Fig.A.1inAppendixA). Compar-isontoBerland’sstudyislimited,becauseourstudyinvestigated

(8)

Table2

Schemesofclimatevariableanomaliesshowingastatisticallysignificant(␣=0.05) Spearman’srankcorrelation(rs)withthemeanannualPinuscontortaseedyield

anomaly(kg/hL)ofthecorrespondingseedplanningzone(SPZ)usingprecipitation (PCP)andsurfacetemperature(ST)climateoutputfromCRCM45-NREA. Trailing-meansindicatethenumberofprecedingyears,summersorwintersthatwere averagedtogetherforeachclimateoutputanalysis.

SPZ ClimateVariable Anomaly Trailing-mean(years) rs p-value df HH PCP Annual 5 −0.547 0.0306 14 10 −0.650 0.0259 10 Summer 3 −0.638 0.0094 14 5 −0.765 0.0009 14 10 −0.755 0.0066 10 ST Summer 3 −0.600 0.0160 14 5 −0.624 0.0116 14 10 −0.671 0.0204 10 CP PCP Annual 3 0.626 0.0253 11 5 0.790 0.0036 10 ST Annual 3 0.654 0.0183 11 Summer 3 0.857 0.0003 11 Winter 5 0.748 0.0074 10 FIN PCP Annual 5 0.560 0.0401 12 10 0.560 0.0499 11 Summer 10 −0.632 0.0237 11 Winter 5 0.609 0.0237 12 BLK PCP Annual 10 −0.582 0.0403 11 Summer 5 −0.600 0.0099 16 ST Summer 10 −0.599 0.0340 11 EK ST Winter 5 −0.511 0.0321 16 SA PCP Summer 5 0.579 0.0264 13 TOA PCP Winter 10 −0.679 0.0049 15 WK ST Winter 5 −0.454 0.0458 15

naturalstandsratherthanprovenancetrials,andwecannot dis-tinguishbetweengeneticandenvironmentaleffects.Sinceseedlot collectionswerenottemporallyconsistentbetweenzones(Fig.3), itisalsodifficulttomakeinferencesaboutthedifferencesbetween SPZsfromthis studyalone,particularlygiventhat regionaland globalclimatemayhave hadvariable impactsover the50-year timespanofthecollections.

3.2. Seedyield-climaterelations

Localcorrelationsbetweeneachclimatevariableanomalyand meanannualseedyieldanomalyweresignificant(␣=0.05)in24 uniquecombinationsofclimateschemesandSPZusing CRCM45-NREA output(Table 2; Fig. 4, Fig. A.2 in Appendix A). Climate schemes that produced a sufficient number of statistically sig-nificantindividualresultstowarrantrejectionoftheglobalnull hypothesis(␣global=0.05)arehighlightedwithredbordersinFig.4

andFigA.2(inAppendixA).Inthesescenarios,therewasa proba-bilitynohigherthan0.05thatanequivalentorgreaternumberof significantlocalcorrelationswouldhavebeenobservedbychance. Themajorityofsignificantlocalcorrelationsfoundusing CRCM45-NREAoutput werein more northern SPZs suchasHH, CP, FIN andBLK(Table2).Onlyfourdifferentclimateschemesshowed globalfieldsignificance(␣global=0.05):5-yearmeanannual

precip-itation,10-yearmeanannualprecipitation,5-yearmeansummer precipitation(Fig.A.2 in AppendixA), and5-year mean winter surfacetemperature(Fig.4).Anomaliesandcorrelationsinvolving 15km×15kmCRCMoutputwithNCEP-DOEReanalysis2 bound-aryforcing(i.e.,CRCM15-NREA)wereindistinguishablefromthe lowerresolutionanalysesdisplayedhereandarehenceforthnot discussedindetail.

Ingeneral,CRCM45-GCMoutputcollectivelycaptureda warm-ingsignalinsurfacetemperaturesthroughouttheprovince(Fig.5). Althoughwe calculated the overall trend of each climate vari-able anomaly and the mean annual seed yield anomaly was calculated using CRCM45-GCM output, only the overall trends

areillustratedforsurfacetemperatureanomalies(Fig.5)and,in theappendix, for precipitationanomalies(Fig.A.3 in Appendix A).Threeof theeighteenSPZs—EK, TOAand SA(Figs. 5,A.3 in AppendixA;Table3)—showedatrendinthemeanannualseed yieldanomalythatwassignificantlydifferent(␣=0.05)fromzero (dataforremaining15SPZsnotshown).AcrossthesethreeSPZs, 23 climateschemes showedclimate anomalytrendsthat were significantlydifferentfromzero(␣=0.05)amongsttheensemble membersusingCRCM45-GCMoutput(Table3).Significant over-alltrendsfoundusingtheensemblemeanofGCM-drivenCRCM outputthatweresupportedbythemajorityofensemblemembers werecapturedmoreofteninsurfacetemperatureanomalies(Fig.5) thaninprecipitationanomalies(Fig.A.3inAppendixA).

SPZswhereCRCM45-NREAoutputshowedstrongcorrelations withthemeanannualseedyieldanomaly(Table2)werethe nat-uralstartingpointforfurtheranalysis.Meteorologicalreanalysis representedourbestestimateofobservedclimateonlargescales. CRCMdynamicallydownscaledtheseboundaryconditionsto pro-duceasynchronizedsimulationofactualclimateoverBC.However, sinceonlyonerealizationofthereanalysis-drivenCRCMwasused, eightadditionalGCM-drivenensemblerunsofCRCMwere nec-essarytoincreaseconfidenceintheoveralltrendsoftheclimatic variables.ZoneswheretheCRCM45-NREAoutputwassignificantly correlatedwiththemeanannualseedyieldanomalyand, further-more,wherethemajorityofensemblemembersagreedwiththe significanttrendoftheensemblemeanCRCM45-GCMoutput,were highlightedasthebestopportunitiesforinvestigatingrelationships betweenclimateandseedproduction.

InmostSPZs,significanttrendsinCRCM45-GCMand CRCM45-NREA output were unfortunately coupled with non-significant trendsorcontradictoryresultsintheseedyieldanomalies, restrict-ing further analysis. In Hudson Hope (HH), for instance, the ensemblemeanofGCM-drivenoutputof5-yearmeansummer sur-facetemperatureanomaliesshowedasignificantpositiveincrease ( =0.021◦Cyear−1, p<0.0001) from 1971 to 2000 (Fig. 7a). CRCM45-NREAoutputof5-yearmeansummersurface tempera-tureanomalieswerenegativelycorrelatedwiththemeanannual seedyieldanomaly(rs(14)=−0.624,p=0.0116)from1984to2004

(Fig. 6a). Over the period of overlap with CRCM45-NREA, i.e. 1984–2000,theresultis similar:␤ =0.021◦Cyear−1,p=0.0003. Thetrend inCRCM45-NREA5-year meansummersurface tem-peratureanomaliesover this periodwasalsosignificantand of thesamesign:␤=0.037◦Cyear−1,p=0.0174.Consequently,there wasnoreasontosuspectthatthesinglerealizationof CRCM45-NREAoutputwasunreasonablydifferentfromtheCRCM45-GCM output.However,sincetheslopeofthemeanannualseedyield anomalywasnotsignificantlydifferentfromzeroduringboththe 1971–2000(␤ =-0.001kghL−1year−1,p=0.4843)and1984–2000 (␤=-0.003kghL−1year−1,p=0.0583)intervals,theresultsforthis SPZwereinconclusive.

In the East Kootenay (EK) SPZ, where a sound comparison betweenallelementsof thestudywaspossible,CRCM45-NREA outputof5-yearmeanwintersurfacetemperatureanomalieswas negativelycorrelated withthemeanannualseedyieldanomaly (rs(16)=−0.511,p=0.0321)from1985to2004(Fig.6b).The

ensem-ble meanof GCM-drivenoutputof 5-yearmeanwinter surface temperature anomalies showed a significant positive increase (␤=0.038◦Cyear−1,p<0.0001)from1969to2000(Fig.7b).Both theGCMandreanalysis-drivenCRCMoutputcapturedsignificant relationshipsinthisSPZunderthisclimatescheme(Tables2and3). In addition, the slope of the mean annual seed yield anomaly wassignificantly differentfrom zeroin EK from1969to 2000, ␤ =0.002kghL−1year−1,p=0.0066(Fig.7b).However,whenthe overall trends of these components were investigated by fit-ting linear regressions for the overlapping period from 1985 to2000,the slopesof theensemble meanGCM-driven climate

(9)

Fig.4.Temporalcorrelationsforsurfacetemperature.Spearman’srankcorrelation(rs)betweenthemeanannualPinuscontortaseedyieldanomaly(kg/hL)ofthe

corre-spondingseedplanningzone(SPZ)anddifferentclimateschemesusingoutputfromCRCM45-NREA:Meanannual(a),winter(b)andsummer(c)surfacetemperaturewith a3-yeartrailing-mean;meanannual(d),winter(e)andsummer(f)surfacetemperaturewitha5-yeartrailing-mean;andmeanannual(g),winter(h)andsummer(i) surfacetemperaturewitha10-yeartrailing-mean.Localsignificance(␣=0.05)isidentifiedbyhatching,andredbordersaroundapanelindicateglobalfieldsignificance (␣global=0.05).SPZwithn<10discreteyearsofseedyielddatafortheaffiliatedclimateschemewereexcluded.

anomaly(=0.014◦Cyear−1,p=0.0552),reanalysis-drivenclimate anomaly(␤=0.013◦Cyear−1,p=0.5219)andseedyieldanomaly(␤ =−0.001kghL−1year−1,p=0.5865)werenotsignificantlydifferent fromzero.

While investigations using the reanalysis and GCM-driven CRCMoutputindependentlyproducedsignificantresults,the pre-dictiveskillofeach analysiswashinderedfordifferentreasons. Thereanalysis-basedtemporalcorrelationswerecalculatedusinga singlerealizationofCRCM,limitingthereliabilityoftheclimate sig-nal.Incontrast,averagingeightindividualCRCM45-GCMmembers madetheclimatesignalmuchclearer,butthetemporalambiguity ofthisoutputonlyallowedforoveralltrendstobeinvestigated. Thus,therelationshipbetweenclimateandseedproductioncould notbedeterminedwithahighdegreeofcertainty.

The complexities of biological and climate systems makes exploringtherelationshipbetweenannual seedproductionand climatedifficult,particularlyat largespatialscales.Research to datehasfocusedontheimpactofclimateontreeseedproduction intheformofmastseedingevents—periodswheresomespecies produceexceptionallylargeseedcrops.NortonandKelly(1988) hypothesizedthatvariationsinannualclimatemaycauseperiodsof decreasedbiologicalstressandallowtreestoproducemoreseeds. Inparticular,meansummertemperatureswerefoundtohavea weak—butsignificant—positivecorrelationwiththeannualseed productionofrimu(DacrydiumcupressinumLamb.)inNewZealand, butnosignificantcorrelationswerefoundbetweentotalseed pro-ductionandrainfall(NortonandKelly,1988).Asimilarrelationship hasbeennotedinDouglas-fir(PseudotsugamenziesiiMirb.(Franco)) withmeantemperaturesinthepreviousJunepositivelycorrelated

(10)

Fig.5.Signsofsignificant(␣=0.05)linearregressionslopes(␤)forensemblemeansurfacetemperatureanomaliesofthecorrespondingseedplanningzone(SPZ)under differentclimateschemesusingCRCM45-GCMoutput:meanannual(a),winter(b)andsummer(c)surfacetemperaturewitha3-yeartrailing-mean;meanannual(d),winter (e)andsummer(f)surfacetemperaturewitha5-yeartrailing-mean;andmeanannual(g),winter(h)andsummer(i)surfacetemperaturewitha10-yeartrailing-mean.SPZs showingasignificantpositiveslopeforthemeanannualPinuscontortaseedyieldanomaly(kghL−1year−1)areindicatedbyhatching.WhiteSPZsindicatethattheslope

oftheensemblemeansurfacetemperatureanomaly(◦Cyear−1)wasnotsignificantlydifferentfromzero(p>0.05).DarkredordarkbluecolorationidentifiesSPZswherea strictmajorityof5ormoreindividualensemblemembersagreewiththesignificantslopeoftheensemblemean.SPZswithn<10discreteyearsofseedyielddataforthe affiliatedclimateschemewereexcluded.

withconeproduction(Eis,1973).Otherresearchfoundthat vari-abilityinannualseedproductioninvariousmastingtreespeciesis correlatedwithannualrainfall(Sorketal.,1993;Woodwardetal., 1994).Incontrast,analysesconductedbyKoenigandKnops(2000) foundthatmastseedingdidnotcorrelatewithpatternsof vari-abilityineitherannualrainfallormeantemperature.Lodgepole pineconeproductionvariesfromyear-to-year,thoughnotasmuch asotherconifers(Elliott,1974;Herreraetal.,1998).Thepresent studyfoundsignificant,moderatetostrongcorrelationsbetween themeanannualseedyieldoflodgepolepineandclimatevariables fromareanalysis-drivenrunofCRCM(Table2),aswellas signifi-cantoveralltrendsusinganensembleofGCM-drivenCRCMoutput (Table3).

Our study investigated the correlation between and overall trend in seed production and climate, and cannot conclusively attribute the causation of such relationships without further research.However,itisinterestingtorecallthatlodgepolepinehas exceptionallybroadecologicamplitude(CaseandPeterson,2007) andiscapableofadaptingtodiverse,andoftensevere, environ-mentalconditions(Rehfeldtetal.,1999).Yellowcedar(Callitropsis nootkatensisD.Don)—ageneralistspecies—isalsoadaptedtowide climatic gradientsand, in terms of its productivity, appearsto beinsensitivetodifferencesinmoisture(RussellandKrakowski, 2012).

A portion of lodgepole pine’s adaptability can be explained intermsofgeneticvariability,growthandsurvival. Populations

(11)

Fig.6.TemporalvariationofmeanannualPinuscontortaseedyieldanomaly(kg/hL)alongwith:a)5-yearmeansummersurfacetemperature(ST)anomalyinHudsonHope (HH),andb)5-yearmeanwinterSTanomalyinEastKootenay(EK)calculatedusingoutputfromCRCM45-NREA.

throughoutBC aresignificantlydifferentfromone another(Xie andYing,1995;Rehfeldtetal.,1999).Highgeneticvariationinthis speciesismaintainedthroughlongdistancedispersal(Critchfield, 1980),highoutcrossingrates(Liewlaksaneeyanawin,2006), and anintoleranceofnaturalself-fertilization(YehandLayton,1979). However,WheelerandGuries(1982b)foundthatthegenetic vari-abilitybetweenpopulationswaslessthanthatcontainedwithin populations.Berland(2013)hypothesizedthatthisgenetic varia-tionwithinpopulationsmayberesponsiblefortherelativestability of reproductive traits—namely, the mean number of seeds per

cone—acrossclimateregimesinBC.Interestingly,ourworkfound asimilarlackofvariabilityinseedyieldbetween18differentseed planningzonesinBC(Figs.2and3),despitetheseregionshaving verydifferentclimates.Inaddition,onlythreeofthe18seed plan-ningzones—EK,SAandTOA—showedasignificantnon-zerotrend intheirmeanannualseedyieldanomalybasedonconecollections madeoverthepast50years(Figs.5,A.3inAppendixA,Table3). Despitenaturalyear-to-yearvariability,theremainingSPZsseem tobemaintainingarelativelyconstantoverallreproductiveoutput overthepastfewdecades.

(12)

Fig.7.TemporalvariationofmeanannualPinuscontortaseedyieldanomaly(kg/hL)alongwith:a)Fittedlinearregressionof5-yearmeansummersurfacetemperature(ST) anomalyinHudsonHope(HH),andb)Fittedlinearregressionof5-yearmeanwinterSTanomalyinEastKootenay(EK)calculatedfromtheeight-memberensemblemean ofCRCM45-GCMoutput.EnsemblemeanSTlinearregressionshaveunitsof◦Cyear−1.Thefittedlinearregressionforthemeanannualseedyieldanomaly(kghL−1year−1)

foreachzoneisindicatedinsolidblack.

Therearesomepracticalimplicationsofourwork,inparticular howtochoosesitesforseedorchardswiththeaimofoptimizing seedyield.Thisisbecauseseedyieldisnotalwaysstable.Studies byBates(1930)andCritchfield(1980)showedthatinWyoming andColoradoseedproductionwashighlyvariablefromoneyearto thenext.Repeatedpoorseedproductioncontinuestoberecorded fromlodgepolepineseedorchardsplantedoutofitsnatural cli-maticrange.InthesepublicandprivateseedorchardsintheNorth OkanaganofBritishColumbia,coneproductionisgood,butseed yieldisverypoor(Anon.,2002;Owensetal.,2005).Inthisregion,

whichispartoftheTODSPZ,theorchardsareplantedoutofthe zoneofoperationalforestry,i.e.atlowerelevationswhere lodge-polepinedoesnotnormallyoccur.Althoughtheremaybemany reasonsforfailure,includingpestsanddiseases,anotablefeature ofthesesitesareextremeJulyandAugusttemperatures.Ourstudy wouldsuggestthatplantingoffutureorchardswithinthenatural rangeoflodgepolepineoughttorestoreseedyieldtolevelsseen insurroundingtrees.Indeed,seedorchardswithinrangehave nor-malseedproduction,e.g.PrinceGeorgeTreeImprovementStation, whichisplantedinthetransitionalzonebetweenthePrinceGeorge

(13)

Table3

Schemesshowingalineartrendlineslope(␤)thatissignificantlydifferentfromzero(␣=0.05)forboththemeanannualPinuscontortaseedyieldanomaly(kghL−1year−1)

ofthecorrespondingseedplanningzone(SPZ)andtheensemblemeanofeithertheCRCM45-GCMprecipitation(PCP,mmyear−1)orsurfacetemperature(ST,◦Cyear−1) anomalies.Inallcases,5ormoreindividualensemblemembersagreewiththeslopeoftheensemblemean.Trailing-meansindicatethenumberofprecedingyears,summers orwintersthatwereaveragedtogetherforeachclimateoutputanalysis.

SPZ ␤SeedYieldAnomaly p-value ClimateVariable

Anomaly

Trailing-mean (years)

␤EnsembleMean p-value Num.ofEnsemble

MembersinAgreement Degreesof Freedom EK 0.002 0.0066 ST Annual 3 0.026 <0.0001 7 22 5 0.025 <0.0001 6 22 10 0.023 <0.0001 7 22 Winter 3 0.040 <0.0001 6 22 5 0.038 <0.0001 5 22 10 0.030 <0.0001 6 22 Summer 3 0.026 <0.0001 5 22 5 0.025 <0.0001 7 22 10 0.023 <0.0001 8 22 TOA 0.004 0.0006 PCP Annual 10 0.092 <0.0001 6 18 ST Annual 3 0.025 <0.0001 5 18 5 0.024 <0.0001 6 18 10 0.023 <0.0001 7 18 Winter 10 0.031 <0.0001 5 18 Summer 3 0.023 0.0001 5 18 5 0.024 <0.0001 5 18 10 0.024 <0.0001 7 18 SA 0.003 0.0074 ST Annual 3 0.021 <0.0001 5 19 5 0.023 <0.0001 6 19

andCentralPlateauSPZ(Anon.,2002).Stableseedproductioncan alsobeaproblem,allowinglodgepolepineplantedinnew envi-ronmentstobecomeinvasive.ExoticplantationsinNewZealand producedabundantseed,which,becauseofitslightweightnature spreadquicklyoverlargeareas.Furthermore,theserotinouscones provedwell-adaptedtofire-regulatednativehabitats,suchas tus-sockgrasscommunities(Richardsonetal.,1994).Thishasledto ecologicalshiftsthatareundesired,butdifficulttopreventonce thetreeisestablished.

InCanada,lodgepolepineisundergoingrangeexpansionatits northerndistributionlimitswithnoevidenceofstrongclimatic restrictionsonpopulationgrowth,indicatingthatthespecieshas yettoreachequilibriumwithcurrentclimaticconditionsinthis region(JohnstoneandChapin,2003).Thesefindingssuggestthat lodgepolepine mayhaveaneven broaderecologicalamplitude thanpreviouslyrecognized.

4. Conclusions

WefoundthatlodgepolepineinNSThadasignificantlyhigher meanseedyieldcomparedtoallotherzonesinBritishColumbia, withtheexceptionofHH.ThevarianceinseedyieldforNSTwas anorderofmagnitudehigherthanthatofotherSPZs,indicating thatseedproductionisexceptionallyvariableinthisregion.Inthe future,transitionalecosystemssuchasNSTpresentaunique oppor-tunitytoinvestigatehowenvironmentalvariabilityandselection pressuremayleadtoadaptiveevolution.

Analyses conducted using reanalysis and GCM-driven CRCM outputindependentlyfoundsignificantcorrelationsbetween cli-mateschemesandmeanannualseedyield,butindifferentSPZs. Thesedifferencesmaybeattributedtoambiguousagerangesfor eachconecollectionandtemporalrestrictionsoftheseedcollection dataandreanalysis-drivenclimateoutput.

WiththeexceptionofNST,seedproductionwasfoundtobe rel-ativelystableacrosstheclimategradientsrepresentedbytheSPZs. Onlythreeofthe18SPZsshowedasignificantlynon-zerotrend intheirmeanannualseedyieldbasedonconecollectionsmade overthepast50years—namely,EK,SAand TOA.The extraordi-naryadaptabilityoflodgepolepineandthehighgeneticvariationin naturalpopulationsmaybecontributingtotheconstancyofthese reproductivecharacteristics,therebyconcealinganypotential rela-tionshipswithclimateandpossiblyallowingthisspeciestotolerate decadal-scalechangesinclimatechange.

Acknowledgements

DaveKolotelooftheBCMinistryofForests,LandsandNatural ResourceOperationsisgratefullyacknowledgedforprovidingthe archivedconecollectiondatathatmadethisworkpossible.We sin-cerelythankGregO’Neill,MichaelCarlsonandNicholasUkrainetz fortheirpatientandtremendouslyconstructivediscussionsofthis work,EdWiebefortechnicalsupport,andCaitieFrenkelfor edi-torialassistance.WewouldalsoliketothankSusanZedel,Jared Lew,SpencerReitenbach,MarkusSchnorbusandLeslieMcAuleyfor theirassistancewiththeacquisitionandre-projectionofthespatial shapefiles.CRCMsimulationswereconductedbyMichelGiguère atOuranosConsortiumandattheUniversityofVictoriaaspartof theNaturalSciencesandEngineeringResearchCouncilofCanada’s (NSERC)−CRD project, DynamicalDownscalingof Westernand EasternCanadianHydroclimate,withinfrastructurefundingfrom theCanadianFoundationforInnovationandtheBritishColumbia KnowledgeDevelopmentFund.Theauthorsaregratefulforfunding obtainedthroughtheNSERC’sCREATEPrograminInterdisciplinary ClimateScience,DiscoveryGrantProgramandPGSProgram.

(14)

Fig.A.1.Boxplotsofnaturalstandlodgepolepine(PinuscontortaDouglasexLouden)seedyield(kgseed/hLcone)for18seedplanningzonesinBritishColumbia,Canada, organizedbyincreasingmedianvalue.Outliers(opencircles)fallmorethan1.5timestheinterquartilerangeawayfromthe1stand3rdquartiles.

(15)

Fig.A.2.Temporalcorrelationsforprecipitation.Spearman’srankcorrelation(rs)betweenthemeanannualPinuscontortaseedyieldanomaly(kg/hL)ofthecorresponding

seedplanningzone(SPZ)anddifferentclimateschemesusingoutputfromCRCM45-NREA:Meanannual(a),winter(b)andsummer(c)precipitationwitha3-year trailing-mean;meanannual(d),winter(e)andsummer(f)precipitationwitha5-yeartrailing-mean;andmeanannual(g),winter(h)andsummer(i)precipitationwitha10-year trailing-mean.Localsignificance(␣=0.05)isidentifiedbyhatching,andredbordersaroundapanelindicateglobalfieldsignificance(␣global=0.05).SPZwithn<10discrete

yearsofseedyielddatafortheaffiliatedclimateschemewereexcluded.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

(16)

Fig.A.3.Signsofsignificant(␣=0.05)lineartrendlineslopes(␤)forensemblemeanprecipitationanomaliesofthecorrespondingseedplanningzone(SPZ)underdifferent climateschemesusingCRCM45-GCMoutput:meanannual(a),winter(b)andsummer(c)precipitationwitha3-yeartrailing-mean;meanannual(d),winter(e)andsummer (f)precipitationwitha5-yeartrailing-mean;andmeanannual(g),winter(h)andsummer(i)precipitationwitha10-yeartrailing-mean.SPZsshowingasignificantpositive slopeforthemeanannualPinuscontortaseedyieldanomaly(kghL−1year−1)areindicatedbyhatching.WhiteSPZsindicatethattheslopeoftheensemblemeanprecipitation

anomaly(mmyear−1)wasnotsignificantlydifferentfromzero(p>0.05).DarkredordarkbluecolorationidentifiesSPZswhereastrictmajorityof5ormoreindividual

ensemblemembersagreewiththesignificantslopeoftheensemblemean.SPZswithn<10discreteyearsofseedyielddatafortheaffiliatedclimateschemewereexcluded. (Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

References

Adams,J.M.,2007.Vegetation-climateInteraction:HowVegetationMakesthe

GlobalEnvironment.Springer,NewYork,NewYork.

Anon,1987.SeedPlanningZonesandTransferGuidelinesforInteriorSpruceand

LodgepolePine.BCMinistryofForests,SilvicultureBranch,Victoria,BC,

MiscellaneousReportMr006.

Anon,2002.FinalReportoftheLodgepolePineSeedSetTaskGroup.Interior

TechnicalAdvisoryCommittee,ForestGeneticsCouncilofBritishColumbia,

http://www.fgcouncil.bc.ca/PliSeedSetRept.pdf(Accessed09July2015).

Anon,2010.TreeSeedProcessingandTestingResultSummariesforFall

2008-spring2010.BCMinistryofForests,TreeImprovementBranch,Victoria,

BC,FileNo.18120-20.http://www.for.gov.bc.ca/hti/treeseedcentre/tsc/files/

ProtestCoverLetterandAttachmentsTextAugust2010.pdf(Accessed20

August2014).

Anon,2015.2013/14ForestGeneticsCouncilofBCTreeImprovementProject

Report.ForestGeneticsCouncilofBritishColumbia,Victoria,BC,

http://www.fgcouncil.bc.ca/TIPR2013-14April2015Opt.pdf(Accessed8

November2016).

Arno,S.F.,Hammerly,R.P.,1978.NorthwestTrees:IdentifyingandUnderstanding

theRegion’sNativeTrees.MountaineersBooks,Seattle,Washington.

Bates,C.G.,1930.TheProductionExtractionGerminationofLodgepolePineSeed.

USDATechBullTB191,Washington,D.C.

Bennuah,S.Y.,Wang,T.,Aitken,S.N.,2004.GeneticanalysisofthePicea

sitchensis×glaucaintrogressionzoneinBritishColumbia.For.Ecol.Manage.

197,65–77.

Bentz,B.J.,Régnière,J.,Fettig,C.J.,Hansen,E.M.,Hayes,J.L.,Hicke,J.A.,Kelsey,R.G., Negrón,J.F.,Seybold,S.J.,2010.Climatechangeandbarkbeetlesofthewestern

UnitedStatesandCanada:directandindirecteffects.BioSci60,602–613.

Berland,A.,2013.VariationinReproductiveCharacteristicsofLodgepolePine

(PinuscontortaVar.latifolia)inBritishColumbia.UniversityofVictoria,

Victoria,BC(Dissertation).

Case,M.J.,Peterson,D.L.,2007.NorthCascadesNationalPark,Washington.

NorthwestSci.81,62–75.

Critchfield,W.B.,1980.GeneticsofLodgepolePine.USDAForestService,

(17)

Daly,C.,Gibson,W.P.,Taylor,G.H.,Johnson,G.L.,Pasteris,P.,2002.A

knowledge-basedapproachtothestatisticalmappingofclimate.Clim.Res.22,

99–113.

Eis,S.,1973.ConeproductionofDouglas-firandgrandfiranditsclimatic

requirements.Can.J.For.Res.3,61–70.

Elfving,B.,Ericsson,T.,Rosvall,O.,2001.Theintroductionoflodgepolepinefor

woodproductioninSweden—areview.For.Ecol.Manage.141,15–29.

Elliott,P.F.,1974.Evolutionaryresponsesofplantstoseed-eaters:pinesquirrel

predationonlodgepolepine.Evolution28,221–231.

Fan,S.,Grossnickle,S.C.,Sutton,B.C.,1997.Relationshipsbetweengasexchange

adaptationofSitka×interiorsprucegenotypesandribosomalDNAmarkers.

TreePhysiol.17,115–123.

Flannigan,M.D.,Logan,K.A.,Amiro,B.D.,Skinner,W.R.,Stocks,B.J.,2005.Future

areaburnedinCanada.Clim.Change72,1–16.

Forrest,G.I.,1980.GeographicalvariationinthemonoterpenesofPinuscontorta

oleoresin.Biochem.Syst.Ecol.8,343–359.

Fowells,H.A.,1965.SilvicsofForestTreesoftheUnitedStates.USDAForest

Service,Washington,DC.

Fowler,H.J.,Blenkinsop,S.,Tebaldi,C.,2007.Linkingclimatechangemodellingto

impactsstudies:recentadvancesindownscalingtechniquesforhydrological

modeling.Int.J.Climatol.27,1547–1578.

Hadley,M.J.,Tanz,J.S.,Fraser,J.,2001.Biotechnology:PotentialApplicationsin

TreeImprovement.BCForestGeneticsCouncil,Victoria,BC(ExtensionNote2).

Hamilton,J.A.,Aitken,S.N.,2013.Geneticandmorphologicalstructureofaspruce

hybrid(Piceasitchensis×P.glauca)zonealongaclimaticgradient.Am.J.Bot.

100,1651–1662.

Hamilton,J.A.,Lexer,C.,Aitken,S.N.,2013.Genomicandphenotypicarchitectureof

asprucehybridzone(Piceasitchensis×P.glauca).Mol.Ecol.22,827–841.

Herms,D.A.,Mattson,W.J.,1992.Thedilemmaofplants—togrowordefend.Q.

Rev.Biol.67,283–335.

Herrera,C.M.,Jordano,P.,Guitián,J.,Traveset,A.,1998.Annualvariabilityinseed productionbywoodyplantsandthemastingconcept:reassessmentof principlesandrelationshiptopollinationandseeddispersal.Am.Naturalist 152,576–594,http://dx.doi.org/10.1086/286191469.

Illingworth,K.,1978.Studyoflodgepolepinegenotype-environmentinteractionin

BC.In:ProceedingsInternationalUnionofForestryResearchOrganizations

(IUFRO)JointMeetingofWorkingParties:Douglas-firProvenances,Lodgepole

PineProvenances,SitkaSpruceProvenancesandAbiesProvenances,

Vancouver,BC,pp.151–158.

Johnstone,J.F.,Chapin,F.S.,2003.Non-equilibriumsuccessiondynamicsindicate

continuednorthernmigrationoflodgepolepine.GlobalChangeBiol.9,

1401–1409.

Kalnay,E.,Kanamitsu,M.,Kistler,R.,Collins,W.,Deaven,D.,Gandin,L.,etal.,1996.

TheNCEP/NCAR40-yearreanalysisproject.Bull.Am.Meteorol.Soc.77,

437–471.

Kendon,E.J.,Jones,R.G.,Kjellström,E.,Murphy,J.M.,2010.Usinganddesigning

GCM-RCMensembleregionalclimateprojections.J.Clim.23,6485–6503.

King,J.N.,Alfaro,R.I.,2009.DevelopingSitkaSprucePopulationsforResistanceto

theWhitePineWeevil:SummaryofResearchandBreedingProgram.BC

MinistryofForests,ResearchBranch,Victoria,BC(TechRep050).

Koch,P.,1996.LodgepolePineinNorthAmerica.ForestProductsSociety,Madison, Wisconsin.

Koenig,W.D.,Knops,J.M.,2000.Patternsofannualseedproductionbynorthern

hemispheretrees:aglobalperspective.Am.Nat.155,59–69.

Kolotelo,D.,VanSteenis,E.,Peterson,M.,Bennett,R.,Trotter,D.,Dennis,J.J.,2001.

SeedHandlingGuidebook.BCMinistryofForests,TreeImprovementBranch,

Victoria,BC,http://www.for.gov.bc.ca/hti/publications/misc/seedhandling

guidebookhi.pdf(Accessed25August2014).

Kral,R.,1993.Pinus.FloraofNorthAmerica,vol.2.OxfordUniversityPress,New

York,NewYork,pp.373–398.

Lavender,D.P.,Parish,R.,Johnson,C.M.,Montgomery,G.,Vyse,A.H.,Willis,R.A., Winston,D.,1990.RegeneratingBritishColumbia’sForests.BCMinistryof

Forests,ResearchBranch,Victoria,BC(Misc.Rep.Mr063).

Leech,S.M.,LaraAlmuedo,P.,O’Neill,G.,2011.Assistedmigration:adaptingforest

managementtoachangingclimate.J.Ecosyst.Manage.12,18–34.

Lertzman,K.P.,Gavin,D.G.,Hallett,D.J.,Brubaker,L.B.,Lepofsky,D.S.,Mathewes, R.W.,2002.Long-termfireregimefromsoilcharcoalincoastaltemperate

rainforests.Conserv.Ecol.6,5.

Liewlaksaneeyanawin,C.,2006.GeneticEvaluationofNaturalandDomesticated

LodgepolePinePopulationsUsingMolecularMarkers.UniversityofBritish

Columbia(Dissertation).

Livezey,R.E.,Chen,W.Y.,1983.Statisticalfieldsignificanceanditsdetermination

byMonteCarlotechniques.Mon.WeatherRev.111,46–59.

Lotan,J.E.,1970.ConeSerotinyinPinuscontorta.UniversityofMichigan (Dissertation).

Mátyás,C.,1996.Climaticadaptationoftrees:rediscoveringprovenancetests.

Euphytica92,45–54.

McFarlane,N.A.,Scinocca,J.F.,Lazare,M.,Harvey,R.,Verseghy,D.,Li,J.,2005.The CCCmathirdgenerationatmosphericgeneralcirculationmodel.Rapport interneduCentreCanadiendelaModélisationetdel’AnalyseClimatique,pp.

25.http://www.cccma.ec.gc.ca/papers/jscinocca/AGCM3report.pdf(Accessed

27April2015).

McLane,S.C.,Daniels,L.D.,Aitken,S.N.,2011.Climateimpactsonlodgepolepine

(Pinuscontorta)radialgrowthinaprovenanceexperiment.For.Ecol.Manage.

262,115–123.

Mearns,L.O.,Giorgi,F.,McDaniel,L.,Shields,C.,2003.Climatescenariosforthe

southeasternU.S.basedonGCMandregionalmodelsimulations.Clim.Change

6,7–35.

Meidinger,D.,Pojar,J.,1991.EcosystemsofBritishColumbia.BCMinistryof

Forests,ResearchBranch,Victoria,BC(SpecialReportSeriesSrs06).

Muir,P.S.,1993.Disturbanceeffectsonstructureandtreespeciescompositionof

PinuscontortaforestsinwesternMontana.Can.J.For.Res.23,1617–1625.

Norton,D.A.,Kelly,D.,1988.Mastseedingover33yearsbyDacrydiumcupressinum

Lamb.(rimu)(Podocarpaceae)inNewZealand:theimportanceofeconomies

ofscale.Funct.Ecol.2,399–408.

O’Neill,G.A.,Hamann,A.,Wang,T.,2008a.Accountingforpopulationvariation

improvesestimatesoftheimpactofclimatechangeonspecies’growthand

distribution.J.Appl.Ecol.45,1040–1049.

O’Neill,G.A.,Ukrainetz,N.K.,Carlson,M.,Cartwright,C.V.,Jaquish,B.C.,King,J.N., Krakowski,J.,Russell,J.H.,Stoehr,M.U.,Xie,C.-Y.,etal.,2008b.Assisted

MigrationtoAddressClimateChangeinBritishColumbia−Recommendations

forInterimSeedTransferStandards.BCMinistryofForests,ForestScience

Program,Victoria,BC(TechRep048).

Owens,J.N.,Bennett,J.,L’Hirondelle,S.,2005.Pollinationandconemorphology

affectconeandseedproductioninlodgepolepineseedorchards.Can.J.For.

Res.35,383–400.

Perry,D.A.,Lotan,J.E.,1977.OpeningTemperaturesinSerotinousConesof

LodgepolePine.USDAFor.Serv.Res(NoteINT-228).

Pierce,D.W.,Barnett,T.P.,Santer,B.D.,Gleckler,P.J.,2009.Selectingglobalclimate

modelsforregionalclimatechangestudies.PNAS106,8441–8446.

RCoreTeam,2015.R:ALanguageandEnvironmentforStatisticalComputing.R

FoundationforStatisticalComputing,Vienna,Austria

(http://www.R-project.org/).

Reeb,J.,Shaw,D.,2015.CommonInsectPestsandDiseasesofSitkaSpruceonthe

OregonCoast.OregonStateUniversityExtensionService(EM9105).

Rehfeldt,G.E.,Ying,C.C.,Spittlehouse,D.L.,HamiltonJr.,D.A.,1999.Genetic

responsestoclimateinPinuscontorta:nichebreadth,climatechange,and

reforestation.Ecol.Monogr.69,375–407.

Richardson,D.M.,Williams,P.A.,Hobbs,R.J.,1994.Pineinvasionsinthesouthern

hemisphere:determinantsofspreadandinvadability.J.Biogeogr.21,511–527.

Richardson,D.M.,2000.EcologyandBiogeographyofPinus.CambridgeUniversity

Press,NewYork,NY.

Roche,L.,1969.AgenecologicalstudyofthegenusPiceainBritishColumbia.New

Phytol.68,505–554.

Roeckner,E.,Bäuml,G.,Bonaventura,L.,Brokopf,R.,Esch,M.,Giorgetta,M., Hagemann,S.,Kirchner,I.,Kornblueh,L.,Manzini,E.,Rhodin,A.,Schlese,U., Schulzweida,U.,Tompkins,A.,2003.TheAtmosphericGeneralCirculation

ModelECHAM5.PartI:ModelDescription,vol.349.MaxPlanckInstitutefor

MeteorologyRep,pp.127.

Russell,J.H.,Krakowski,J.,2012.Geographicvariationandadaptationtocurrent

andfutureclimatesofCallitropsisnootkatensispopulations.Can.J.For.Res.42,

2118–2129.

Sork,V.L.,Bramble,J.,Sexton,O.,1993.Ecologyofmast-fruitinginthreespeciesof

NorthAmericandeciduousoaks.Ecology74,528–541.

Sushama,L.,Khaliq,M.N.,Laprise,R.,2010.DryspellcharacteristicsoverCanadain

achangingclimateassimulatedbytheCanadianRCM.GlobalPlanet.Change

74,1–14.

Tebaldi,C.,Arblaster,J.M.,Knutti,R.,2011.Mappingmodelagreementonfuture

climateprojections.Geophys.Res.Lett.38,L23701.

Tinker,D.B.,Romme,W.H.,Hargrove,W.W.,Gardner,R.H.,Turner,M.G.,1994.

Landscape-scaleheterogeneityinlodgepolepineserotiny.Can.J.For.Res.24,

897–903.

Voltas,J.,Chambel,M.R.,Prada,M.A.,Ferrio,J.P.,2008.Climate-relatedvariability

incarbonandoxygenstableisotopesamongpopulationsofAleppopinegrown

incommon-gardentests.Trees22,759–769.

Wallis,C.M.,Huber,D.P.,Lewis,K.J.,2011.Ecosystem,location,andclimateeffects

onfoliarsecondarymetabolitesoflodgepolepinepopulationsfromcentral

BritishColumbia.J.Chem.Ecol.37,607–621.

Wang,G.,Huang,S.,Monserud,R.A.,Klos,R.J.,2004.Lodgepolepinesiteindexin

relationtosynopticmeasuresofclimate,soilmoistureandsoilnutrients.For.

Chron.80,678–686.

Wang,T.,Hamann,A.,Yanchuk,A.,O’Neill,G.A.,Aitken,S.N.,2006.Useofresponse

functionsinselectinglodgepolepinepopulationsforfutureclimates.Global

ChangeBiol.12,2404–2416.

Werner,A.T.,2011.BCSDDownscaledTransientClimateProjectionsforEight

SelectGCMsoverBritishColumbia,Canada.PacificClimateImpacts

ConsortiumRep.UniversityofVictoria,Victoria,BC(pp63).

Wheeler,N.C.,Critchfield,W.B.,1985.Thedistributionandbotanical

characteristicsoflodgepolepine.In:Baumgartner,etal.(Eds.),Symposium

Proceedings,LodgepolePine:theSpeciesandItsManagement.Spokane,WA

andVancouver,BC,8–16May1984.WashingtonStateUniversity,Cooperative

ExtensionService,Pullman,Washington,pp.1–14.

Wheeler,N.C.,Guries,R.P.,1982a.Biogeographyoflodgepolepine.Can.J.Bot.60, 1805–1814.

Wheeler,N.C.,Guries,R.P.,1982b.Populationstructure,genicdiversity,and

morphologicalvariationinPinuscontortaDougl.Can.J.For.Res.12,595–606.

Wheeler,N.C.,Guries,R.P.,1987.Aquantitativemeasureofintrogressionbetween

lodgepoleandjackpines.Can.J.Bot.65,1876–1885.

Woods,A.,Coates,K.D.,Hamann,A.,2005.IsanunprecedentedDothistroma

(18)

Woodward,A.,Silsbee,D.G.,Schreiner,E.G.,Means,J.E.,1994.Influenceofclimate

onradialgrowthandconeproductioninsubalpinefir(Abieslasiocarpa)and

mountainhemlock(Tsugamertensiana).Can.J.For.Res.24,1133–1143.

Wu,H.X.,Ying,C.C.,Ju,H.,2005.Predictingsiteproductivityandpesthazardin

lodgepolepineusingbiogeoclimaticsystemandgeographicvariablesinBritish

Columbia.Ann.For.Sci.62,31–42.

Xie,C.Y.,Ying,C.C.,1995.Geneticarchitectureandadaptivelandscapeofinterior

lodgepolepine(Pinuscontortassp.latifolia)inCanada.Can.J.For.Res.25,

2010–2021.

Yeh,F.C.,Layton,C.,1979.Theorganizationofgeneticvariabilityincentraland

marginalpopulationsoflodgepolepine(Pinuscontortassp.latifolia).Can.J.

Genet.Cytol.21,487–503.

Ying,C.C.,Yanchuk,A.D.,2006.ThedevelopmentofBritishColumbia’streeseed

transferguidelines:purpose,concept,methodology,andimplementation.For.

Ecol.Manage.227,1–13.

Ying,C.C.,1991.GeneticResistancetotheWhitePineWeevilinSitkaSpruce.BC

Referenties

GERELATEERDE DOCUMENTEN

Our study across five Trinidadian streams showed that differences in predation regime and variation in resource abundance are associated with substantial intraspecific variation in

In dit keuzedeel specialiseert de beginnend beroepsbeoefenaar zich in het verzorgen van instructie binnen de windsurfsport met als doel om de sporter het windsurfen aan te leren of

Hierdie studie het ten doel gehad om te bepaal of kinders tussen 6 en 13 jaar se fisieke aktiwiteitsvlakke en fisieke fiksheid sal verbeter na deelname aan 'n gesondheidsbevorderende

Over de op- brengst van het grasland is vrij veel bekend, daar het Proefstation voor de Akker- en Weidebouw hier gedurende de jaren 1959 tot en met 1961 een opbrengstonderzoek

Juist deze test was bijzonder relevant, zegt Van Broekho- ven, ‘aangezien in ons land mensen insecten waarschijn- lijk niet rauw eten gaan eten’. Bloedmonsters van zestien mensen

The business unit commercial banking integrates the lending core product with instant risk management technology (Integration Core product), through a partnership (Core

Maar ook andere groepen zoals het Samenwerkingsverband Stop de Neutronenbom – Stop de kernwapenwedloop (SNB) en Pax Christi waren voorbeelden van sociale

Deze gegevens zijn (nog) niet bekend, althans niet in combinatie met geregistreerde verkeersongevallen. De analyses in deze paragraaf zijn er dan ook vooral op gericht om