Citation for this paper:
Lew, A., von Aderkas, P., Berland, A., Curry, C.L., Lacourse, T., Tencer, B. &
Weaver, A. (2017). An assessment of Pinus contorta seed production in British
Columbia: Geographic variation and dynamically-downscaled climate correlates
from the Canadian Regional Climate Model. Agricultural and Forest Meteorology,
236(April), 194-210.
https://doi.org/10.1016/j.agrformet.2016.12.013
UVicSPACE: Research & Learning Repository
_____________________________________________________________
Faculty of Science
Faculty Publications
_____________________________________________________________
An assessment of Pinus contorta seed production in British Columbia: Geographic
variation and dynamically-downscaled climate correlates from the Canadian
Regional Climate Model
Alicia Lew, Patrick von Aderkas, Anne Berland, Charles L. Curry, Terri Lacourse,
Bárbara Tencer, Andrew Weaver
April 2017
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY license (
http://creativecommons.org/licenses/by/4.0/
).
This article was originally published at:
https://doi.org/10.1016/j.agrformet.2016.12.013
ContentslistsavailableatScienceDirect
Agricultural
and
Forest
Meteorology
jou rn al h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / a g r f o r m e t
An
assessment
of
Pinus
contorta
seed
production
in
British
Columbia:
Geographic
variation
and
dynamically-downscaled
climate
correlates
from
the
Canadian
Regional
Climate
Model
Alicia
Lew
a,
Patrick
von
Aderkas
b,∗,
Anne
Berland
a,
Charles
L.
Curry
a,
Terri
Lacourse
b,
Bárbara
Tencer
a,
Andrew
Weaver
aaSchoolofEarthandOceanSciences,UniversityofVictoria,3800FinnertyRoad,Victoria,BC,V8P5C2,Canada bDepartmentofBiology,UniversityofVictoria,3800FinnertyRoad,Victoria,BC,V8P5C2,Canada
a
r
t
i
c
l
e
i
n
f
o
Articlehistory:
Received16August2016
Receivedinrevisedform5December2016 Accepted18December2016
Availableonline26January2017 Keywords:
Lodgepolepine Seedyield Climate BritishColumbia Seedplanningzones Naturalpopulations
a
b
s
t
r
a
c
t
Theecologicalandeconomicimportanceoflodgepolepine(PinuscontortaDouglasexLouden)inBritish Columbia(BC)hasheightenedinterestintheadaptabilityandeffectivemanagementofthespecies, especiallyasclimatechanges.Therelationshipbetweenclimateandtheseedproductionofnatural pop-ulationsisakeymanagementissuethathasyettobeassessed.Thepurposeofthisstudyistodetermine ifvariationinP.contortaseedyieldisrelatedtotheclimateofBC.
Regionaldifferencesintheseedproductionoflodgepolepinewereexaminedusing1924archived seedlotcollectionsacross18differentnaturalstandseedplanningzones(SPZs)inBC.Therelationship betweenclimatevariationandtheseedproductionofP.contortawasthenevaluatedusing dynamically-downscaledoutputfromtheCanadianRegionalClimateModel(CRCM).
SeedproductionisrelativelyconsistentacrossSPZsspanningawiderangeofclimateregimes,with theexceptionofNassSkeenaTransition(NST)whereseedyieldisanorderofmagnitudehigherthan elsewhere.Significanttemporalcorrelationsbetweenoveralltrendsinseedproductionandboth tem-peratureandprecipitationwerefoundusingtheCRCMoutput.However,onlythreeofthe18SPZsshowed asignificantoveralltrendinmeanannualseedyieldbasedonconecollectionsmadebetween1963and 2013,suggestingthatthereproductivecapacityofnaturalpopulationsiswelladaptedtodecadal-scale climatechange.Tolerancetosignificantvariationinclimatelikelyplaysanimportantroleinexplaining theabilityofthisspeciestothrivewelloutsideitsnaturalrange.
©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).
1. Introduction
Lodgepole pine (Pinus contorta Douglas ex Louden), known for its exceptional latitudinal range from 31◦N in Baja Califor-niato 64◦N in Yukon (Koch, 1996), has theability to grow in awide range of ecosystems(Richardson, 2000).Threedifferent varieties—P.contorta var. latifolia Engelm., P. contorta var. con-tortaDoug.exLoud.,andP.contortavar.murrayana(Balf.)Engelm. (Kral,1993)—occupyabroadelevationalrangefrom0to3900m (WheelerandCritchfield,1985)andareadaptedtomaritime,
conti-Abbreviations:CRCM,CanadianRegionalClimateModel;GCM,General Circula-tionModel;NST,NassSkeenaTransition;SPZ,seedplanningzone.
∗ Correspondingauthor.
E-mailaddresses:[email protected](A.Lew),[email protected](P.vonAderkas),
[email protected](A.Berland),[email protected](C.L.Curry),[email protected]
(T.Lacourse),[email protected](B.Tencer),[email protected](A.Weaver).
nental,andsubalpineconditions(Rehfeldtetal.,1999;Richardson, 2000).
Inareaswithfrequentforestfires,P.contortaregenerationhas furtheradaptedthroughthedevelopmentofclosed,orserotinous, cones(Elfvingetal.,2001),whichdonotopenuponmaturity,but remainsealeduntiltheyaresubjectedtosufficientlyhigh tem-peratures.Consequently,lodgepolepineplaysanimportantrole incolonizingpost-firelandscapes(Lotan,1970;PerryandLotan, 1977).The pioneercharacteristicsofthespecies, alongwithits edaphicandclimatictolerance,givetheprerequisitesforawide ecologicamplitude(CaseandPeterson,2007;Richardson,2000).
Thecommercialimportanceofinteriorlodgepolepine(P. con-torta var. latifolia)in BC hasresulted in heightened interest in itsadaptationsandgrowthpotentialundervarious environmen-talconditions(Wangetal.,2004).Extensivereforestationandtree improvementprogramshavebeendevelopedtoensuresustainable forestrypracticesforthespecies(YingandYanchuk,2006).Tohelp
http://dx.doi.org/10.1016/j.agrformet.2016.12.013
meettheincreasingreforestationdemandsoftheprovince,seed orchardshavebeenestablishedtoprovidehighquality,genetically selectedseed(Owensetal.,2005);however,theseorchards con-tinuetobeunabletomeetthehighreforestationdemands(Anon., 2015).Themajorityoflodgepolepineseedlingsareproducedfrom seedobtainedfromwildstands(Hadleyetal.,2001).
DespiteitsimportancetoreforestationinBC,geographic varia-tionintheseedproductionofnaturallodgepolepinepopulationsis notfullyunderstood.Earlierresearchonconeproductionandseed yieldinnaturalstandsindicatedthatseedproductioncouldvary considerablybetweenregionsandyears(Critchfield,1980).Bates (1930)reportedanannualmeanof180,000germinableseedsper hectareforasouthernWyomingstand.Overa10-yearperiodof col-lections,seedproductionrangedbetween0and336,000seedper hectare.Duringthesamedecade,theannualmeanseedproduction foraColoradostandwasreportedas790,000germinableseedsper hectare,witharangeof74,000to2,042,000(Bates,1930).Despite theseapparentdifferences,moreextensiveresearchonthespatial variationinwildstandlodgepolepinereproductionhasbeen prob-lematicduetothisspecies’widedistribution,longlifespan,and relativelyslowreproductiveturnover(Mátyás,1996). Understand-inghowreproductionmayvarygeographicallyinnaturalstands providesavaluablebaselinetopotentiallyimprovereforestation stockandpractices,particularlywhenfacedwithfuture environ-mentalchallenges.
Climatechangewill likely havesevere implicationsfor both nativeandplantationpopulations.ForBC,futuresummersare gen-erallyexpectedtobewarmeranddrier,whilewinterswilllikelybe warmerandwetterthanpresent;however,thechangesinclimate areexpectedtovaryacrosstheprovince(Werner,2011).In addi-tion,climatechangeisexpectedtoincreasetheseverityofforest firesinBC(Flanniganetal.,2005)aswellastheincidenceoffoliar disease(Woodsetal.,2005)andpests(Bentzetal.,2010). Infor-mationabouthowforestsrespondtoclimaticvariabilitywillallow managerstobetteranticipateandplanforfuturechangesto ecosys-temdynamics.Althoughitispossibleforvegetationtonaturally remainoutofbalancewithclimateforhundredsoreventhousands ofyears,it isnotclearhowforestswillrespondtothe acceler-atedpaceofanthropogenicclimatechange(Adams,2007).InBC, concernsoverthemaladaptationofforestspeciesbasedontheir currentdistributionsandslowreproductiveturnoverhasinspired researchonmoreactiveforestryresponses,includinghuman inter-ventionthroughassisted migration (O’Neillet al.,2008b;Leech etal.,2011).
Muchoftheresearchtodatehasfocusedonclimateresponses pertainingtogrowth.Thegrowthandsurvivalofindividualtrees appearstoberelatedtotheclimaticconditionsofthelocal environ-ment(Rehfeldtetal.,1999;Wuetal.,2005;O’Neilletal.,2008a). UsingtestsitesfromtheIllingworthprovenancetrials(Illingworth, 1978),Berland(2013)foundthemeannumberofseedspercone appearedtoberelativelystableacrossclimateregimes,incontrast totreegrowthandsurvival,whichvariedwidelyacrossthesesame regimes.Furtherresearchfromnaturalstandsisneededto under-standthechallengesthatforestsmightfaceinachangingclimate. Understandinghistoricalclimatetrendsisessentialinordertoput futureprojections incontext. GlobalCirculationModels(GCMs) arecapableofsimulatinghistoricalandfuturechangesinclimate regimes,typicallyonscalesofhundredsofkilometers.However, theseanalysesareoftenoflittleusetodecisionmakers,whorequire informationonsmallerscalestoevaluaterisksanddevelop adapta-tionstrategies(Mearnsetal.,2003).Theissueofmodelscalecanbe addressedbydownscalinginformationusingeitherastatisticalor dynamicaltechnique.Todate,studiesexaminingpopulation-scale responsesofP.contortatoclimatehavebeenprimarilyconducted usingstatistically-downscaledclimateoutputfromClimateWNA (Rehfeldtetal.,1999;Wangetal.,2006;Berland,2013).Although
therearesomeadvantagestothistechnique,themethodological constraintsofstatisticaldownscalingcannotaccountforchanges inclimatevariabilityovertime(Fowleretal.,2007).Analternative technique,whichprovidessimilaroutcomes,utilizes dynamically-downscaledclimateoutputgeneratedbyRegionalClimateModels (RCMs).
Here, we characterize the spatial and temporal pattern of seed yield in 18 natural stand seed planning zones in BC, in order to establish a baseline estimate of how the reproduc-tive capabilities of P. contorta may vary geographically. Then, dynamically-downscaledoutputfromtheCanadianRegional Cli-mateModel(CRCM)version4.2.4(Sushamaetal.,2010)isused toexaminetherelationshipbetweenclimatevariationandnatural standP.contortaseedproductioninBC.
2. Materialsandmethods
2.1. Seedyieldofnaturalstands
Historical cone collectiondata wereobtainedfrom archived recordsof1948seedlotsin22differentnaturalstandseed plan-ningzones(SPZs):BigBar(BB),Bulkley(BLK),Bush(BSH),Chilcotin (CHL),CentralPlateau(CP),CaribooTransition(CT),DeaseKlappan (DK), East Kootenay (EK), Finlay (FIN), Fort Nelson (FN), Hud-sonHope(HH),McGregor(MGR),Mica(MIC),Mt.Robson(MRB), Nechako(NCH),NassSkeenaTransition(NST),QuesnelLakes(QL), ShuswapAdams(SA),Submaritime(SM),ThompsonOkanaganArid (TOA),ThompsonOkanaganDry(TOD)andWestKootenay(WK) (Fig.1).These22naturalstandSPZswereestablishedbytheBC MinistryofForestsbasedonprovenanceperformanceinfieldtests (Anon.,1987).SPZsinuseinBCwereoriginallycreatedby overlay-ingclinaladaptivegeneticvariationdeterminedfromthesefield tests onto an ecological classificationof forestlands (Ying and Yanchuk,2006).TheboundariesofthesenaturalstandSPZs cor-respondtobiogeoclimaticsubzones(Anon.,1987)andrepresent regionsthataremoreorlessenvironmentallyuniform(Yingand Yanchuk,2006).AllnaturalstandlodgepolepineSPZsusedinthis study,withtheexception of thecoastalSubmaritime zone,are categorizedasinteriorregions.
ConeswerecollectedaccordingtoguidelinesbyLavenderetal. (1990).Sampleswereprocessedintheyearofcollection; standard-izedmethodsforhandlingconesandextractingseedwereused (Koloteloetal.,2001).SeedlotswerecollectedforeachSPZbetween 1963and2013andaminimumconecollectionfrom10treeswas requiredforeachseedlot.Eachofthe1948seedlotswascollected onasingleoccasion.Thefreshweightoftheseeds(inkilograms,kg), alongwiththevolumeofcones(inhectolitres,hL),wasdetermined foreachseedlotcollection.Freshseedmasseswerestandardizedto acommonmoisturecontentof7%inordertominimizevariation associatedwiththedryingprocess.Seedyield(kgfreshseed/hL cone)foreachseedlotwasthendeterminedbydividingthe stan-dardizedweightoffreshseedbythevolumeofconescollected. SeedlotswerearrangedintotheirrespectiveSPZandupdatesfrom theBCMinistryofForestsSEEDMAPGISsoftwareensuredthatall seedlotsreceivedtheappropriateSPZdesignationbasedontheir geographiccoordinates.
2.2. AnalysisofregionalvariationinPinuscontortaseed production
Seedplanningzoneswithfewerthan10totalseedlot collec-tionsoverthefivedecades—SM,DK,MICandFN—wereexcluded fromstatisticalanalysesduetotheirsmallsamplesizeand insuf-ficienttemporalcoverage.Consequently,thefinalsamplesizewas 1924seedlots.TheBrown-Forsythetest(␣significancelevel=0.05),
Fig.1. Naturalstandlodgepolepine(PinuscontortaDouglasexLouden)seedplanningzonesinBritishColumbiaandthelocationsof1948seedlotssampledbetween1963 and2013.SM,DK,MICandFNwereexcludedfromsubsequentstatisticalanalysesduetosmallsamplesizes.
basedonabsolutedeviationsfromthemedian,wasperformedon untransformeddatatotestforhomogeneityofvariance.Inorder toaccountforheterogeneityofvarianceandunequalsamplesize, Welch’sanalysisofvariance(ANOVA)andpost-hocGames-Howell tests(␣=0.05)wereconductedonlog-transformedseedyieldsto testfordifferencesbetweenthemeanseedyieldofeachzone.Log transformationwasusedtonormalizethedataandreduceskew. AllstatisticalanalyseswerecarriedoutinRversion3.1.0(RCore Team,2015).
2.3. Climateoutput
RegionalClimateModeloutputis quitetemporallyrealitistic whenreanalysesareinputastheboundaryconditions,primarily becausereanalysisintegratesmeteorologicalobservations(Kalnay etal.,1996).However,thelimitedavailabilityofthesereanalyses restrictsthenumberofrealizationsoftheRCMthatcanbe gen-erated.Whenimplementedasboundaryconditions,GCMsallow formanymorerealizationsusingtheRCM(Pierceetal.,2009),but introducetemporalambiguitytotheoutput(Kendonetal.,2010). Model output fromCRCM version 4.2.4 (Sushamaet al., 2010) servedastheclimateinformationforthisstudy.Outputwas uti-lizedfromtworunswithNCEP-DOEReanalysis2boundaryforcing atbotha15km(CRCM15-NREA)and45km(CRCM45-NREA) res-olutionandfromeight45kmresolutionrunswithGCMboundary forcing.BoundaryforcingfortheGCM-drivenrunswereprovided bythreerealizationsoftheECHAM5coupledGCM(Roeckneretal., 2003)andfiverealizationsoftheCGCM3coupledGCM(McFarlane etal.,2005).Theseeightensemblemembersimulationsare sub-sequentlyreferredtoasCRCM45-GCM.Thereanalysis-drivenruns ofCRCMextendedfrom1979to2004,whiletheGCM-drivenruns
wereanalyzedfrom1958to2000.TheGCM-drivenCRCM realiza-tionsweretruncatedattheyear2000,becausethatdaterepresents theendofthemodel’shistoricalemissionsscenario.Thetwo cli-matevariablesofinterestwere2-msurfaceairtemperature(◦C) and total precipitation (rain & snow,mm),henceforth referred toassurface temperatureand precipitation,respectively. Mean annual,winter(December–February),andsummer(June–August) temperatureandprecipitationwerecalculatedusingeachmodel simulation.
ThereasonwhyRCMmodeloutputwasusedratherthana grid-dedobservationproduct,likeClimateWNA,wasbecausethehigh resolutionofthishistoricaloutputisachievedthroughuseofPRISM (Dalyetal.,2002),whichemploysaclimate-elevationinterpolation scheme.Assuch,thereisnoapriorirequirementfordynamicand thermodynamicconsistencyofthedownscaledproduct.In addi-tion,ourgoalwastoeventuallyexplore thepotentialeffects of futureclimatechangeonlodgepolepineseedproduction.Assuch, itwasimportantthatweretainedthesamemodellingframework throughoutouranalysis
2.4. Lodgepolepineserotiny
Anygivennaturalstandmayincludebothserotinoustreesand treeswithconesthatopenatmaturity(Tinkeretal.,1994). How-ever,serotinycancomplicateassessmentsofconeage,asthree yearsaretypicallyrequiredforconestoreachmaturity,andclosed conesandviableseedsmayremainonthetreesforseveralyears fol-lowingmaturation(Lotan,1970).Inthepresentstudy,theagerange ofconesrepresentedineachseedlotcollectionwasunclear.Thus, theclimatecorrespondingtoeachcollectionhadtobeassigned moreconservatively usinga meanvalue.Amoving window,or
trailing-mean,of3,5and10yearswascalculatedforeachclimate variableusingeachCRCMsimulationinordertoaccountforthe serotinyoflodgepolepine.Inthecaseofannualmeans,the previ-ous3,5or10yearsofoutputwereaveragedandassignedtothefinal yearofthewindow.Forthewinter(summer)mean,theprevious 3,5or10winter(summer)meanswereaveragedandassignedto thefinalwinter(summer)ofthewindow.Werefertoeachunique combinationofmodeloutput,trailing-meanandseasonalorannual averageasaclimatescheme.
2.5. Climateanalyses
Foreachclimatescheme,the1924seedlotswereindividually assignedanappropriatevalueofeachclimatevariablebasedon twocriteria:theyearofcollectionandtheSPZ.First,the collec-tionyearisolatedthecorrecttimesliceoftheclimateoutputfor thatseedlot.Next,theapplicableSPZdesignationforthat seed-lotfurtherisolatedgridcellsofaparticularlongitudeandlatitude. Thesegridcellswerethenweightedwithrespecttotheirarea cov-erageandthespatially-weightedmeanoftheclimatevariablewas assignedtotheseedlotofinterest.Thisprocedurewasrepeatedfor eachseedlotundereachclimatescheme.
Oncetheappropriateclimatevariablevalueswereassignedto eachseedlot,theseedlotsweregroupedbySPZ.Theseedyieldsof seedlotscollectedinthesameSPZduringthesameyearwere aver-agedtodetermineameanannualseedyieldforthatregion.Within individualSPZs,theanomalyfromthemeanwasthencalculated forboththemeanannualseedyieldandtheclimatevariableof interestusingeachsetofclimateoutput.Climateanomalies calcu-latedfromreanalysis-drivenCRCMoutputwererepresentedunder eachofthethreetrailing-means,i.e.3,5and10years.Anomalies ofclimatemodeloutputwereindependentlycalculatedforeach oftheeightCRCM45-GCMensemblemembersbeforeaveraging themtogethertogiveamulti-modelensemblemeananomalyand a±2standarddeviationenvelopebasedontheensemblespread. TheCRCM45-GCMoutputwasalsorepresentedundereachofthe threetrailing-means.
ClimatevariableanomaliescalculatedfromCRCM45-NREA out-putwereinvestigatedfirst.Thetemporalcorrelationbetweeneach climatevariableanomalyandthemeanannualseedyieldanomaly ineachSPZwascalculatedusingSpearman’srankcorrelation, pri-marilyduetoconcernssurroundingbothsmallsamplesizesand non-normality.Correlationcoefficients(rs)andp-values(␣=0.05)
fromindependenttestsforeachSPZwerecomparedgeographically usingmapsforeachclimatevariable.SPZswithfewerthan10 dis-creteyearsofseedyielddatafortheaffiliatedclimateschemewere excludedfromthestatisticalanalysisduetotheirsmallsamplesize andinsufficienttemporalcoverage.Globalhypothesesof signifi-cantcorrelation(␣global=0.05)weretestedusingtheMonteCarlo
approachdevelopedbyLivezeyandChen(1983).Thisapproach accountsforthepossibilitythatSPZsinclosespatialproximityto eachothermaybecorrelated.Specifically,itallowsonetoassess theminimumfractionalareaofthedomainoverwhichlocal sta-tisticalsignificanceatagivenlevel,say95%,needstobeachieved inorderthatthesetoflocallysignificantcorrelationsnotbedueto chancealone.
ClimatevariableanomaliescalculatedfromCRCM45-GCM sim-ulations were then analyzed. Instead of temporal correlations, overalltrendsinclimatevariablesweredeterminedineach SPZ asameansofdealingwiththeasynchronousnatureofthese real-izations.SPZswithfewerthan10discreteyearsofseedyielddata fortheaffiliatedclimateschemewereonceagainexcludedfromthe analysisduetotheirsmallsamplesize.Thetrendwasdetermined byfittingalinearregressiontoeachclimatevariableanomaly.The slope()oftheensemblemeananomalywasofprimaryinterestin eachSPZ,buttheslopesofindividualensemblememberanomalies
Table1
Summaryofthenumberofseedlotsanddescriptivestatistics(mean,standarderror andvariance)ofnaturalstandlodgepolepine(PinuscontortaDouglasexLouden) seedyield(kgseed/hLcone)for18seedplanningzones(SPZ)inBritishColumbia, Canada.
SPZ NumberofSeedlots MeanSeedYield
(kg/hL)±S.E. Variance NST 43 0.378±0.0030 0.0199 HH 51 0.296±0.0002 0.0012 WK 184 0.285±0.0003 0.0045 NCH 160 0.283±0.0001 0.0011 EK 117 0.278±0.0004 0.0044 CHL 128 0.275±0.0001 0.0014 CT 62 0.274±0.0003 0.0021 MGR 62 0.271±0.0002 0.0014 TOA 250 0.270±0.0002 0.0026 MRB 17 0.267±0.0012 0.0048 CP 115 0.263±0.0002 0.0019 SA 148 0.262±0.0004 0.0047 TOD 170 0.262±0.0002 0.0031 BSH 30 0.261±0.0005 0.0027 FIN 99 0.261±0.0002 0.0022 BLK 163 0.255±0.0001 0.0017 QL 29 0.254±0.0001 0.0007 BB 96 0.242±0.0002 0.0021
werealsocalculatedasawayofgaugingthevariabilityinslopes. Forcomparison,alinearregressionwasalsofittothemeanannual seedyieldanomalyoverthesameinterval.Eachslopewasthen testedtoseeifitwassignificantlydifferentfromzeroatthe5% level.Multi-modelagreementwasdeclarediffiveormore indi-vidualensemblemembersshowedasignificanttrendthatagreed withthesignofthesignificantensemblemeantrend(Tebaldietal., 2011).Thesignandsignificanceoftheensemblemeanandmean annualseedyieldlinearregressionswerecomparedgeographically betweenzonesusingmapsforeachclimatescheme.InSPZswhere themajorityofGCM-drivenensemblemembersshoweda signifi-canttrendand,additionally,asignificanttemporalcorrelationwas previouslyfoundwithCRCM45-NREAoutput,linearregressions werefitandtestedforCRCM45-NREAoutputoverthesametime periodasCRCM45-GCM.
3. Resultsanddiscussion
3.1. RegionalvariationinPinuscontortaseedproduction
The Brown-Forsythe test indicated unequal variances (F
(17,1906)=16.61,p<0.0001)betweentheseedyieldsofthe18SPZs
includedinthestatisticalanalysis.Inparticular,thevarianceinseed yieldforNassSkeenaTransition(NST)wasanorderofmagnitude higherthanthatofotherSPZs(Table1;Fig.2).Inaddition,themean seedyieldofNST(0.378kgseed/hLcone)wasconsiderablyhigher thanthemeanseedyieldofthe17otherzones(0.268kgseed/hL cone)(Table1).Welch’sANOVAindicatedsignificantdifferences inmeanseedyieldbetweenseedplanningzones(F(17,398)=11.2,
p<0.0001).Post-hocanalysesusingpairwiseGames-Howelltests revealedthatmeanseedyieldwassignificantlyhigherinNST com-paredtoallotherzones(Table2)exceptHH(t(49)=3.3,p=0.1260).
Whenthe sameanalysis wasperformed ontheuntransformed data,NSTseedyieldwassignificantlyhigherthanallotherzones (F(17,398)=10.2,p<0.0001),includingHH,thoughthedifference
betweenNSTandHHwasbarelysignificant(t(46)=3.7,p=0.0461).
SinceNSTisnearthecoastandHHisintheBCInterior,theseregions representverydifferentconditions.
Asaresultofitsgeography,NSThasaheterogeneous, transi-tionalclimatewithbothmaritimeandcontinentalcharacteristics (Bennuah et al., 2004). Consequently, its steep environmen-talgradientsmakes NSTawell-known hotspotfor interspecific
Fig.2. Probabilitydensityfunctionsofnaturalstandlodgepolepine(PinuscontortaDouglasexLouden)seedyield(kgseed/hLcone)for18seedplanningzonesinBritish Columbia,Canada.
hybridizationandintrogressionbetweencoastalandinterior conif-erousspecies(Hamiltonetal.,2013).Inparticular,introgressive hybridization is known to occur between Sitka spruce (Picea sitchensisBong.) andwhitespruce(Picea glauca(Moench) Voss) inthisregion(Roche,1969), resultinginincreasedgenetic vari-ability(Hamiltonand Aitken2013),pestresistance(Ying,1991; KingandAlfaro,2009)andhighertoleranceofenvironmentalstress (Fanetal.,1997).Althoughlesswell-studiedinNSTthanspruce, lodgepolepineisrepresentedbytwovarieties—shorepine(Pinus contortavar.contorta)andinteriorlodgepolepine(P.contortavar. latifolia)(Koch,1996).Analysisofgeographicalvariationof lodge-polepinemonoterpenesshowedsubstantialchemicaldifferences betweencoastalandinteriorvarieties,withpopulationsofunique intermediatecharacterin areassuchastheSkeenaRiverregion (Forrest, 1980). Concentrations of foliar secondary metabolites, knowntobeactiveinregulatingabioticandbioticstress,arealso
consistentlyhigherinstandsofP.contortavar.latifoliafoundin theInteriorCedar-Hemlockbiogeoclimaticzone(Meidingerand Pojar,1991)ofNSTcomparedtootherinteriorstands(Wallisetal., 2011).Theextendedgrowingseasonprovidedbythemild,moist, transitionalclimateofthisregionmayreduceabioticstresssuchas drought,therebyallowingthetreestoallocateadditionalresources toreproduction(HermsandMattson,1992).
AlthoughNSTisconsideredaninteriornaturalstandSPZ,gene flowbetweencoastaland interior varietiesoflodgepolepine is assumedtooccur(Koch,1996).Forinstance,geneticinfluencefrom thesmaller-sizedcoastalvarietywassuspectedtocontributeto thelowerheightsattainedbyinteriorlodgepolepinetrees near thecoast-interiortransitionzoneinwesternCanada(XieandYing, 1995).Themaritimepopulationsoflodgepolepinearegenetically morevariable(Wheelerand Guries,1982a)and tendtoexhibit higherseedyieldsthantheinteriorvariety(Anon.,2010).These
Fig.3.Naturalstandlodgepolepine(PinuscontortaDouglasexLouden)seedyield(kgseed/hLcone)for18seedplanningzonesinBritishColumbia,Canada,withcollections between1963and2013.
twovarietiesoflodgepolepineintergradealongthecoastalrange ofBC(ArnoandHammerly,1978),soitispossiblethatinfluence fromthecoastalvarietymayberesponsiblefortheexceptionalseed yieldsintheinteriorNSTzone(Figs.2and3).
Inadditiontovarietaldifferences,thelackofserotinyincones inNSTcomparedtothoseininteriorSPZsmayalsoexplainthe dif-ferencesinseedproduction.Fire-inducedserotinyisecologically importantforlodgepolepine,ensuringthatitremainsanaggressive pioneerspecies(Muir,1993).Serotinyiscommoninlodgepolepine intheBCInterior.Incontrast,serotinyisrarelyfoundinthe mar-itimeregion(Fowells,1965)wherefireislessprevalent(Lertzman etal.,2002).Individualtreesmayneedtoproducefewerseedsin ordertohavethesamereforestationimpactinareaswhereserotiny isrelativelyubiquitousandfiredominatesthelandscape.Onthe PacificNorthwestCoast—aregionwithoutfrequentfire—lodgepole pinetendstobereplacedbymoreshade-tolerantspeciessuchas Sitkaspruce(Piceasitchensis(Bong.)Carr.)(ReebandShaw,2015) andmayrequirealargerseedsettoremaincompetitive.
HudsonHope(HH)SPZissituatedinanareainwhichextensive interspecifichybridizationoccursbetweenlodgepolepineandjack pine,PinusbanksianaLamb.(WheelerandGuries,1987).Although naturalhybridzonesareknowntobeimportantsourcesofnovel geneticvariationinwhichrecombinantsmaybecomesuperiorly adapted(Hamiltonetal.,2013),itisnotknownwhetherlodgepole pineseedproductionisinfluenced.Enhancedseedproductionin
HHandNSTmayalsobeattributedtophenotypicplasticity,i.e.the abilityofagivengenotypetoprovidearangeofphysiologicalor morphologicalphenotypesinresponsetodifferentenvironmental conditions(Voltasetal.,2008).Itisdifficulttodistinguishbetween geneticadaptationandphenotypicplasticity,butbothare impor-tantmechanismsbywhichlong-livedorganismsareboundmore stronglytotheirenvironment(Mátyás,1996).
SeedyieldsinHHandNSTcontrastedwiththoseinotherSPZs. Bothenvironmentalandgeneticfactorsmayhelptoexplainthe geographicdifferences.Inapreviousstudy,correlationsbetween climateandgrowthwerefoundtovaryregionally(McLaneetal., 2011).Whengrownincommontestsites,i.e.theIllingworth lodge-polepineprovenancetrial,populationsfromwarmregionswere affectedmorestronglybysummeraridity,whereaspopulations originatingfromcoldregionswereaffectedmorebyannual tem-perature. According toMcLane et al. (2011),the differences in sensitivityamongpopulationsgrownundersimilar environmen-talconditionsprovideameasureoftheinfluenceofbothgenetics andsiteclimate.Incontrast,astudyofreproductivetraitsof lodge-polepineinIllingworthprovenancetestsitesfoundthatthemean numberofseedsperconeremainedrelativelystableregardlessof provenanceorclimate(Berland,2013).Inourstudy,asimilarlackof variabilityinseedyieldwasgenerallyobservedwithinandbetween naturalstandSPZs(Tables1and2;Fig.A.1inAppendixA). Compar-isontoBerland’sstudyislimited,becauseourstudyinvestigated
Table2
Schemesofclimatevariableanomaliesshowingastatisticallysignificant(␣=0.05) Spearman’srankcorrelation(rs)withthemeanannualPinuscontortaseedyield
anomaly(kg/hL)ofthecorrespondingseedplanningzone(SPZ)usingprecipitation (PCP)andsurfacetemperature(ST)climateoutputfromCRCM45-NREA. Trailing-meansindicatethenumberofprecedingyears,summersorwintersthatwere averagedtogetherforeachclimateoutputanalysis.
SPZ ClimateVariable Anomaly Trailing-mean(years) rs p-value df HH PCP Annual 5 −0.547 0.0306 14 10 −0.650 0.0259 10 Summer 3 −0.638 0.0094 14 5 −0.765 0.0009 14 10 −0.755 0.0066 10 ST Summer 3 −0.600 0.0160 14 5 −0.624 0.0116 14 10 −0.671 0.0204 10 CP PCP Annual 3 0.626 0.0253 11 5 0.790 0.0036 10 ST Annual 3 0.654 0.0183 11 Summer 3 0.857 0.0003 11 Winter 5 0.748 0.0074 10 FIN PCP Annual 5 0.560 0.0401 12 10 0.560 0.0499 11 Summer 10 −0.632 0.0237 11 Winter 5 0.609 0.0237 12 BLK PCP Annual 10 −0.582 0.0403 11 Summer 5 −0.600 0.0099 16 ST Summer 10 −0.599 0.0340 11 EK ST Winter 5 −0.511 0.0321 16 SA PCP Summer 5 0.579 0.0264 13 TOA PCP Winter 10 −0.679 0.0049 15 WK ST Winter 5 −0.454 0.0458 15
naturalstandsratherthanprovenancetrials,andwecannot dis-tinguishbetweengeneticandenvironmentaleffects.Sinceseedlot collectionswerenottemporallyconsistentbetweenzones(Fig.3), itisalsodifficulttomakeinferencesaboutthedifferencesbetween SPZsfromthis studyalone,particularlygiventhat regionaland globalclimatemayhave hadvariable impactsover the50-year timespanofthecollections.
3.2. Seedyield-climaterelations
Localcorrelationsbetweeneachclimatevariableanomalyand meanannualseedyieldanomalyweresignificant(␣=0.05)in24 uniquecombinationsofclimateschemesandSPZusing CRCM45-NREA output(Table 2; Fig. 4, Fig. A.2 in Appendix A). Climate schemes that produced a sufficient number of statistically sig-nificantindividualresultstowarrantrejectionoftheglobalnull hypothesis(␣global=0.05)arehighlightedwithredbordersinFig.4
andFigA.2(inAppendixA).Inthesescenarios,therewasa proba-bilitynohigherthan0.05thatanequivalentorgreaternumberof significantlocalcorrelationswouldhavebeenobservedbychance. Themajorityofsignificantlocalcorrelationsfoundusing CRCM45-NREAoutput werein more northern SPZs suchasHH, CP, FIN andBLK(Table2).Onlyfourdifferentclimateschemesshowed globalfieldsignificance(␣global=0.05):5-yearmeanannual
precip-itation,10-yearmeanannualprecipitation,5-yearmeansummer precipitation(Fig.A.2 in AppendixA), and5-year mean winter surfacetemperature(Fig.4).Anomaliesandcorrelationsinvolving 15km×15kmCRCMoutputwithNCEP-DOEReanalysis2 bound-aryforcing(i.e.,CRCM15-NREA)wereindistinguishablefromthe lowerresolutionanalysesdisplayedhereandarehenceforthnot discussedindetail.
Ingeneral,CRCM45-GCMoutputcollectivelycaptureda warm-ingsignalinsurfacetemperaturesthroughouttheprovince(Fig.5). Althoughwe calculated the overall trend of each climate vari-able anomaly and the mean annual seed yield anomaly was calculated using CRCM45-GCM output, only the overall trends
areillustratedforsurfacetemperatureanomalies(Fig.5)and,in theappendix, for precipitationanomalies(Fig.A.3 in Appendix A).Threeof theeighteenSPZs—EK, TOAand SA(Figs. 5,A.3 in AppendixA;Table3)—showedatrendinthemeanannualseed yieldanomalythatwassignificantlydifferent(␣=0.05)fromzero (dataforremaining15SPZsnotshown).AcrossthesethreeSPZs, 23 climateschemes showedclimate anomalytrendsthat were significantlydifferentfromzero(␣=0.05)amongsttheensemble membersusingCRCM45-GCMoutput(Table3).Significant over-alltrendsfoundusingtheensemblemeanofGCM-drivenCRCM outputthatweresupportedbythemajorityofensemblemembers werecapturedmoreofteninsurfacetemperatureanomalies(Fig.5) thaninprecipitationanomalies(Fig.A.3inAppendixA).
SPZswhereCRCM45-NREAoutputshowedstrongcorrelations withthemeanannualseedyieldanomaly(Table2)werethe nat-uralstartingpointforfurtheranalysis.Meteorologicalreanalysis representedourbestestimateofobservedclimateonlargescales. CRCMdynamicallydownscaledtheseboundaryconditionsto pro-duceasynchronizedsimulationofactualclimateoverBC.However, sinceonlyonerealizationofthereanalysis-drivenCRCMwasused, eightadditionalGCM-drivenensemblerunsofCRCMwere nec-essarytoincreaseconfidenceintheoveralltrendsoftheclimatic variables.ZoneswheretheCRCM45-NREAoutputwassignificantly correlatedwiththemeanannualseedyieldanomalyand, further-more,wherethemajorityofensemblemembersagreedwiththe significanttrendoftheensemblemeanCRCM45-GCMoutput,were highlightedasthebestopportunitiesforinvestigatingrelationships betweenclimateandseedproduction.
InmostSPZs,significanttrendsinCRCM45-GCMand CRCM45-NREA output were unfortunately coupled with non-significant trendsorcontradictoryresultsintheseedyieldanomalies, restrict-ing further analysis. In Hudson Hope (HH), for instance, the ensemblemeanofGCM-drivenoutputof5-yearmeansummer sur-facetemperatureanomaliesshowedasignificantpositiveincrease ( =0.021◦Cyear−1, p<0.0001) from 1971 to 2000 (Fig. 7a). CRCM45-NREAoutputof5-yearmeansummersurface tempera-tureanomalieswerenegativelycorrelatedwiththemeanannual seedyieldanomaly(rs(14)=−0.624,p=0.0116)from1984to2004
(Fig. 6a). Over the period of overlap with CRCM45-NREA, i.e. 1984–2000,theresultis similar: =0.021◦Cyear−1,p=0.0003. Thetrend inCRCM45-NREA5-year meansummersurface tem-peratureanomaliesover this periodwasalsosignificantand of thesamesign:=0.037◦Cyear−1,p=0.0174.Consequently,there wasnoreasontosuspectthatthesinglerealizationof CRCM45-NREAoutputwasunreasonablydifferentfromtheCRCM45-GCM output.However,sincetheslopeofthemeanannualseedyield anomalywasnotsignificantlydifferentfromzeroduringboththe 1971–2000( =-0.001kghL−1year−1,p=0.4843)and1984–2000 (=-0.003kghL−1year−1,p=0.0583)intervals,theresultsforthis SPZwereinconclusive.
In the East Kootenay (EK) SPZ, where a sound comparison betweenallelementsof thestudywaspossible,CRCM45-NREA outputof5-yearmeanwintersurfacetemperatureanomalieswas negativelycorrelated withthemeanannualseedyieldanomaly (rs(16)=−0.511,p=0.0321)from1985to2004(Fig.6b).The
ensem-ble meanof GCM-drivenoutputof 5-yearmeanwinter surface temperature anomalies showed a significant positive increase (=0.038◦Cyear−1,p<0.0001)from1969to2000(Fig.7b).Both theGCMandreanalysis-drivenCRCMoutputcapturedsignificant relationshipsinthisSPZunderthisclimatescheme(Tables2and3). In addition, the slope of the mean annual seed yield anomaly wassignificantly differentfrom zeroin EK from1969to 2000,  =0.002kghL−1year−1,p=0.0066(Fig.7b).However,whenthe overall trends of these components were investigated by fit-ting linear regressions for the overlapping period from 1985 to2000,the slopesof theensemble meanGCM-driven climate
Fig.4.Temporalcorrelationsforsurfacetemperature.Spearman’srankcorrelation(rs)betweenthemeanannualPinuscontortaseedyieldanomaly(kg/hL)ofthe
corre-spondingseedplanningzone(SPZ)anddifferentclimateschemesusingoutputfromCRCM45-NREA:Meanannual(a),winter(b)andsummer(c)surfacetemperaturewith a3-yeartrailing-mean;meanannual(d),winter(e)andsummer(f)surfacetemperaturewitha5-yeartrailing-mean;andmeanannual(g),winter(h)andsummer(i) surfacetemperaturewitha10-yeartrailing-mean.Localsignificance(␣=0.05)isidentifiedbyhatching,andredbordersaroundapanelindicateglobalfieldsignificance (␣global=0.05).SPZwithn<10discreteyearsofseedyielddatafortheaffiliatedclimateschemewereexcluded.
anomaly(=0.014◦Cyear−1,p=0.0552),reanalysis-drivenclimate anomaly(=0.013◦Cyear−1,p=0.5219)andseedyieldanomaly( =−0.001kghL−1year−1,p=0.5865)werenotsignificantlydifferent fromzero.
While investigations using the reanalysis and GCM-driven CRCMoutputindependentlyproducedsignificantresults,the pre-dictiveskillofeach analysiswashinderedfordifferentreasons. Thereanalysis-basedtemporalcorrelationswerecalculatedusinga singlerealizationofCRCM,limitingthereliabilityoftheclimate sig-nal.Incontrast,averagingeightindividualCRCM45-GCMmembers madetheclimatesignalmuchclearer,butthetemporalambiguity ofthisoutputonlyallowedforoveralltrendstobeinvestigated. Thus,therelationshipbetweenclimateandseedproductioncould notbedeterminedwithahighdegreeofcertainty.
The complexities of biological and climate systems makes exploringtherelationshipbetweenannual seedproductionand climatedifficult,particularlyat largespatialscales.Research to datehasfocusedontheimpactofclimateontreeseedproduction intheformofmastseedingevents—periodswheresomespecies produceexceptionallylargeseedcrops.NortonandKelly(1988) hypothesizedthatvariationsinannualclimatemaycauseperiodsof decreasedbiologicalstressandallowtreestoproducemoreseeds. Inparticular,meansummertemperatureswerefoundtohavea weak—butsignificant—positivecorrelationwiththeannualseed productionofrimu(DacrydiumcupressinumLamb.)inNewZealand, butnosignificantcorrelationswerefoundbetweentotalseed pro-ductionandrainfall(NortonandKelly,1988).Asimilarrelationship hasbeennotedinDouglas-fir(PseudotsugamenziesiiMirb.(Franco)) withmeantemperaturesinthepreviousJunepositivelycorrelated
Fig.5.Signsofsignificant(␣=0.05)linearregressionslopes()forensemblemeansurfacetemperatureanomaliesofthecorrespondingseedplanningzone(SPZ)under differentclimateschemesusingCRCM45-GCMoutput:meanannual(a),winter(b)andsummer(c)surfacetemperaturewitha3-yeartrailing-mean;meanannual(d),winter (e)andsummer(f)surfacetemperaturewitha5-yeartrailing-mean;andmeanannual(g),winter(h)andsummer(i)surfacetemperaturewitha10-yeartrailing-mean.SPZs showingasignificantpositiveslopeforthemeanannualPinuscontortaseedyieldanomaly(kghL−1year−1)areindicatedbyhatching.WhiteSPZsindicatethattheslope
oftheensemblemeansurfacetemperatureanomaly(◦Cyear−1)wasnotsignificantlydifferentfromzero(p>0.05).DarkredordarkbluecolorationidentifiesSPZswherea strictmajorityof5ormoreindividualensemblemembersagreewiththesignificantslopeoftheensemblemean.SPZswithn<10discreteyearsofseedyielddataforthe affiliatedclimateschemewereexcluded.
withconeproduction(Eis,1973).Otherresearchfoundthat vari-abilityinannualseedproductioninvariousmastingtreespeciesis correlatedwithannualrainfall(Sorketal.,1993;Woodwardetal., 1994).Incontrast,analysesconductedbyKoenigandKnops(2000) foundthatmastseedingdidnotcorrelatewithpatternsof vari-abilityineitherannualrainfallormeantemperature.Lodgepole pineconeproductionvariesfromyear-to-year,thoughnotasmuch asotherconifers(Elliott,1974;Herreraetal.,1998).Thepresent studyfoundsignificant,moderatetostrongcorrelationsbetween themeanannualseedyieldoflodgepolepineandclimatevariables fromareanalysis-drivenrunofCRCM(Table2),aswellas signifi-cantoveralltrendsusinganensembleofGCM-drivenCRCMoutput (Table3).
Our study investigated the correlation between and overall trend in seed production and climate, and cannot conclusively attribute the causation of such relationships without further research.However,itisinterestingtorecallthatlodgepolepinehas exceptionallybroadecologicamplitude(CaseandPeterson,2007) andiscapableofadaptingtodiverse,andoftensevere, environ-mentalconditions(Rehfeldtetal.,1999).Yellowcedar(Callitropsis nootkatensisD.Don)—ageneralistspecies—isalsoadaptedtowide climatic gradientsand, in terms of its productivity, appearsto beinsensitivetodifferencesinmoisture(RussellandKrakowski, 2012).
A portion of lodgepole pine’s adaptability can be explained intermsofgeneticvariability,growthandsurvival. Populations
Fig.6.TemporalvariationofmeanannualPinuscontortaseedyieldanomaly(kg/hL)alongwith:a)5-yearmeansummersurfacetemperature(ST)anomalyinHudsonHope (HH),andb)5-yearmeanwinterSTanomalyinEastKootenay(EK)calculatedusingoutputfromCRCM45-NREA.
throughoutBC aresignificantlydifferentfromone another(Xie andYing,1995;Rehfeldtetal.,1999).Highgeneticvariationinthis speciesismaintainedthroughlongdistancedispersal(Critchfield, 1980),highoutcrossingrates(Liewlaksaneeyanawin,2006), and anintoleranceofnaturalself-fertilization(YehandLayton,1979). However,WheelerandGuries(1982b)foundthatthegenetic vari-abilitybetweenpopulationswaslessthanthatcontainedwithin populations.Berland(2013)hypothesizedthatthisgenetic varia-tionwithinpopulationsmayberesponsiblefortherelativestability of reproductive traits—namely, the mean number of seeds per
cone—acrossclimateregimesinBC.Interestingly,ourworkfound asimilarlackofvariabilityinseedyieldbetween18differentseed planningzonesinBC(Figs.2and3),despitetheseregionshaving verydifferentclimates.Inaddition,onlythreeofthe18seed plan-ningzones—EK,SAandTOA—showedasignificantnon-zerotrend intheirmeanannualseedyieldanomalybasedonconecollections madeoverthepast50years(Figs.5,A.3inAppendixA,Table3). Despitenaturalyear-to-yearvariability,theremainingSPZsseem tobemaintainingarelativelyconstantoverallreproductiveoutput overthepastfewdecades.
Fig.7.TemporalvariationofmeanannualPinuscontortaseedyieldanomaly(kg/hL)alongwith:a)Fittedlinearregressionof5-yearmeansummersurfacetemperature(ST) anomalyinHudsonHope(HH),andb)Fittedlinearregressionof5-yearmeanwinterSTanomalyinEastKootenay(EK)calculatedfromtheeight-memberensemblemean ofCRCM45-GCMoutput.EnsemblemeanSTlinearregressionshaveunitsof◦Cyear−1.Thefittedlinearregressionforthemeanannualseedyieldanomaly(kghL−1year−1)
foreachzoneisindicatedinsolidblack.
Therearesomepracticalimplicationsofourwork,inparticular howtochoosesitesforseedorchardswiththeaimofoptimizing seedyield.Thisisbecauseseedyieldisnotalwaysstable.Studies byBates(1930)andCritchfield(1980)showedthatinWyoming andColoradoseedproductionwashighlyvariablefromoneyearto thenext.Repeatedpoorseedproductioncontinuestoberecorded fromlodgepolepineseedorchardsplantedoutofitsnatural cli-maticrange.InthesepublicandprivateseedorchardsintheNorth OkanaganofBritishColumbia,coneproductionisgood,butseed yieldisverypoor(Anon.,2002;Owensetal.,2005).Inthisregion,
whichispartoftheTODSPZ,theorchardsareplantedoutofthe zoneofoperationalforestry,i.e.atlowerelevationswhere lodge-polepinedoesnotnormallyoccur.Althoughtheremaybemany reasonsforfailure,includingpestsanddiseases,anotablefeature ofthesesitesareextremeJulyandAugusttemperatures.Ourstudy wouldsuggestthatplantingoffutureorchardswithinthenatural rangeoflodgepolepineoughttorestoreseedyieldtolevelsseen insurroundingtrees.Indeed,seedorchardswithinrangehave nor-malseedproduction,e.g.PrinceGeorgeTreeImprovementStation, whichisplantedinthetransitionalzonebetweenthePrinceGeorge
Table3
Schemesshowingalineartrendlineslope()thatissignificantlydifferentfromzero(␣=0.05)forboththemeanannualPinuscontortaseedyieldanomaly(kghL−1year−1)
ofthecorrespondingseedplanningzone(SPZ)andtheensemblemeanofeithertheCRCM45-GCMprecipitation(PCP,mmyear−1)orsurfacetemperature(ST,◦Cyear−1) anomalies.Inallcases,5ormoreindividualensemblemembersagreewiththeslopeoftheensemblemean.Trailing-meansindicatethenumberofprecedingyears,summers orwintersthatwereaveragedtogetherforeachclimateoutputanalysis.
SPZ SeedYieldAnomaly p-value ClimateVariable
Anomaly
Trailing-mean (years)
EnsembleMean p-value Num.ofEnsemble
MembersinAgreement Degreesof Freedom EK 0.002 0.0066 ST Annual 3 0.026 <0.0001 7 22 5 0.025 <0.0001 6 22 10 0.023 <0.0001 7 22 Winter 3 0.040 <0.0001 6 22 5 0.038 <0.0001 5 22 10 0.030 <0.0001 6 22 Summer 3 0.026 <0.0001 5 22 5 0.025 <0.0001 7 22 10 0.023 <0.0001 8 22 TOA 0.004 0.0006 PCP Annual 10 0.092 <0.0001 6 18 ST Annual 3 0.025 <0.0001 5 18 5 0.024 <0.0001 6 18 10 0.023 <0.0001 7 18 Winter 10 0.031 <0.0001 5 18 Summer 3 0.023 0.0001 5 18 5 0.024 <0.0001 5 18 10 0.024 <0.0001 7 18 SA 0.003 0.0074 ST Annual 3 0.021 <0.0001 5 19 5 0.023 <0.0001 6 19
andCentralPlateauSPZ(Anon.,2002).Stableseedproductioncan alsobeaproblem,allowinglodgepolepineplantedinnew envi-ronmentstobecomeinvasive.ExoticplantationsinNewZealand producedabundantseed,which,becauseofitslightweightnature spreadquicklyoverlargeareas.Furthermore,theserotinouscones provedwell-adaptedtofire-regulatednativehabitats,suchas tus-sockgrasscommunities(Richardsonetal.,1994).Thishasledto ecologicalshiftsthatareundesired,butdifficulttopreventonce thetreeisestablished.
InCanada,lodgepolepineisundergoingrangeexpansionatits northerndistributionlimitswithnoevidenceofstrongclimatic restrictionsonpopulationgrowth,indicatingthatthespecieshas yettoreachequilibriumwithcurrentclimaticconditionsinthis region(JohnstoneandChapin,2003).Thesefindingssuggestthat lodgepolepine mayhaveaneven broaderecologicalamplitude thanpreviouslyrecognized.
4. Conclusions
WefoundthatlodgepolepineinNSThadasignificantlyhigher meanseedyieldcomparedtoallotherzonesinBritishColumbia, withtheexceptionofHH.ThevarianceinseedyieldforNSTwas anorderofmagnitudehigherthanthatofotherSPZs,indicating thatseedproductionisexceptionallyvariableinthisregion.Inthe future,transitionalecosystemssuchasNSTpresentaunique oppor-tunitytoinvestigatehowenvironmentalvariabilityandselection pressuremayleadtoadaptiveevolution.
Analyses conducted using reanalysis and GCM-driven CRCM outputindependentlyfoundsignificantcorrelationsbetween cli-mateschemesandmeanannualseedyield,butindifferentSPZs. Thesedifferencesmaybeattributedtoambiguousagerangesfor eachconecollectionandtemporalrestrictionsoftheseedcollection dataandreanalysis-drivenclimateoutput.
WiththeexceptionofNST,seedproductionwasfoundtobe rel-ativelystableacrosstheclimategradientsrepresentedbytheSPZs. Onlythreeofthe18SPZsshowedasignificantlynon-zerotrend intheirmeanannualseedyieldbasedonconecollectionsmade overthepast50years—namely,EK,SAand TOA.The extraordi-naryadaptabilityoflodgepolepineandthehighgeneticvariationin naturalpopulationsmaybecontributingtotheconstancyofthese reproductivecharacteristics,therebyconcealinganypotential rela-tionshipswithclimateandpossiblyallowingthisspeciestotolerate decadal-scalechangesinclimatechange.
Acknowledgements
DaveKolotelooftheBCMinistryofForests,LandsandNatural ResourceOperationsisgratefullyacknowledgedforprovidingthe archivedconecollectiondatathatmadethisworkpossible.We sin-cerelythankGregO’Neill,MichaelCarlsonandNicholasUkrainetz fortheirpatientandtremendouslyconstructivediscussionsofthis work,EdWiebefortechnicalsupport,andCaitieFrenkelfor edi-torialassistance.WewouldalsoliketothankSusanZedel,Jared Lew,SpencerReitenbach,MarkusSchnorbusandLeslieMcAuleyfor theirassistancewiththeacquisitionandre-projectionofthespatial shapefiles.CRCMsimulationswereconductedbyMichelGiguère atOuranosConsortiumandattheUniversityofVictoriaaspartof theNaturalSciencesandEngineeringResearchCouncilofCanada’s (NSERC)−CRD project, DynamicalDownscalingof Westernand EasternCanadianHydroclimate,withinfrastructurefundingfrom theCanadianFoundationforInnovationandtheBritishColumbia KnowledgeDevelopmentFund.Theauthorsaregratefulforfunding obtainedthroughtheNSERC’sCREATEPrograminInterdisciplinary ClimateScience,DiscoveryGrantProgramandPGSProgram.
Fig.A.1.Boxplotsofnaturalstandlodgepolepine(PinuscontortaDouglasexLouden)seedyield(kgseed/hLcone)for18seedplanningzonesinBritishColumbia,Canada, organizedbyincreasingmedianvalue.Outliers(opencircles)fallmorethan1.5timestheinterquartilerangeawayfromthe1stand3rdquartiles.
Fig.A.2.Temporalcorrelationsforprecipitation.Spearman’srankcorrelation(rs)betweenthemeanannualPinuscontortaseedyieldanomaly(kg/hL)ofthecorresponding
seedplanningzone(SPZ)anddifferentclimateschemesusingoutputfromCRCM45-NREA:Meanannual(a),winter(b)andsummer(c)precipitationwitha3-year trailing-mean;meanannual(d),winter(e)andsummer(f)precipitationwitha5-yeartrailing-mean;andmeanannual(g),winter(h)andsummer(i)precipitationwitha10-year trailing-mean.Localsignificance(␣=0.05)isidentifiedbyhatching,andredbordersaroundapanelindicateglobalfieldsignificance(␣global=0.05).SPZwithn<10discrete
yearsofseedyielddatafortheaffiliatedclimateschemewereexcluded.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)
Fig.A.3.Signsofsignificant(␣=0.05)lineartrendlineslopes()forensemblemeanprecipitationanomaliesofthecorrespondingseedplanningzone(SPZ)underdifferent climateschemesusingCRCM45-GCMoutput:meanannual(a),winter(b)andsummer(c)precipitationwitha3-yeartrailing-mean;meanannual(d),winter(e)andsummer (f)precipitationwitha5-yeartrailing-mean;andmeanannual(g),winter(h)andsummer(i)precipitationwitha10-yeartrailing-mean.SPZsshowingasignificantpositive slopeforthemeanannualPinuscontortaseedyieldanomaly(kghL−1year−1)areindicatedbyhatching.WhiteSPZsindicatethattheslopeoftheensemblemeanprecipitation
anomaly(mmyear−1)wasnotsignificantlydifferentfromzero(p>0.05).DarkredordarkbluecolorationidentifiesSPZswhereastrictmajorityof5ormoreindividual
ensemblemembersagreewiththesignificantslopeoftheensemblemean.SPZswithn<10discreteyearsofseedyielddatafortheaffiliatedclimateschemewereexcluded. (Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)
References
Adams,J.M.,2007.Vegetation-climateInteraction:HowVegetationMakesthe
GlobalEnvironment.Springer,NewYork,NewYork.
Anon,1987.SeedPlanningZonesandTransferGuidelinesforInteriorSpruceand
LodgepolePine.BCMinistryofForests,SilvicultureBranch,Victoria,BC,
MiscellaneousReportMr006.
Anon,2002.FinalReportoftheLodgepolePineSeedSetTaskGroup.Interior
TechnicalAdvisoryCommittee,ForestGeneticsCouncilofBritishColumbia,
http://www.fgcouncil.bc.ca/PliSeedSetRept.pdf(Accessed09July2015).
Anon,2010.TreeSeedProcessingandTestingResultSummariesforFall
2008-spring2010.BCMinistryofForests,TreeImprovementBranch,Victoria,
BC,FileNo.18120-20.http://www.for.gov.bc.ca/hti/treeseedcentre/tsc/files/
ProtestCoverLetterandAttachmentsTextAugust2010.pdf(Accessed20
August2014).
Anon,2015.2013/14ForestGeneticsCouncilofBCTreeImprovementProject
Report.ForestGeneticsCouncilofBritishColumbia,Victoria,BC,
http://www.fgcouncil.bc.ca/TIPR2013-14April2015Opt.pdf(Accessed8
November2016).
Arno,S.F.,Hammerly,R.P.,1978.NorthwestTrees:IdentifyingandUnderstanding
theRegion’sNativeTrees.MountaineersBooks,Seattle,Washington.
Bates,C.G.,1930.TheProductionExtractionGerminationofLodgepolePineSeed.
USDATechBullTB191,Washington,D.C.
Bennuah,S.Y.,Wang,T.,Aitken,S.N.,2004.GeneticanalysisofthePicea
sitchensis×glaucaintrogressionzoneinBritishColumbia.For.Ecol.Manage.
197,65–77.
Bentz,B.J.,Régnière,J.,Fettig,C.J.,Hansen,E.M.,Hayes,J.L.,Hicke,J.A.,Kelsey,R.G., Negrón,J.F.,Seybold,S.J.,2010.Climatechangeandbarkbeetlesofthewestern
UnitedStatesandCanada:directandindirecteffects.BioSci60,602–613.
Berland,A.,2013.VariationinReproductiveCharacteristicsofLodgepolePine
(PinuscontortaVar.latifolia)inBritishColumbia.UniversityofVictoria,
Victoria,BC(Dissertation).
Case,M.J.,Peterson,D.L.,2007.NorthCascadesNationalPark,Washington.
NorthwestSci.81,62–75.
Critchfield,W.B.,1980.GeneticsofLodgepolePine.USDAForestService,
Daly,C.,Gibson,W.P.,Taylor,G.H.,Johnson,G.L.,Pasteris,P.,2002.A
knowledge-basedapproachtothestatisticalmappingofclimate.Clim.Res.22,
99–113.
Eis,S.,1973.ConeproductionofDouglas-firandgrandfiranditsclimatic
requirements.Can.J.For.Res.3,61–70.
Elfving,B.,Ericsson,T.,Rosvall,O.,2001.Theintroductionoflodgepolepinefor
woodproductioninSweden—areview.For.Ecol.Manage.141,15–29.
Elliott,P.F.,1974.Evolutionaryresponsesofplantstoseed-eaters:pinesquirrel
predationonlodgepolepine.Evolution28,221–231.
Fan,S.,Grossnickle,S.C.,Sutton,B.C.,1997.Relationshipsbetweengasexchange
adaptationofSitka×interiorsprucegenotypesandribosomalDNAmarkers.
TreePhysiol.17,115–123.
Flannigan,M.D.,Logan,K.A.,Amiro,B.D.,Skinner,W.R.,Stocks,B.J.,2005.Future
areaburnedinCanada.Clim.Change72,1–16.
Forrest,G.I.,1980.GeographicalvariationinthemonoterpenesofPinuscontorta
oleoresin.Biochem.Syst.Ecol.8,343–359.
Fowells,H.A.,1965.SilvicsofForestTreesoftheUnitedStates.USDAForest
Service,Washington,DC.
Fowler,H.J.,Blenkinsop,S.,Tebaldi,C.,2007.Linkingclimatechangemodellingto
impactsstudies:recentadvancesindownscalingtechniquesforhydrological
modeling.Int.J.Climatol.27,1547–1578.
Hadley,M.J.,Tanz,J.S.,Fraser,J.,2001.Biotechnology:PotentialApplicationsin
TreeImprovement.BCForestGeneticsCouncil,Victoria,BC(ExtensionNote2).
Hamilton,J.A.,Aitken,S.N.,2013.Geneticandmorphologicalstructureofaspruce
hybrid(Piceasitchensis×P.glauca)zonealongaclimaticgradient.Am.J.Bot.
100,1651–1662.
Hamilton,J.A.,Lexer,C.,Aitken,S.N.,2013.Genomicandphenotypicarchitectureof
asprucehybridzone(Piceasitchensis×P.glauca).Mol.Ecol.22,827–841.
Herms,D.A.,Mattson,W.J.,1992.Thedilemmaofplants—togrowordefend.Q.
Rev.Biol.67,283–335.
Herrera,C.M.,Jordano,P.,Guitián,J.,Traveset,A.,1998.Annualvariabilityinseed productionbywoodyplantsandthemastingconcept:reassessmentof principlesandrelationshiptopollinationandseeddispersal.Am.Naturalist 152,576–594,http://dx.doi.org/10.1086/286191469.
Illingworth,K.,1978.Studyoflodgepolepinegenotype-environmentinteractionin
BC.In:ProceedingsInternationalUnionofForestryResearchOrganizations
(IUFRO)JointMeetingofWorkingParties:Douglas-firProvenances,Lodgepole
PineProvenances,SitkaSpruceProvenancesandAbiesProvenances,
Vancouver,BC,pp.151–158.
Johnstone,J.F.,Chapin,F.S.,2003.Non-equilibriumsuccessiondynamicsindicate
continuednorthernmigrationoflodgepolepine.GlobalChangeBiol.9,
1401–1409.
Kalnay,E.,Kanamitsu,M.,Kistler,R.,Collins,W.,Deaven,D.,Gandin,L.,etal.,1996.
TheNCEP/NCAR40-yearreanalysisproject.Bull.Am.Meteorol.Soc.77,
437–471.
Kendon,E.J.,Jones,R.G.,Kjellström,E.,Murphy,J.M.,2010.Usinganddesigning
GCM-RCMensembleregionalclimateprojections.J.Clim.23,6485–6503.
King,J.N.,Alfaro,R.I.,2009.DevelopingSitkaSprucePopulationsforResistanceto
theWhitePineWeevil:SummaryofResearchandBreedingProgram.BC
MinistryofForests,ResearchBranch,Victoria,BC(TechRep050).
Koch,P.,1996.LodgepolePineinNorthAmerica.ForestProductsSociety,Madison, Wisconsin.
Koenig,W.D.,Knops,J.M.,2000.Patternsofannualseedproductionbynorthern
hemispheretrees:aglobalperspective.Am.Nat.155,59–69.
Kolotelo,D.,VanSteenis,E.,Peterson,M.,Bennett,R.,Trotter,D.,Dennis,J.J.,2001.
SeedHandlingGuidebook.BCMinistryofForests,TreeImprovementBranch,
Victoria,BC,http://www.for.gov.bc.ca/hti/publications/misc/seedhandling
guidebookhi.pdf(Accessed25August2014).
Kral,R.,1993.Pinus.FloraofNorthAmerica,vol.2.OxfordUniversityPress,New
York,NewYork,pp.373–398.
Lavender,D.P.,Parish,R.,Johnson,C.M.,Montgomery,G.,Vyse,A.H.,Willis,R.A., Winston,D.,1990.RegeneratingBritishColumbia’sForests.BCMinistryof
Forests,ResearchBranch,Victoria,BC(Misc.Rep.Mr063).
Leech,S.M.,LaraAlmuedo,P.,O’Neill,G.,2011.Assistedmigration:adaptingforest
managementtoachangingclimate.J.Ecosyst.Manage.12,18–34.
Lertzman,K.P.,Gavin,D.G.,Hallett,D.J.,Brubaker,L.B.,Lepofsky,D.S.,Mathewes, R.W.,2002.Long-termfireregimefromsoilcharcoalincoastaltemperate
rainforests.Conserv.Ecol.6,5.
Liewlaksaneeyanawin,C.,2006.GeneticEvaluationofNaturalandDomesticated
LodgepolePinePopulationsUsingMolecularMarkers.UniversityofBritish
Columbia(Dissertation).
Livezey,R.E.,Chen,W.Y.,1983.Statisticalfieldsignificanceanditsdetermination
byMonteCarlotechniques.Mon.WeatherRev.111,46–59.
Lotan,J.E.,1970.ConeSerotinyinPinuscontorta.UniversityofMichigan (Dissertation).
Mátyás,C.,1996.Climaticadaptationoftrees:rediscoveringprovenancetests.
Euphytica92,45–54.
McFarlane,N.A.,Scinocca,J.F.,Lazare,M.,Harvey,R.,Verseghy,D.,Li,J.,2005.The CCCmathirdgenerationatmosphericgeneralcirculationmodel.Rapport interneduCentreCanadiendelaModélisationetdel’AnalyseClimatique,pp.
25.http://www.cccma.ec.gc.ca/papers/jscinocca/AGCM3report.pdf(Accessed
27April2015).
McLane,S.C.,Daniels,L.D.,Aitken,S.N.,2011.Climateimpactsonlodgepolepine
(Pinuscontorta)radialgrowthinaprovenanceexperiment.For.Ecol.Manage.
262,115–123.
Mearns,L.O.,Giorgi,F.,McDaniel,L.,Shields,C.,2003.Climatescenariosforthe
southeasternU.S.basedonGCMandregionalmodelsimulations.Clim.Change
6,7–35.
Meidinger,D.,Pojar,J.,1991.EcosystemsofBritishColumbia.BCMinistryof
Forests,ResearchBranch,Victoria,BC(SpecialReportSeriesSrs06).
Muir,P.S.,1993.Disturbanceeffectsonstructureandtreespeciescompositionof
PinuscontortaforestsinwesternMontana.Can.J.For.Res.23,1617–1625.
Norton,D.A.,Kelly,D.,1988.Mastseedingover33yearsbyDacrydiumcupressinum
Lamb.(rimu)(Podocarpaceae)inNewZealand:theimportanceofeconomies
ofscale.Funct.Ecol.2,399–408.
O’Neill,G.A.,Hamann,A.,Wang,T.,2008a.Accountingforpopulationvariation
improvesestimatesoftheimpactofclimatechangeonspecies’growthand
distribution.J.Appl.Ecol.45,1040–1049.
O’Neill,G.A.,Ukrainetz,N.K.,Carlson,M.,Cartwright,C.V.,Jaquish,B.C.,King,J.N., Krakowski,J.,Russell,J.H.,Stoehr,M.U.,Xie,C.-Y.,etal.,2008b.Assisted
MigrationtoAddressClimateChangeinBritishColumbia−Recommendations
forInterimSeedTransferStandards.BCMinistryofForests,ForestScience
Program,Victoria,BC(TechRep048).
Owens,J.N.,Bennett,J.,L’Hirondelle,S.,2005.Pollinationandconemorphology
affectconeandseedproductioninlodgepolepineseedorchards.Can.J.For.
Res.35,383–400.
Perry,D.A.,Lotan,J.E.,1977.OpeningTemperaturesinSerotinousConesof
LodgepolePine.USDAFor.Serv.Res(NoteINT-228).
Pierce,D.W.,Barnett,T.P.,Santer,B.D.,Gleckler,P.J.,2009.Selectingglobalclimate
modelsforregionalclimatechangestudies.PNAS106,8441–8446.
RCoreTeam,2015.R:ALanguageandEnvironmentforStatisticalComputing.R
FoundationforStatisticalComputing,Vienna,Austria
(http://www.R-project.org/).
Reeb,J.,Shaw,D.,2015.CommonInsectPestsandDiseasesofSitkaSpruceonthe
OregonCoast.OregonStateUniversityExtensionService(EM9105).
Rehfeldt,G.E.,Ying,C.C.,Spittlehouse,D.L.,HamiltonJr.,D.A.,1999.Genetic
responsestoclimateinPinuscontorta:nichebreadth,climatechange,and
reforestation.Ecol.Monogr.69,375–407.
Richardson,D.M.,Williams,P.A.,Hobbs,R.J.,1994.Pineinvasionsinthesouthern
hemisphere:determinantsofspreadandinvadability.J.Biogeogr.21,511–527.
Richardson,D.M.,2000.EcologyandBiogeographyofPinus.CambridgeUniversity
Press,NewYork,NY.
Roche,L.,1969.AgenecologicalstudyofthegenusPiceainBritishColumbia.New
Phytol.68,505–554.
Roeckner,E.,Bäuml,G.,Bonaventura,L.,Brokopf,R.,Esch,M.,Giorgetta,M., Hagemann,S.,Kirchner,I.,Kornblueh,L.,Manzini,E.,Rhodin,A.,Schlese,U., Schulzweida,U.,Tompkins,A.,2003.TheAtmosphericGeneralCirculation
ModelECHAM5.PartI:ModelDescription,vol.349.MaxPlanckInstitutefor
MeteorologyRep,pp.127.
Russell,J.H.,Krakowski,J.,2012.Geographicvariationandadaptationtocurrent
andfutureclimatesofCallitropsisnootkatensispopulations.Can.J.For.Res.42,
2118–2129.
Sork,V.L.,Bramble,J.,Sexton,O.,1993.Ecologyofmast-fruitinginthreespeciesof
NorthAmericandeciduousoaks.Ecology74,528–541.
Sushama,L.,Khaliq,M.N.,Laprise,R.,2010.DryspellcharacteristicsoverCanadain
achangingclimateassimulatedbytheCanadianRCM.GlobalPlanet.Change
74,1–14.
Tebaldi,C.,Arblaster,J.M.,Knutti,R.,2011.Mappingmodelagreementonfuture
climateprojections.Geophys.Res.Lett.38,L23701.
Tinker,D.B.,Romme,W.H.,Hargrove,W.W.,Gardner,R.H.,Turner,M.G.,1994.
Landscape-scaleheterogeneityinlodgepolepineserotiny.Can.J.For.Res.24,
897–903.
Voltas,J.,Chambel,M.R.,Prada,M.A.,Ferrio,J.P.,2008.Climate-relatedvariability
incarbonandoxygenstableisotopesamongpopulationsofAleppopinegrown
incommon-gardentests.Trees22,759–769.
Wallis,C.M.,Huber,D.P.,Lewis,K.J.,2011.Ecosystem,location,andclimateeffects
onfoliarsecondarymetabolitesoflodgepolepinepopulationsfromcentral
BritishColumbia.J.Chem.Ecol.37,607–621.
Wang,G.,Huang,S.,Monserud,R.A.,Klos,R.J.,2004.Lodgepolepinesiteindexin
relationtosynopticmeasuresofclimate,soilmoistureandsoilnutrients.For.
Chron.80,678–686.
Wang,T.,Hamann,A.,Yanchuk,A.,O’Neill,G.A.,Aitken,S.N.,2006.Useofresponse
functionsinselectinglodgepolepinepopulationsforfutureclimates.Global
ChangeBiol.12,2404–2416.
Werner,A.T.,2011.BCSDDownscaledTransientClimateProjectionsforEight
SelectGCMsoverBritishColumbia,Canada.PacificClimateImpacts
ConsortiumRep.UniversityofVictoria,Victoria,BC(pp63).
Wheeler,N.C.,Critchfield,W.B.,1985.Thedistributionandbotanical
characteristicsoflodgepolepine.In:Baumgartner,etal.(Eds.),Symposium
Proceedings,LodgepolePine:theSpeciesandItsManagement.Spokane,WA
andVancouver,BC,8–16May1984.WashingtonStateUniversity,Cooperative
ExtensionService,Pullman,Washington,pp.1–14.
Wheeler,N.C.,Guries,R.P.,1982a.Biogeographyoflodgepolepine.Can.J.Bot.60, 1805–1814.
Wheeler,N.C.,Guries,R.P.,1982b.Populationstructure,genicdiversity,and
morphologicalvariationinPinuscontortaDougl.Can.J.For.Res.12,595–606.
Wheeler,N.C.,Guries,R.P.,1987.Aquantitativemeasureofintrogressionbetween
lodgepoleandjackpines.Can.J.Bot.65,1876–1885.
Woods,A.,Coates,K.D.,Hamann,A.,2005.IsanunprecedentedDothistroma
Woodward,A.,Silsbee,D.G.,Schreiner,E.G.,Means,J.E.,1994.Influenceofclimate
onradialgrowthandconeproductioninsubalpinefir(Abieslasiocarpa)and
mountainhemlock(Tsugamertensiana).Can.J.For.Res.24,1133–1143.
Wu,H.X.,Ying,C.C.,Ju,H.,2005.Predictingsiteproductivityandpesthazardin
lodgepolepineusingbiogeoclimaticsystemandgeographicvariablesinBritish
Columbia.Ann.For.Sci.62,31–42.
Xie,C.Y.,Ying,C.C.,1995.Geneticarchitectureandadaptivelandscapeofinterior
lodgepolepine(Pinuscontortassp.latifolia)inCanada.Can.J.For.Res.25,
2010–2021.
Yeh,F.C.,Layton,C.,1979.Theorganizationofgeneticvariabilityincentraland
marginalpopulationsoflodgepolepine(Pinuscontortassp.latifolia).Can.J.
Genet.Cytol.21,487–503.
Ying,C.C.,Yanchuk,A.D.,2006.ThedevelopmentofBritishColumbia’streeseed
transferguidelines:purpose,concept,methodology,andimplementation.For.
Ecol.Manage.227,1–13.
Ying,C.C.,1991.GeneticResistancetotheWhitePineWeevilinSitkaSpruce.BC