• No results found

Improving timing ability : generalization of explicit timing training to nontrained intervals and implicit timing

N/A
N/A
Protected

Academic year: 2021

Share "Improving timing ability : generalization of explicit timing training to nontrained intervals and implicit timing"

Copied!
51
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Running  head:  IMPROVING  TIMING  ABILITY    

     

Improving  Timing  Ability:  Generalization  of  Explicit  Timing  Training  to  Nontrained   Intervals  and  Implicit  Timing.  

   

Gusta  Marcus,  BSc   Supervisor:  dr.  Michael  Vliek    

     

Date:  04-­‐07-­‐2014  

Final  version  of  thesis  report    

University  of  Amsterdam   Research  Master  Psychology   Program  Group:  Social  Psychology  

Second  assessor:  prof.  dr.  Maurits  van  der  Molen   Number  of  credits:  25  ec  

(2)

IMPROVING TIMING ABILITY 2  

Abstract  

This  study  investigated  to  what  extent  training  of  interval  production  improves  timing   ability.  The  first  aim  was  to  examine  if  training  of  one  specific  interval  would  generalize   to  improved  performances  on  nontrained  intervals  in  the  1-­‐2  seconds  range.  The  second   aim  was  to  examine  if  this  training  would  transfer  to  improved  performances  on  a  

prediction-­‐motion  task,  in  which  participants  had  to  use  temporal  information  to  predict   the  location  of  a  moving  stimulus.  Participants  in  the  experimental  condition  were   trained  in  producing  a  1.7-­‐s  interval.  Their  performances  improved  more  than  

participants  in  the  control  condition  on  the  trained  interval  and  on  nontrained  intervals   surrounding  the  trained  interval.  Against  our  expectations,  participants  in  the  

experimental  condition  did  not  show  a  different  change  in  performances  on  the   prediction-­‐motion  task  compared  the  control  condition.  However,  participants  who   improved  more  during  training  also  showed  more  improvement  on  the  prediction-­‐ motion  task.  These  findings  suggest  that  learning  is  not  specific  for  the  duration  that  is   trained,  but  can  influence  other  durations  via  updating  of  representations,  modifying  the   decision  criteria,  or  better  directing  attention,  based  on  the  internal  clock  model.  

Furthermore,  an  indication  is  found  for  a  relation  between  the  training  to  another  form   of  timing.    

(3)

IMPROVING TIMING ABILITY 3  

Improving  Timing  Ability:  Generalization  of  Explicit  Timing  Training  to  Nontrained   Intervals  and  Implicit  Timing.  

  Timing  is  an  essential  ability  in  people’s  daily  lives  and  it  is  needed  in  many   activities.  For  instance,  Dutch  drivers  are  urged  to  use  the  2-­‐seconds  rule  to  secure  safe   distances  to  other  vehicles.  The  rule  states  that  there  should  be  at  least  2  seconds   between  two  cars  passing  a  certain  point,  for  example  a  tree,  so  the  driver  has  enough   time  to  react  on  surprising  situations.  Another  example  in  traffic  that  requires  timing   ability  is  when  a  pedestrian  crosses  the  road  and  needs  to  predict  if  there  is  enough  time   to  walk  across  the  street  before  a  moving  car  has  reached  him.    

  These  two  examples  are  considered  two  different  forms  of  timing;  the  2-­‐seconds   rule  can  be  seen  as  explicit  timing  and  crossing  the  street  can  be  seen  as  implicit  timing.   The  organization  of  various  forms  of  timing  into  explicit  and  implicit  timing  is  illustrated   in  Figure  1  (Coull  &  Nobre,  2008).  Explicit  timing  is  involved  in  tasks  where  participants   have  to  give  accurate  duration  estimations.  Within  explicit  timing,  a  distinction  can  be   made  between  motor  timing,  such  as  producing  a  time  interval,  and  perceptual  timing,   such  as  discriminating  between  temporal  stimuli.  Implicit  timing  is  involved  in  tasks   with  nontemporal  goals,  but  with  temporal  characteristics  of  the  stimuli  or  motor   responses,  which  makes  timing  a  by-­‐product.  Within  implicit  timing,  a  similar  

distinction  can  be  made  between  motor  and  perceptual  timing.  Implicit  motor  timing  is   called  emergent  timing  and  is  involved  when  timing  emerges  as  a  result  of  movements,   for  example  when  circles  are  drawn  continuously  at  the  same  speed  and  consequently  in   the  same  time.  Implicit  perceptual  timing  is  called  temporal  expectations  and  is  involved  

(4)

IMPROVING TIMING ABILITY 4 when  using  temporal  information  to  predict  the  location  of  a  moving  stimulus,  as  was   the  case  in  the  example  of  crossing  the  road.    

  The  cognitive  processes  behind  explicit  and  implicit  timing  can  be  described  with   the  internal  clock  model.  This  model  represents  the  process  of  making  judgments  about   durations  and  assumes  the  existence  of  an  internal  clock  (Gibbon,  Church  &  Meck,   1984).  When  a  specific  duration  has  to  be  estimated,  a  pacemaker  emits  pulses  that  are   send  through  an  attention-­‐based  switch  that  controls  the  passage  of  pulses  to  an  

accumulator  that  counts  the  pulses.  For  explicit  timing,  this  value  of  counted  pulses  is   compared  with  previously  stored  values  for  this  specific  duration  in  the  reference   memory.  During  this  comparison,  a  decision  criterion  is  used  to  decide  if  the  counted   value  matches  the  stored  value  and  an  estimation  of  the  duration  is  given.  For  implicit   timing,  the  value  in  the  accumulator  could  be  used  as  a  temporal  representation  to   perform  the  implicit  task  (Piras  &  Coull,  2011).  For  example,  when  circles  must  be   drawn  within  two  ticks  of  a  metronome,  the  counted  pulses  can  be  saved  as  a  

representation  of  the  time.  When  the  metronome  has  stopped,  that  representation  can   be  used  to  continue  circle  drawing  in  the  same  time  and  with  the  same  speed.    

Relations  Between  Different  Forms  of  Timing  

  Researchers  have  tried  to  answer  the  question  if  a  common  timing  mechanism   exists  for  all  different  forms  of  timing  (Merchant,  Zarco  &  Prado,  2008).  The  internal   clock  would  be  involved  in  all  behavior  that  requires  accurate  timing.  However,  the   various  timing  tasks  are  so  different  from  each  other  that  it  would  be  surprising  if  they   would  rely  on  functions  of  entirely  the  same  mechanism  and  the  same  brain  system   (Lewis  &  Miall,  2006).  This  is  supported  by  evidence  that  a  large,  distributed  neural  

(5)

IMPROVING TIMING ABILITY 5 system  is  involved  in  various  forms  of  timing  instead  of  a  single  brain  area  (Buhusi  &   Meck,  2005;  Allman,  Teki,  Griffiths  &  Meck,  2014).    

    If  various  forms  of  timing  have  different  mechanisms,  the  next  important   question  is  how  they  relate  to  each  other.  To  get  more  insight  in  these  relations,   different  approaches  are  being  used.  The  neuronal  approach  links  specific  timing   processes  to  brain  areas.  Many  different  brain  areas  are  proposed  to  be  involved  in   timing,  but  researchers  have  not  yet  reached  a  consensus  about  the  neural  substrates  of   specific  forms  of  timing  and  which  different  forms  use  the  same  brain  areas  (Wittmann,   2009).    

  The  behavioral  approach  tries  to  find  evidence  for  connections  between  different   forms  of  timing  by  searching  for  relations  in  performances  of  different  tasks.  One   method  is  to  compare  patterns  of  performances  of  different  timing  tasks  with  each   other.  Another  method  is  to  train  one  form  of  timing  and  examine  the  influence  on   timing  tasks  that  are  similar  or  different  than  the  trained  task.    

  Before  training  can  influence  other  forms  of  timing,  it  has  to  influence  

performances  of  the  task  that  is  trained.  Training  in  estimating  a  specific  duration  can   result  in  improved  performance  of  that  duration  (Montare,  1988).  Feedback  on  

performance  usually  increases  the  accuracy  and  reduces  the  variability  of  estimating  the   specific  duration,  called  the  learning  effect  (Ryan  &  Robey,  2002).  Proposed  cognitive   mechanisms  for  this  improvement,  based  on  the  internal  clock  model,  are  directing   more  attention  to  timing,  updating  representations  of  durations  in  reference  memory   and  altering  the  decision  process  by  modifying  the  decision  criteria  (Franssen  &   Vandierendonck,  2002;  Lamotte,  Izaute  &  Droit-­‐Volet,  2012).  

(6)

IMPROVING TIMING ABILITY 6 Relations  Within  Explicit  Timing  

  Within  explicit  timing,  a  relation  is  found  between  perceptual  and  motor  timing.   Similar  patterns  of  variability  were  found  between  perception  and  production  tasks  and   this  could  be  an  indication  of  partially  overlapping  neural  networks  (Merchant,  Zarco  &   Prado,  2008).  Additional  evidence  of  this  relation  is  found  in  training  studies  in  which   people  who  were  trained  in  discriminating  a  specific  interval  from  other  intervals   (explicit  perceptual  timing)  also  became  better  in  producing  that  specific  interval  

(explicit  motor  timing;  Meegan,  Aslin,  &  Jacobs,  2000;  Planetta  &  Servos,  2008).  This  was   found  when  auditory  or  somatorsensory  stimuli  were  used  to  indicate  the  intervals   during  training.  The  researchers  suggested  that  the  sensory  and  motor  representations   of  the  durations  are  connected,  so  that  they  can  influence  each  other.    

  Evidence  for  the  relation  between  different  intervals  is  less  clear.  In  the  two   studies  about  the  relation  between  perceptual  and  motor  timing,  performances  of  the   trained  interval  were  also  compared  with  performances  of  a  nontrained  interval   (Meegan,  Aslin,  &  Jacobs,  2000;  Planetta  &  Servos,  2008).  Production  of  the  nontrained   interval  improved  less  than  production  of  the  trained  interval  and  the  authors  argue  that   the  discrimination  training  of  one  interval  does  not  generalize  to  motor  production  of   another  interval.    

  These  two  studies  used  an  indirect  method  to  investigate  the  influence  on  a   nontrained  interval,  because  they  trained  perceptual  timing  and  tested  motor  timing.   When  a  direct  method  was  used  and  people  were  both  trained  and  tested  in  interval   production  (motor  timing),  limited  evidence  was  found  that  training  a  singe  interval  can   generalize  to  nontrained  intervals.  This  is  called  the  generalization  effect.  A  study  using   intervals  in  the  millisecond  range  (450,  650  and  850  ms)  found  improved  timing  on  non-­‐

(7)

IMPROVING TIMING ABILITY 7 trained  intervals  close  to  the  trained  intervals  (Bartolo  &  Merchant,  2009).  Another   study  provided  some  evidence  that  training  of  10  s  generalized  to  improved  

performance  in  producing  an  interval  of  30  s  (Saito  &  Tayama,  2012).  

  The  two  mentioned  studies  showed  somewhat  different  results.  In  the  first  study,   the  produced  intervals  were  less  variable  after  the  training  than  before  the  training,   while  the  researchers  did  not  measure  the  accuracy  (Bartolo  &  Merchant,  2009).  In  the   second  study,  participants  became  more  accurate,  that  is,  the  mean  of  produced  

intervals  was  closer  to  the  target  value  for  participants  who  received  training  than  those   without  training  (Saito  &  Tayama,  2012).  However,  the  study  did  not  find  differences  in   variability  between  groups.    

  These  differences  in  generalization  between  the  two  studies  can  arise  from  the  use   of  different  methods.  Participants  in  the  first  study  were  trained  with  7200  trials  

distributed  over  8  days,  whereas  participants  in  the  second  study  were  trained  with   only  15  trials.  Since  accuracy  improves  rapidly  and  variability  improves  slowly  (Sohn  &   Lee,  2013),  the  extensive  training  caused  improvements  in  variability,  whereas  the  small   training  caused  the  lack  of  improved  variability.    

  An  additional  explanation  for  the  differences  in  results  between  the  two  studies  is   the  use  of  different  timing  processes  that  can  result  in  different  generalization  

processes.  Intervals  in  the  millisecond  range  (short  intervals)  are  processed  with   automatic  mechanisms,  whereas  intervals  in  the  seconds  range  (long  intervals)  are   processed  with  cognitive  mechanisms  (Lewis  &  Miall,  2003).  Generalization  of  short   intervals  involves  both  improved  precision  of  the  timing  mechanism  and  sensorimotor   learning  (Bartolo  &  Merchant,  2009).  Generalization  of  long  intervals  involves  more   cognitive  processes,  such  as  counting  and  small  calculations  (for  example,  x  times  the  

(8)

IMPROVING TIMING ABILITY 8 trained  interval;  Saito  &  Tayama,  2012).  If  the  cognitive  processes  can  improve  accuracy   on  long  intervals  with  a  small  training  and  the  automatic  processes  can  improve  

variability  on  short  intervals  with  a  more  extensive  training,  it  would  be  most   advantageous  to  find  a  situation  where  both  processes  are  being  used.    

  Both  automatic  and  cognitive  processes  are  being  used  in  timing  of  durations   between  1  and  2  seconds,  since  these  durations  are  in  the  transition  range  between  the   automatically  and  cognitively  processed  durations  (Witmann,  2009).  For  example,  for   values  upward  of  1.2  s,  a  counting  strategy  effectively  improves  performances  (Grondin,   Meilleur-­‐Wells  &  Lachance,  1999).  Also,  durations  till  2  s  are  efficiently  processed  within   the  motor  system  (Morillon,  Kell  &  Giraud,  2009).  This  suggests  that  processes  in  the  1-­‐2   s  range  are  overlapping.  It  is  possible  that  this  overlap  could  improve  the  outcome  and   generalization  of  training  to  nontrained  intervals,  since  participants  can  either  choose   the  best  process  or  use  both  processes.  

Relations  Between  Explicit  and  Implicit  Timing  

  In  daily  life,  people  rarely  have  to  estimate  exact  durations,  whereas  most  real-­‐ world  timing  is  implicit.  Examples  of  implicit  timing  in  the  1-­‐2  seconds  range  can  be   found  in  sports  (hitting  a  tennis  ball),  traffic  (merging  onto  the  highway),  or  public   transport  (closing  of  metro  door  after  signal).  Therefore,  training  of  explicit  timing   would  have  more  practical  utility  when  it  improves  performances  on  implicit  timing.   This  transfer  of  a  learned  skill  to  another  task  is  called  the  transfer  effect  (Ryan  &  Fritz,   2007).  Beside,  it  is  theoretically  interesting  to  examine  the  relation  between  explicit  and   implicit  timing,  because  evidence  is  inconclusive  about  the  possible  shared  mechanisms.     According  to  the  explicit-­‐implicit  framework,  explicit  and  implicit  timing  are   functionally  distinct  (Coull  &  Nobre,  2008)  and  partially  distinct  neural  substrates  are  

(9)

IMPROVING TIMING ABILITY 9 suggested  for  explicit  and  implicit  timing  mechanisms  (Wiener,  Turkeltaub  &  Coslett,   2010).  Nevertheless,  it  seems  that  these  two  forms  of  timing  have  some  shared   processes  (Zelaznik  et  al.,  2005).  

  Explicit  and  implicit  timing  are  suggested  to  share  the  same  representation  of  time,   but  use  different  timing  mechanisms  dependent  of  the  particular  task  requirements.  In  a   study  by  Piras  and  Coull  (2011),  explicit  perceptual  timing  (discrimination  between   intervals)  was  compared  with  implicit  perceptual  timing  (predictable  interval  between   cue  and  target  that  facilitated  reaction  times).  Accuracy  patterns  over  intervals  were   similar  in  the  two  tasks.  This  indicated  that  explicit  and  implicit  timing  processes  share   the  same  mechanism  for  representations  of  durations;  in  the  internal  clock  model,  this  is   represented  as  the  process  where  pulses  are  emitted  and  counted.  However,  variance   patterns  over  intervals  were  different  in  the  two  tasks  for  longer  durations  (≥  600  ms)   and  this  indicated  that  the  representations  are  used  in  different  ways.    

  Explicit  and  implicit  timing  do  not  only  use  the  same  representations  of  time,  but  it   even  seems  that  representations  of  explicit  motor  timing  are  needed  to  perform  implicit   motor  timing.  In  a  study  by  Zelaznik  et  al.  (2005),  explicit  motor  timing  (finger  tapping   in  a  specific  interval)  was  compared  with  implicit  motor  timing  (circle  drawing  in  a   specific  interval).  Similar  timing  processes  were  found  between  the  first  circle  and   finger  tapping,  but  no  relation  was  found  between  the  subsequent  circles  and  tapping.   This  suggests  that  circle  drawing  first  needs  a  temporal  representation  and  uses  explicit   timing  to  establish  the  control  processes.  After  the  first  circle,  movement  dynamics,  such   as  speed  and  angle,  can  be  used  to  keep  the  goal  of  drawing  circles  in  the  specific  time   frame  and  it  has  become  emergent  timing.  This  suggests  that  the  skills  underlying   explicit  motor  timing  are  needed  to  perform  the  implicit  motor  timing  task.    

(10)

IMPROVING TIMING ABILITY 10   The  described  studies  have  investigated  the  relation  between  explicit  perceptual   and  implicit  perceptual  timing  (Piras  &  Coull,  2011)  and  the  relation  between  explicit   motor  and  implicit  motor  timing  (Zelaznik  et  al.,  2005).  The  relation  between  explicit   motor  timing  and  implicit  perceptual  timing  has  to  our  knowledge  not  yet  been   investigated.  Based  on  the  notion  that  explicit  and  implicit  timing  share  the  same  

representations  of  time,  we  predicted  such  relation  exists.  Besides,  the  described  studies   only  show  indirect  evidence  of  a  relation  between  explicit  and  implicit  timing,  because   they  compared  patterns  of  performances  of  different  tasks  to  infer  underlying  shared   processes.  In  contrast,  a  training  method  provides  the  possibility  to  directly  manipulate   the  relation  between  training  and  the  timing  task.    

The  Current  Study  

    The  first  aim  of  the  current  study  was  to  investigate  to  what  extent  training  of   explicit  motor  timing  could  generalize  to  nontrained  intervals.  We  tried  to  replicate  the   generalization  effect  in  an  interval  range  of  1  to  2  seconds.  The  second  aim  of  this  study   was  to  investigate  to  what  extent  training  of  explicit  motor  timing  could  improve  

implicit  perceptual  timing.    

  To  study  this,  half  of  the  participants  were  trained  to  produce  an  interval  of  1.7  s   (experimental  condition),  while  the  other  half  of  the  participants  performed  a  filler  task   (control  condition).  Before  (time  1)  and  after  (time  2)  the  training/  filler  task,  all  

participants  were  tested  on  explicit  and  implicit  timing.  Explicit  timing  was  measured   with  a  production  task  that  tested  production  of  the  trained  interval  (i.e.  1.7  s)  to   examine  the  learning  effect.  Furthermore,  productions  of  nontrained  intervals   surrounding  the  trained  interval  (i.e.  1.3,  1.5,  1.9,  2.1  s)  were  tested  to  examine  the   generalization  effect.    

(11)

IMPROVING TIMING ABILITY 11   Implicit  perceptual  timing  was  measured  with  the  prediction-­‐motion  (PM)  task  to   examine  the  transfer  effect.  In  this  task,  a  moving  object  disappears  and  participants   have  to  predict  when  it  will  arrive  at  a  target  point.  This  task  is  often  used  to  measure   the  prediction  of  motion  when  visual  information  is  lacking,  called  time-­‐to-­‐contact   judgments  (Bennnet,  Baures,  Hecht  &  Benguigui,  2010).  Two  different  mechanisms  are   involved  to  accomplish  the  task  (DeLucia  &  Liddell,  1998).  The  first  mechanism  is   creating  a  cognitive  representation  of  the  motion  to  make  an  accurate  prediction.  The   second  mechanism  is  using  a  timing  component  by  estimating  and  counting  the  time   before  the  object  reaches  the  target.  Recently,  variations  of  the  prediction-­‐motion  task   are  used  to  measure  implicit  perceptual  timing  (Coull,  Vidal,  Goulon,  Nazarian  &  Craig,   2008;  Sohn  &  Lee,  2013).  The  prediction-­‐motion  task  represents  implicit  perceptual   timing,  because  temporal  information  is  necessary  to  make  the  predictions,  but  the  goal   is  nontemporal  (i.e.  to  make  a  prediction  about  the  movement).  Furthermore,  the  task  is   comparable  to  another  implicit  perceptual  timing  task  where  temporal  cues  are  used  to   facilitate  reaction  times,  because  similar  brain  areas  are  activated  during  both  tasks   (Coull  et  al.).    

  We  expected  to  find  three  different  effects:  

1) Learning  effect:  Performances  on  the  trained  interval  of  the  experimental   condition  improves  more  between  time  1  and  time  2  than  performances  of  the   control  condition.  

2) Generalization  effect:  Performances  on  the  nontrained  intervals  of  the   experimental  condition  improves  more  between  time  1  and  time  2  than   performances  of  the  control  condition  

(12)

IMPROVING TIMING ABILITY 12 3) Transfer  effect:  Performances  on  the  prediction-­‐motion  task  of  the  experimental  

condition  improves  more  between  time  1  and  time  2  than  performances  of  the   control  condition  

Method   Participants  

A  total  of  67  participants  (51  women,  16  men,  Mage  =  21.4  years,  age  range:  18-­‐57   years)  were  recruited  through  the  subject  pool  website  of  the  University  of  Amsterdam.   Participants  received  either  course  credit  for  participation  (46  first-­‐year  psychology   students),  received  €10  (19  participants,  varying  from  higher-­‐years  psychology  students   to  non-­‐students)  or  did  not  receive  a  reward  (2  participants,  who  were  willing  to  do  the   experiment  for  free).    

Most  of  the  participants  were  right-­‐handed  (55  participants),  some  were  left-­‐ handed  (9  participants)  and  a  few  did  not  have  a  preferred  hand  (3  participants).   Participants  were  excluded  if  they  did  not  have  normal  or  corrected  to  normal  vision  (1   participant)  or  if  they  stated  they  did  not  participate  seriously  (no  participants).  The   study  was  approved  by  the  Ethics  Review  Board  of  the  Faculty  of  Social  and  Behavioral   Sciences  of  the  University  of  Amsterdam.    

Procedure  

  Participants  started  the  experiment  with  reading  the  information  brochure  and   signing  the  informed  consent  form.  They  were  asked  to  remove  their  watch  and  to  turn   off  their  mobile  phone.  They  indicated  if  they  had  normal  or  corrected  to  normal  vision   and  the  time  of  the  day  was  noted.  They  took  place  in  front  of  a  computer  in  a  cubicle   without  any  distractions.    

(13)

IMPROVING TIMING ABILITY 13 Participants  were  randomly  assigned  to  the  experimental  or  control  condition.   Participants  in  the  experimental  condition  received  a  training  to  produce  an  interval  of   1.7  s.  Instead  of  training,  participants  in  the  control  condition  performed  a  filler  task.       Before  (time  1;  T1)  and  after  (time  2;  T2)  the  training  or  filler  task,  participants   made  a  production  task  and  a  prediction-­‐motion  task  to  test  if  performances  had  

changed.  The  production  task,  prediction-­‐motion  task,  production  training  and  filler  task   all  started  with  a  few  practice  trials,  to  make  the  participants  familiar  with  the  tasks.   Participants  filled  in  a  mood  questionnaire  before  and  after  all  the  tasks  to  control  for   mood  effects.    At  the  end  of  the  experiment,  participants  answered  some  exit  questions.     Materials  

The  experiment  was  performed  using  Presentation®  software  (Version  17.0,   www.neurobs.com).  The  experiment  was  presented  on  a  computer  with  a  display   resolution  of  1920  x  1080  pixels  and  a  refresh  rate  of  60  Hz.  The  tasks  are  described  in   the  next  sections.    

Training  task.  Training  of  explicit  motor  timing  was  done  with  a  training  task,  in   which  participants  were  trained  in  the  production  of  1.7  s.  Participants  were  asked  to   produce  this  interval  by  pressing  the  spacebar  of  the  keyboard  and  holding  it  for  the   duration  they  thought  would  be  the  target  interval.  When  holding  the  spacebar,  a  circle   appeared  on  the  screen,  so  the  produced  interval  could  be  seen.  We  thought  this  

facilitated  learning,  because  discrimination  mechanisms  could  be  used  to  compare  the   produced  intervals.    

After  each  trial,  feedback  was  provided  in  the  form  of  the  exact  interval  that  was   produced  (e.g.  1.685  s).  We  chose  an  interval  of  1.7,  because  a  fraction  of  a  second  is   difficult  to  produce,  so  participants  needed  to  rely  on  the  feedback  during  training.  The  

(14)

IMPROVING TIMING ABILITY 14 training  consisted  of  150  trials,  divided  in  5  blocks  with  a  small  break  between  the  

blocks.  

  Production  task.  Explicit  motor  timing  was  measured  with  a  production  task,  in   which  participants  had  to  produce  five  different  target  intervals  (i.e.  1.3,  1.5,  1.7,  1.9  and   2.1  s).  Participants  were  asked  to  produce  the  intervals  by  pressing  the  spacebar  and   holding  it  for  the  duration  they  thought  would  be  the  target  interval.  When  holding  the   spacebar,  a  circle  appeared  on  the  screen,  similar  as  in  the  training  task.  The  intervals   were  randomly  presented  and  each  interval  was  shown  15  times  in  total.  The  task  was   divided  in  three  blocks  of  25  trials  and  participants  could  take  a  small  break  between   the  blocks.    

  Prediction-­Motion  (PM)  task.  Implicit  perceptual  timing  was  measured  with  a   prediction-­‐motion  (PM)  task.  In  this  task,  a  box  moved  from  left  to  right  and  

disappeared  behind  an  object  (i.e.  a  larger  box).  The  box  started  to  move  when  

participants  pressed  the  spacebar  and  they  had  to  hold  the  spacebar  in  order  to  keep  the   box  moving.  Participants  were  asked  to  predict  when  the  moving  box  would  arrive  at   the  end  of  the  object  by  releasing  the  spacebar.  The  box  never  appeared  behind  the   object,  because  that  would  have  served  as  feedback,  which  was  not  the  intention  of  the   task.  Figure  2  shows  a  representation  of  the  task  with  an  indication  when  the  spacebar   should  be  pressed.    

  An  interval  was  counted  as  the  time  between  the  moment  the  box  had  disappeared   (left  side  of  box  was  equal  to  the  left  side  of  the  object)  and  the  moment  the  box  would   be  at  the  end  of  the  object  (right  side  of  the  box  was  equal  to  the  right  side  of  the  object).   The  5  different  target  intervals  were  manipulated  by  changing  the  length  of  the  object  

(15)

IMPROVING TIMING ABILITY 15 (speed  was  held  at  a  constant  level)  and  were  equal  to  the  target  intervals  in  the  

production  task  (1.3,  1.5,  1.7,  1.9  and  2.1  s).    

  The  size  of  the  box  was  60  x  60  pixels  and  the  starting  position  was  180  pixels   from  the  object.  The  box  moved  2  pixels  per  screen  refresh  (ca.  16.7  ms),  so  it  was   visible  during  2000  ms.  The  height  of  the  object  box  was  200  pixels  and  the  length   varied  from  216  pixels  for  the  1.3-­‐s  interval  to  312  pixels  for  the  2.1-­‐s  interval.    

  The  intervals  were  randomly  presented  and  each  interval  was  shown  15  times  in   total.  The  task  was  divided  in  three  blocks  of  25  trials  and  participants  could  take  a  small   break  between  the  blocks.    

  Filler  task.  The  filler  task  was  similar  in  length,  difficulty  and  attention  

requirements  as  the  training  task  and  generated  reaction  times  in  the  1-­‐2  s  range.  It   consisted  of  a  two-­‐choice  reaction  time  tasks  measuring  choice  selection  and  

psychomotor  speed  (Stout  et  al.,  2011).  To  make  the  task  as  challenging  as  the  training   task,  four  versions  of  the  two-­‐choice  reaction  time  task  were  presented  with  different   rules  concerning  the  responses.    

  In  all  versions  of  the  two-­‐choice  reaction  time  task,  participants  saw  an  empty   circle  that  became  colored  and  they  had  to  respond  quickly  with  the  left  key  (‘S’)  or  right   key  (‘L’)  in  agreement  with  the  specified  rule.  In  version  1,  an  empty  circle  at  the  left  and   right  side  of  the  screen  was  presented.  One  of  the  circles  turned  blue  and  participants   had  to  respond  to  the  left  or  right  circle  with  respectively  the  left  or  right  key.  In  version   2  and  3,  one  circle  in  the  middle  of  the  screen  became  orange  or  purple  and  participants   had  to  respond  with  the  associated  left  or  right  key  that  differed  per  version  (version  2:   purple-­‐left  and  orange-­‐right;  version  3:  orange-­‐left  and  purple-­‐right).  In  version  4,  an   empty  circle  at  each  side  of  the  screen  was  presented,  similar  to  version  1.  One  of  the  

(16)

IMPROVING TIMING ABILITY 16 circles  turned  orange  or  purple  and  participants  had  to  ignore  the  color  and  respond  to   the  left  or  right  circle  with  respectively  the  left  or  right  key.    

  A  trial  started  when  participants  pressed  the  spacebar  to  indicate  they  were  ready   and  a  fixation  cross  was  shown.  After  a  random  interval  between  1000  and  2000  ms,  the   stimuli  appeared  (i.e.  a  circle  became  colored)  on  which  they  had  to  respond.  After  each   trial,  feedback  was  presented  to  indicate  if  the  response  was  correct  or  wrong.  Each  of   the  four  blocks  contained  one  version  of  the  two-­‐choice  reaction  time  task  with  30  trials   and  participants  could  take  a  small  break  between  the  blocks.    

  Mood.  If  participants  became  more  irritable  or  less  attentive  in  one  condition   compared  to  the  other,  then  they  might  have  wished  to  finish  soon  and  underestimated   the  durations.  To  take  into  account  this  possible  effect,  mood  was  measured  using  the   Positive  and  Negative  Affect  Schedule  (PANAS)  scale  (Watson,  Clark  &  Tellegen,  1988).   The  questionnaire  consisted  of  10  positive  mood  states,  for  example  ‘interested’  and   ‘attentive’,  and  10  negative  mood  states,  for  example  ‘irritable’  and  ‘nervous’.  

Participants  were  asked  to  indicate  how  they  felt  at  that  moment  and  they  could  answer   on  a  5-­‐point  scale  with  the  labels  ‘very  slightly’,  ‘a  little’,  ‘moderately’,  ‘quite  a  bit’,  and   ‘very  much’.  The  PANAS  scale  has  good  reliability  and  validity;  the  Flemish  version  that   was  used  has  a  reported  Cronbach’s  alpha  of  .79  and  .85  for  the  PA  and  NA  scales   respectively  (Engelen,  De  Peuter,  Victoir,  Van  Diest,  &  Van  den  Bergh,  2006).    

Exit  questions.  The  exit  questionnaire  consisted  of  demographical  questions  and   questions  about  the  experiment.  Participants  were  asked  for  their  gender,  age,  

handedness,  and  education  level.  We  asked  participants  how  many  hours  a  week  they   normally  spent  on  activities  that  require  accurate  timing.  For  the  training  task,  

(17)

IMPROVING TIMING ABILITY 17 strategy  they  used  to  accomplish  the  tasks.  Furthermore,  we  asked  them  about  their   opinion  of  the  tasks,  if  they  had  participated  seriously,  which  hand  they  used  for  timing   in  the  tasks,  and  if  they  had  used  coffee,  tobacco,  alcohol  or  dugs  within  2  hours  before   the  experiment.    

Data-­Analytic  Procedure  

  Before  computing  the  dependent  variables,  all  produced  intervals  under  300  ms   were  excluded,  because  we  expected  the  participant  had  made  a  mistake.  Produced   intervals  were  considered  outliers  and  were  excluded  if  they  fell  outside  a  specified   range,  based  on  the  interquartile  range  (IQR).  The  range  had  a  minimum  value  of  Q1  –   3(IQR)  and  a  maximum  value  of  Q3  +  3(IQR),  based  on  the  method  to  identify  extreme   outliers  with  a  boxplot  (Tukey,  1993).  It  was  calculated  separately  for  every  type  of   interval  of  the  training,  production  and  prediction-­‐motion  task.    

  In  the  training,  production  and  prediction-­‐motion  task,  the  produced  intervals   were  compared  with  the  target  intervals.  For  each  participant,  two  dependent  variables   were  computed  per  type  of  interval  per  task.  Accuracy  score  (acc)  was  the  mean  error  of   responses  (absolute  difference  between  produced  and  target  intervals  divided  by  the   target  interval).  Variability  score  (var)  was  the  coefficient  of  variation  (SD  divided  by   mean  of  produced  intervals,  per  type  of  interval).    

In  computing  the  dependent  variables,  the  raw  variables  were  divided  by   interval,  because  this  provided  a  correction  for  type  of  interval.  The  reason  for  this   correction  was  to  make  the  intervals  more  comparable,  because  otherwise  the  error  and   standard  deviation  increase  with  longer  intervals  according  to  the  scalar  property   (Gibbon,  Church,  &  Meck,  1984).    

(18)

IMPROVING TIMING ABILITY 18 The  dependent  variables  were  indications  of  the  performances  on  the  tasks  and   were  compared  with  each  other  over  time.  Improvement  was  defined  as  smaller   accuracy  scores  (i.e.  smaller  errors)  and  smaller  variability  scores  (i.e.  smaller   coefficients  of  variation).    

  The  two  dependent  variables  were  analyzed  with  multivariate  analysis  of   variance  (MANOVA)  and  the  F-­‐statistics  of  Pillai’s  trace  were  reported.  Repeated   measures  were  used  to  analyze  the  differences  in  time.  The  statistical  level  of  

significance  was  set  at  an  alpha  of  .05.  If  the  assumption  of  sphericity  was  violated,  a   correction  was  used  (Huynh-­‐Feldt  correction  for  estimates  of  sphericity  >  0.75;  

Greenhouse-­‐Geisser  correction  for  estimates  <  0.75;  based  on  recommendation  of  Field,   2009).  

  The  dependent  variables  were  computed  with  R  (R  Development  Core  Team,   2012).  The  statistical  analyses  were  performed  with  SPSS  (version  19).    

Results  

Of  the  entire  data  set,  197  trials  were  excluded  because  they  were  less  than  300   ms  (0.64%)  and  59  trials  were  considered  outliers  (0.19%).  For  one  participant,  83%  of   the  data  points  of  the  PM  task  had  to  be  excluded,  therefore  no  reliable  dependent   variables  could  be  calculated  for  PM  T1  and  those  values  were  missing.    

  Due  to  technical  problems1,  12  participants  had  to  make  a  small  part  of  the   experiment  again  (7  participants  made  one  of  the  three  blocks  of  PM  T1  again,  4   participants  made  one  of  the  three  blocks  of  PM  T2  again  and  1  participant  made  the  

1  Most  problems  arose  in  the  PM  task.  Participants  had  to  press  the  spacebar  to  let  the  box  move.  

If  they  pressed  the  spacebar  before  the  trial  had  started  (i.e.  for  the  first  14  participants,  within   50  ms  after  they  pressed  enter  to  go  to  the  next  trial  and  for  the  others  within  16  ms),  the  

program  could  not  register  the  spacebar  press  and  it  gave  an  error.  All  participants  were  warned   beforehand  by  the  experimenter  to  wait  for  the  start  of  the  next  trial.  One  participant  got  an   unexplainable  error  in  the  control  task;  the  program  did  not  react  on  anything  and  it  had  to  be   forced  to  stop.    

(19)

IMPROVING TIMING ABILITY 19 control  task  again).  This  could  have  led  to  extra  noise  in  the  data.  Nevertheless,  similar   results  were  obtained  without  those  participants.  Therefore,  data  from  those  

participants  were  not  excluded.    

  The  data  was  not  normally  distributed,  but  skewed  to  the  right.  Although  the   assumption  of  normality  was  violated,  the  F-­‐statistic  of  Pillai’s  trace  is  robust,  because   the  groups  are  approximately  equal  (Stevens,  2009).    

Type  of  Interval  Effect  

When  we  computed  the  dependent  variables,  we  used  a  correction  to  control  for   type  of  interval  effect  (i.e.  more  error  and  variation  for  longer  intervals  in  the  

uncorrected  variables).  To  check  if  this  type  of  interval  effect  was  present,  the   uncorrected  variables  were  examined  with  repeated  measures  ANOVAs  with  type  of   interval  (1.3,  1.5,  1.7,  1.9,  2.1  s)  as  within-­‐subjects  variable.  Indeed,  larger  scores  were   found  with  longer  intervals  on  the  production  and  PM  tasks  for  all  uncorrected  

dependent  variables  (uncorrected  accuracy  scores:  all  F’s  ≥  18.8,  all  p’s  <  .001;   uncorrected  variability  scores:  all  F’s  ≥  3.4,  all  p’s  ≤  .01).    

We  therefore  expected  that  after  correction,  the  dependent  variables  would  have   comparable  values  for  each  interval.  However,  an  opposite  effect  was  found:  accuracy   and  variability  scores  decreased  with  longer  intervals.  This  type  of  interval  effect  in  the   corrected  variables  was  also  examined  with  repeated  measures  ANOVAs  with  type  of   interval  (1.3,  1.5,  1.7,  1.9,  2.1  s)  as  within-­‐subjects  variable.  The  effect  of  smaller  scores   with  longer  intervals  was  found  on  the  production  and  PM  tasks  for  all  dependent   variables  (accuracy  scores:  all  F’s  ≥  4.0,  all  p’s  ≤  .01,  variability  scores:  all  F’s  ≥  6.3,  all  p’s   ≤  .001).    

(20)

IMPROVING TIMING ABILITY 20   Although  the  corrected  variables  seem  to  be  overcorrected,  we  decided  to  still   use  them  for  analyses,  because  the  differences  between  intervals  with  corrected   variables  were  smaller  compared  to  the  differences  with  uncorrected  variables.  The   differences  between  intervals  are  not  a  problem  when  the  intervals  are  compared  over   conditions  or  over  time,  which  is  the  case  in  all  analyses.    

Performance  Effect    

  Participants  in  the  experimental  condition  received  training  at  producing  an   interval  of  1.7  s.  Performances  on  the  1.7  interval  of  the  production  task  before  training   were  compared  with  performances  during  the  5  blocks  of  training  in  repeated  measures   MANOVAs.  Accuracy  scores  can  be  seen  in  Figure  3  and  variability  scores  can  be  seen  in   Figure  4.  In  both  figures,  the  lower  line  with  multiple  points  represents  the  average   score  for  the  five  blocks  of  training.    

Performances  were  more  accurate  and  less  variable  during  training  (MAcc  =  0.073,  

SD  =  0.023;  MVar  =  0.092,  SD  =  0.028)  than  on  the  1.7-­‐s  interval  of  the  production  task  

before  training  (MAcc  =  0.338,  SD  =  0.173;  MVar  =  0.215,  SD  =  0.094).  This  was  confirmed  

with  a  multivariate  test  that  compared  the  1.7-­‐s  interval  of  the  production  task  at  time  1   with  the  mean  of  the  training  blocks,  V  =  0.82,  F(2,  32)  =  71.0,  p  <  .001,  ηp2  =  .816.  The   univariate  tests  showed  lower  accuracy  scores  during  training  than  before  training,  F(1,   33)  =  87.33,  p  <  .001,  ηp2  =  .726,  and  lower  variability  scores,  F(1,  33)  =  66.23,  p  <  .001,   ηp2  =  .667.  

Performances  became  also  more  accurate  and  less  variable  over  blocks  of  

training  (block  1  MAcc  =  0.087,  SD  =  0.028;  MVar  =  0.112,  SD  =  0.035;  block  5  MAcc  =  0.068,  

SD  =  0.027;  MVar  =  0.081,  SD  =  0.030).  This  was  confirmed  with  the  multivariate  test  

(21)

IMPROVING TIMING ABILITY 21 univariate  tests  showed  lower  accuracy  scores  over  blocks,  F(4,  132)  =  7.41,  p  <  .001,  ηp2   =  .183,  and  lower  variability  scores,  F(4,  132)  =  13.54,  p  <  .001,  ηp2  =  .291.The  

improvements  over  blocks  had  linear  trends  for  the  accuracy  scores,  F(1,  33)  =  13.62,  p   =  .001,  ηp2  =  .292,  and  variability  scores,  F(1,  33)  =  26.42,  p  <  .001,  ηp2  =  .445.    

The  improvement  during  training  was  an  indication  that  our  training  worked   well.  This  was  a  necessary  condition  for  the  other  effects  to  reveal  themselves.     Learning  Effect  

We  examined  if  the  participants  in  the  experimental  condition  could  keep  up   their  improved  performances  after  training.  We  compared  performances  on  the  1.7-­‐s   interval  of  the  production  task  over  time  and  between  conditions.  This  was  done  with  a   2  x  2  MANOVA  with  time  as  within-­‐subjects  factor  (T1,  T2)  and  condition  as  between-­‐ subjects  factor  (experimental,  control  group).  

In  Figure  3  and  Figure  4,  the  accuracy  and  variability  scores  are  shown  for  the   trained  interval  (circle  points)  over  time  with  separate  lines  for  conditions.  Participants   in  the  experimental  condition  improved  more  than  those  in  the  control  condition.  This   was  confirmed  by  the  interaction  between  condition  and  time  for  the  multivariate  test,  V   =  0.18,  F(2,  64)  =  7.23,  p  =  .001,  ηp2  =  .184  and  the  univariate  tests  for  accuracy  scores,   F(1,  65)  =  6.12,  p  =  .016,  ηp2  =  .086,  and  variability  scores,  F(1,  65)  =  11.25,  p  =  .001,  ηp2  =   .148.    

The  interaction  effect  was  further  examined  with  simple  contrasts.  At  time  1,  the   control  and  experimental  condition  did  not  differ  from  each  other,  as  was  indicated  by   the  multivariate  comparison,  V  =  .04,  F(2,  64)  =  1.21,  p  =  .304,  and  simple  contrasts  on   accuracy  (control  MAcc  =  0.363,  SD  =  0.219;  experimental  MAcc  =  0.338,  SD  =  0.173,  p  =  

(22)

IMPROVING TIMING ABILITY 22 .600),  and  variability  scores  (control  MVar  =  0.188,  SD  =  0.063;  experimental  MVar  =  0.215,  

SD  =  0.094,  p  =  .164).    

In  the  control  condition,  performances  did  not  change  over  time,  as  was  indicated   by  the  multivariate  comparison,  V  =  .08,  F(2,64)  =  2.79,  p  =  .069.  Accuracy  scores  did  not   change  over  time  (T1  MAcc  =  0.363,  SD  =  0.219;  T2  MAcc  =  0.323,  SD  =  0.180,  p  =  .264).  

Although  variability  scores  became  slightly  smaller  over  time,  it  was  not  significant  with   a  corrected  alpha  of  .025  (T1  MVar  =  0.188,  SD  =  0.063;  T2  MVar  =  0.155,  SD  =  0.062,  p  =  

.026).  In  the  experimental  condition,  performances  did  improve,  as  was  indicated  by  the   multivariate  comparison,  V  =  .49,  F(2,  64)  =  30.27,  p  <  .001,  ηp2  =  .486.  Participants  got   smaller  accuracy  scores  over  time  (T1  MAcc  =  0.338,  SD  =  0.173;  T2  MAcc  =  0.173,  SD  =  

0.162,  p  <  .001)  and  smaller  variability  scores  (T1  MVar  =  0.215,  SD  =  0.094;  T2  MVar  =  

0.114,  SD  =  0.052,  p  <  .001).  

At  time  2,  therefore,  performances  of  the  experimental  condition  were  better   than  those  of  the  control  condition,  as  was  indicated  by  the  multivariate  comparison,  V  =   .20,  F(2,  64)  =  8.18,  p  =  .001.  Participants  in  the  experimental  condition  had  lower  scores   than  participants  in  the  control  condition  on  accuracy  (control  MAcc  =  0.323,  SD  =  0.180;  

experimental  MAcc  =  0.173,  SD  =  0.162,  p  =  .001)  and  on  variability  (control  MVar  =  0.155,  

SD  =  0.062;  experimental  MVar  =  0.114,  SD  =  0.052,  p  =  .005).    

This  confirmed  our  first  hypothesis  that  training  caused  improved  performances   on  the  1.7-­‐s  interval  compared  to  no  training;  we  found  a  learning  effect.  Surprisingly,   participants  in  the  control  condition  also  became  slightly  less  variable  and  this  trend  is   against  our  expectations.    

   

(23)

IMPROVING TIMING ABILITY 23 Generalization  Effect  

  We  examined  if  the  training  also  had  an  effect  on  the  intervals  that  were  not   trained.  The  mean  of  the  4  non-­‐trained  intervals  of  the  production  task  was  compared   over  time  and  between  conditions.  This  was  done  with  a  2  x  2  MANOVA  with  time  as   within-­‐subjects  factor  (T1,  T2)  and  condition  as  between-­‐subjects  factor  (experimental,   control  group).  

In  Figure  3  and  Figure  4,  the  accuracy  and  variability  scores  are  shown  for  the   mean  of  the  nontrained  intervals  (square  points)  over  time  with  separate  lines  for   conditions.  Participants  in  the  experimental  condition  improved  more  than  those  in  the   control  condition.  This  was  confirmed  by  the  interaction  between  condition  and  time  for   the  multivariate  test,  V  =  0.12,  F(2,  64)  =  4.22,  p  =  .019,  ηp2  =  .116,  and  the  univariate   tests  for  accuracy  scores,  F(1,  65)  =  5.21,  p  =  .026,  ηp2  =  .074,  and  variability  scores,  F(1,   65)  =  6.08,  p  =  .016,  ηp2  =  .086.    

The  interaction  effect  was  further  examined  with  simple  contrasts.  At  time  1,  the   control  and  experimental  condition  did  not  differ  from  each  other,  as  was  indicated  by   the  multivariate  comparison,  V  =  .04,  F(2,  64)  =  1.46,  p  =  .240,  and  simple  contrasts  on   accuracy  scores  (control  MAcc  =  0.379,  SD  =  0.212;  experimental  MAcc  =  0.339,  SD  =  0.158,  

p  =  .383),  and  variability  scores  (control  MVar  =  0.190,  SD  =  0.070;  experimental  MVar  =  

0.213,  SD  =  0.083,  p  =  .225).    

In  the  control  condition,  performances  did  not  change  over  time,  as  was  indicated   by  the  multivariate  comparison  V  =  .09,  F(2,  64)  =  3.07,  p  =  .053.  Accuracy  scores  did  not   change  over  time  (T1  MAcc  =  0.379,  SD  =  0.212;  T2  MAcc  =  0.336,  SD  =  0.178,  p  =  .183),  but  

variability  scores  became  smaller  over  time,  which  was  even  significant  with  a  corrected   alpha  of  .025  (T1  MVar  =  0.190,  SD  =  0.070;  T2  MVar  =  0.161,  SD  =  0.063,  p  =  .018).  In  the  

(24)

IMPROVING TIMING ABILITY 24 experimental  condition,  performances  improved  over  time,  as  was  indicated  by  the  

multivariate  comparison,  V  =  .40,  F(2,  64)  =  21.59,  p  <  .001,  ηp2  =  .403.  Participants  got   smaller  accuracy  scores  over  time  (T1  MAcc  =  0.339,  SD  =  0.158;  T2  MAcc  =  0.194,  SD  =  

0.186,  p  <  .001)  and  smaller  variability  scores  (T1  MVar  =  0.213,  SD  =  0.083;  T2  MVar  =  

0.142,  SD  =  0.050,  p  <  .001).    

At  time  2,  therefore,  performances  of  the  conditions  differed  from  each  other,  as   was  indicated  by  the  multivariate  comparison,  V  =  .17,  F(2,  64)  =  6.71,  p  =  .002,  ηp2  =   .173.  Participants  in  the  experimental  condition  had  lower  scores  than  participants  in   the  control  condition  on  accuracy  (control  MAcc  =  0.336,  SD  =  0.178;  experimental  T2  

MAcc  =  0.194,  SD  =  0.186,  p  <  .001),  but  no  difference  between  conditions  was  found  on  

variability  scores  (control  MVar  =  0.161,  SD  =  0.063;  experimental  MVar  =  0.142,  SD  =  

0.050,  p  =  .177).  

This  confirmed  our  second  hypothesis  that  training  of  the  1.7-­‐s  interval  caused   improved  performances  on  nontrained  intervals  surrounding  the  trained  interval   compared  to  no  training;  we  found  a  generalization  effect.  It  is  against  our  expectations   that  participants  in  the  control  condition  also  became  less  variable  over  time.    

We  examined  if  improvements  would  differ  across  the  5  intervals  of  the  

production  task  separately.  We  expected  that  performance  of  the  trained  interval  would   improve  more  than  performances  of  the  non-­‐trained  intervals  and  that  performance  of   the  intervals  close  to  the  trained  interval  (i.e.  1.5  and  1.9  s)  would  improve  more  than   performances  of  the  intervals  further  away  (i.e.  1.3  and  2.1  s).  This  was  analyzed  with  a   2  x  2  x  5  MANOVA  with  condition  as  between-­‐subjects  factor  (control,  experimental),   time  as  within-­‐subjects  factor  (T1,  T2),  and  type  of  interval  as  within-­‐subjects  factor   (1.3,  1.5,  1.7,  1.9,  2.1  s).    

(25)

IMPROVING TIMING ABILITY 25 The  improvement  did  not  vary  across  the  different  intervals  when  comparing  the   experimental  with  the  control  condition,  as  was  indicated  by  the  interaction  between   time,  interval  and  condition,  V  =  .15,  F(8,  58)  =  1.24,  p  =  .294,  ηp2  =  .146.  This  was  against   our  expectations  and  it  is  remarkable  that  for  the  experimental  condition,  performance   of  the  trained  interval  is  not  better  than  performance  of  the  non-­‐trained  intervals.  It  is   an  indication  that  training  causes  similar  improvements  on  the  trained  as  the  

nontrained  intervals.       Transfer  Effect  

  We  examined  if  the  training  also  had  an  effect  on  performance  of  the  prediction-­‐ motion  (PM)  task.  The  mean  of  the  5  intervals  of  this  task  was  compared  over  time  and   between  conditions.  This  was  done  with  a  2  x  2  MANOVA  with  time  as  within-­‐subjects   factor  (T1,  T2)  and  condition  as  between-­‐subjects  factor  (experimental,  control  group).   In  Figure  5,  the  accuracy  and  variability  scores  are  shown  for  the  mean  of  the  PM   intervals  over  time  with  separate  lines  for  condition.  The  change  in  performances  over   time  of  the  experimental  condition  was  not  different  than  the  change  of  the  control   condition,  as  was  indicated  by  the  non-­‐significant  interaction  between  time  and   condition,  V=  0.01,  F(2,  63)  =  .38,  p  =  .687.    

  However,  a  main  effect  of  time  was  found  in  an  unexpected  direction:  

participants  in  both  conditions  showed  higher  accuracy  scores  at  time  2  compared  to   time  1,  which  indicates  an  impairment  (T1  MAcc  =  0.221,  SD  =  0.098;  T2  MAcc  =  0.267,  SD  

=  0.137).  The  main  effect  of  variability  followed  the  expected  direction  of  smaller   variability  scores  over  time  (T1  MVar  =  0.182,  SD  =  0.049;  T2  MVar  =  0.168,  SD  =  0.051).  

Referenties

GERELATEERDE DOCUMENTEN

return (including dividends) to stock i in period t. Annual return is the compounded measure of monthly value- weighted return for the year; this return measures the

Aangezien de P/E Ratio het meeste met de index correleert, kan verwacht worden dat de market timing methode Martket Timing based upon Normal Ranges een beter

The small spread between alphas and the close to zero average indicates that the FF (1993) three factor model with an additional market timing coefficient,

In this section, I analyse the determinants of the performance gap (Table 3, panel b) of the long-term mutual fund categories controlling for various funds characteristics such as the

Dit rapport bevat een evaluatieverslag van een kleinschalige beloningsac- tie om autogordelgebruik te stimuleren, uitgevoerd in december 1988 door Veilig Verkeer

- bij aanwezigheid/afwezigheid van openbare verlichting. Er kunnen verschillen in registratiewijze zijn bij verschillen in tijd, plaats en omstandigheden. De ernst

Op de site aan de Steenovenstraat werd op Zone I een gebouwplattegrond onderzocht, dat vergelijk- baar is met dat van de Schoonstraat 201. Dit gebouw bestaat uit een brede

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of