• No results found

Probing new physics with underground accelerators and radioactive sources

N/A
N/A
Protected

Academic year: 2021

Share "Probing new physics with underground accelerators and radioactive sources"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation for this paper:

Izaguirre, E., Krnjaic, G. & Pospelov, M. (2015). Probing new physics with

underground accelerators and radioactive sources. Physics Letters B, 740, 61-65.

http://dx.doi.org/10.1016/j.physletb.2014.11.037

UVicSPACE: Research & Learning Repository

_____________________________________________________________

Faculty of Science

Faculty Publications

_____________________________________________________________

Probing new physics with underground accelerators and radioactive sources

Eder Izaguirre, Gordan Krnjaic, Maxim Pospelov

2015

©2014 The Authors. Published by Elsevier B.V. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/3.0/).

This article was originally published at:

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Probing

new

physics

with

underground

accelerators

and

radioactive

sources

Eder Izaguirre

a

,

Gordan Krnjaic

a

,

,

Maxim Pospelov

a

,

b

aPerimeterInstituteforTheoreticalPhysics,Waterloo,Ontario,Canada

bDepartmentofPhysicsandAstronomy,UniversityofVictoria,Victoria,BritishColumbia,Canada

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received3September2014

Receivedinrevisedform18November2014 Accepted18November2014

Availableonline21November2014 Editor:M.Trodden

New light, weakly coupledparticlescan be efficiently produced atexisting and future high-intensity accelerators and radioactivesources indeepunderground laboratories.Onceproduced, theseparticles canscatterordecayinlargeneutrinodetectors(e.g. Super-KandBorexino)housedinthesamefacilities. Wediscusstheproductionofweaklycoupledscalarsφ vianuclearde-excitationofanexcitedelement intothegroundstateintwoviableconcretereactions:thedecayofthe0+excitedstateof16Opopulated viaa(p,

α

) reactiononfluorineandfromradioactive144Cedecaywherethescalarisproducedinthe

de-excitationof144Nd,whichoccursalongthedecaychain.Subsequentscatteringonelectrons,e(φ,

γ

)e,

yields amono-energetic signal that is observable inneutrino detectors. We show that thisproposed experimentalsetup cancovernewterritoryformasses250 keV≤2meandcouplingstoprotonsand

electrons,10−11g

egp≤10−7.Thisparameterspaceismotivatedbyexplanationsofthe“protoncharge

radius puzzle”,thus thisstrategyadds a viablenew physics component to the neutrinoand nuclear astrophysicsprogramsatundergroundfacilities.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

1. Introduction

Inrecentyears,therehasemergedauniversalappreciationfor new light, weakly-coupled degrees of freedom as generic possi-bilities for New Physics (NP) beyond Standard Model (SM). Con-siderableeffort in“intensityfrontier”experimentsisnowdevoted to NPsearches [1]. In this paperwe argue that there is a pow-erfulnew possibilityforprobing thesestates by combininglarge underground neutrino-detectors with either high luminosity un-dergroundacceleratorsorradioactivesources.

Underground laboratories, typically located a few km under-ground, are shielded from most environmental backgrounds and areidealvenuesforstudyingrareprocessessuch aslow-rate nu-clearreactions andsolar neutrinos. Thus far, thesephysics goals have been achievedwith very differentinstruments: nuclear re-actionsrelevantforastrophysicsinvolvelow-energy,high-intensity protonorionbeamscollidingwithfixedtargets(suchastheLUNA experimentatGranSasso),whilesolarneutrinosaredetectedwith largevolume ultra-cleanliquid scintillatoror waterCerenkov de-tectors(SNO,SNO

+

,Borexino,Super-K,etc.).

*

Correspondingauthor.

E-mailaddress:gkrnjaic@perimeterinstitute.ca(G. Krnjaic).

Inthispaperweoutlineanovelexperimentalstrategyinwhich light,“invisible”states

φ

areproducedinundergroundaccelerators orradioactivematerialswithO

(

MeV

)

energyrelease,andobserved innearby neutrinodetectors inthesame facilities asdepictedin Fig. 1:

X

X

+ φ,

production at “LUNA” or “SOX” (1)

e

+ φ →

e

+

γ

,

detection at “Borexino”

.

(2) Here X∗ is anexcited state of element X ,accessed via anuclear reactioninitiatedby anundergroundaccelerator(“LUNA”)orby a radioactive material (“SOX”).1 Inthe “LUNA”-type setup a proton beam collides against a fixed target, emitting a new light parti-cle that travelsunimpeded through the rock and scattersinside a “Borexino”-typedetector.Alternatively, inthe “SOX”production scenario,designedtostudyneutrinooscillationsatshortbaselines, aradioactivematerialplacednearaneutrinodetectorgivesriseto the reactionin Eq.(1)asan intermediate step ofthe radioactive material’sdecaychain.

We study one particularly well-motivated NP scenario witha



MeV scalarparticle,veryweakly O

(

10−4

)

coupledtonucleons

1 Ourideaisverygeneric,notspecifictoanysingleexperimentorlocation,which

iswhyquotationmarksareused. http://dx.doi.org/10.1016/j.physletb.2014.11.037

0370-2693/©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/).Fundedby SCOAP3.

(3)

62 E. Izaguirre et al. / Physics Letters B 740 (2015) 61–65

Fig. 1. Schematicfigureofφproductionina“LUNA”-typeundergroundaccelerator viap+19F→ (16O16O+ φ)+αora“SOX”-typeradioactivesourcevia144Ce

144Pr

¯e)→Nd∗→Nd+ φ.Subsequentdetectionat“Borexino”proceedsviaφescalarconversion.

andelectrons.Thisrangeofmassesandcouplingsisnotexcluded by astrophysical or laboratory bounds, and is motivated by the persistentprotoncharge-radiusanomaly.Twoconcrete,viable pos-sibilitiesforproducinglightscalarsareconsidered:

For the LUNA-type setup, we show that such light particles can be efficiently produced by populating the first excited 6.05 MeV0+stateof16Oin

(

p

,

α

)

reactionsonfluorine.

FortheSOX-type setupwe findsimilarly powerfulsensitivity from the 144Ce–144Pr

(

ν

¯

e

)

radioactive source, which can pro-duceascalarwith2.19or1.49 MeVenergiesfromthe144Nd∗ de-excitationthatoccursalongthedecaychain.

The subsequent detection of a mono-energetic release in a Borexino-type detector with6.05, 2.19, or 1.49 MeV will be free from substantial environmental backgrounds. The strategy pro-posedinthisLetter iscapableofadvancingthesensitivitytosuch statesby manyordersofmagnitude, completelycovering the pa-rameterspacerelevantfortherp puzzle.

2. Scalarparticlesbelow1MeV

Newparticles in theMeV andsub-MeVmass rangeare moti-vatedbytherecent7

σ

discrepancybetweenthestandard determi-nationsoftheprotonchargeradius,rp,basedone–p interactions [2], and the recent, most precise determination of rp from the Lamb shift in muonic Hydrogen [3,4]. One possible explanation forthisanomalyisanewforcebetweentheelectron(muon)and proton[5–7]mediatedbya

100 fmrangeforce(scalar- or vector-mediated)that shiftsthebinding energies ofHydrogenicsystems andskewsthedeterminationofrp.Motivatedbythisanomaly,we considerasimplemodelwithonelightscalar

φ

thatinteractswith protonsandleptons,

=

1 2

(∂

μ

φ)

2

1 2m 2 φ

φ

2

+ (

gpp p

¯

+

geee

¯

+

μμ

¯

)φ,

(3) anddefine



2

≡ (

g

egp

)/

e2. We assume mass-weighted couplings to leptons, ge

∝ (

me

/

)

gμ, and no couplings to neutrons. The apparentcorrectionstothecharge radiusoftheprotoninregular andmuonichydrogenare[5–7]

r2p



eH

= −

6



2 m2φ

;

r 2 p



μH

= −

6



2

(

g μ

/

ge

)

m2φ f

(

amφ

)

(4)

where a

≡ (

α

mμmp

)

−1

(

+

mp

)

is the

μ

H Bohr radius and

f

(

x

)

=

x4

(

1

+

x

)

−4. Equating

r2

p

|

μH

r2p

|

eH tothe current

dis-Fig. 2. Sensitivity projections for various experimentalsetups interms of 2=

gpge/e2 and m

φ, which parametrize the NP explanation ofthe rp anomalyin

Eq. (4); the blue band is the parameter space that resolves the puzzle. The “LUNA/Borexino”curve assumesa400 keVprotonbeamwith1025 POTincident

on a C3F8 targettoinduce p+19F→ (16O∗→16O+ φ)+αreactions 100 m

awayfromBorexinoandyield10signalevents(>3σ)abovebackgrounds[9].The Borexino3 MeVandSuper-K 3 MeVlinesassumethesamesetupwitha3 MeV p-accelerator10 mawayfromeachdetector.TheSuper-K projectionshows100 sig-nalevents(>3σ)abovebackgroundsat 6.05 MeV[10].TheSOXlinesassumea radioactive144Ce–144Prsource7.15 mawayfromBorexinowith50and165events

(>3σ)abovebackgroundsfor2.19and1.49 MeVlinesrespectively.Shadedingray areconstraintsfromsolarproduction[9],LSNDelectron–neutrinoscattering[11], andstellarcooling[12],forwhichweassumege= (me/mp)gp.(Forinterpretation ofthereferencestocolorinthisfigurelegend,thereaderisreferredtotheweb versionofthisarticle.)

crepancy of

0

.

063

±

0

.

009 fm2 [4], one obtains a relation be-tween and



.Thus, for

=

0

.

5 MeV,the anomaly suggests



2



1

.

3

×

10−8. Form

φ

>

2me,the

φ

e+e− process ishighly constrained by searches for light Higgs bosons [1], so we con-siderthe

<

2me region,whichisrelativelyunconstrained.Since

ge

gp, the

φ

e coupling is suppressed relative to that of a massivephoton-likeparticle,soprecisionmeasurementsof

α

and

(

g

2

)

e donotconstrainthisscenario.

We wouldliketo emphasizethat currently,thereare nogood modelsofnewphysicscapableoffitting

rp discrepancyandnot sufferingfromadditionalfine-tuningissues,especiallyifonetries to findasatisfactory descriptionforsuch modelsatorabove the electroweak scale.Thus, models withvery light vector mediators haveto beconstructedto avoidcouplings withneutrinos [7],but thesecannot avoidthetuningofthemuon g

2 andtheatomic parity violation constraints [8]. In that sense, a sub-MeV scalar may be presentingthe leastamount oftuning [5].Still, the van-ishing couplingtoneutrons(constrainedinneutronscattering ex-periments tobe below10−4 level),is challengingto achieve:the onlypossibilityathandseemstobeafine-tuningof

φ

uu and

¯

φ ¯

dd

operatorsatthequarklevel.Thisinturn,wouldcorrespondto tun-ing ofdimensionfiveoperators, when

φ

qq are

¯

generalizedtothe full SM gauge invariance. To summarizethis discussion, we take model(3)asaphenomenologicalmodel,capableofresolving

rp discrepancy,butnotfreeoffine-tuningissues.

The astrophysical and fixed-target constraints depend on the cross section for e

φ

e

γ

conversion, which for

me with astationaryelectrontargetis

d

σ

dE

=

π

(

ge

/

e

)

2

α

2

(

E

me

)

meQ4

(

Q

E

+

me

)

2



E



Q2

E Q

2meQ

2m2e



+

me



3Q2

+

3Q me

+

2m2e



,

(5)

where E isthe electron recoilenergyand Q is the

φ

energy. At

(4)

σ



π

(

ge

/

e

)

2

α

2 2meQ

=

13 mb

×

5 MeV Q

×



ge e



2

,

(6)

which determines the in-medium

φ

-absorption probability. Ab-sorption competes with the

φ

γ γ

decay, proceeding through loopsoffermions f withthewidthgivenbyastandardformula,

Γ (φ

γ γ

)

=

α

2m3 φ 512

π

3





f gf mf NcQ2fA1/2

(

τ

f

)





2

,

(7) whereQf isthefermioncharge,

τ

f

m2φ

/

4m2f,and

A1/2

(

τ

)

=

2

τ

−2



τ

+ (

τ

1

)

arcsin

τ



.

(8)

An approximate proportionality to particle masses ensures that couplingstoneutrinosarenegligible.

Processes(5),(7)definethegrossfeaturesof

φ

-phenomenology incosmologicalandastrophysicalsettings.Theensuingconstraints aresummarizedasfollows:

Energy loss in stars via e

γ

e

φ

(red giants, white dwarfs, etc.)isexponentiallysuppressedfor

>

Tstar.Wecalculatea boundof



250 keV,forthefiducialrangeofcouplings.

The decay of

φ

in theearly Universe at T

resultsin a

negativeshiftofthe“effectivenumberofneutrinos.”For

>

250 keV the shiftis moderate, Neff

∼ −

0

.

5 [13], and can be easily compensated by the positive contributions fromother lightparticles(e.g.sterileneutrinos).

SN physics: Low masses and sizable couplings, ge,p

10−4, ensures the

φ

are trappedduring theexplosions,andneither takeenergyfromtheexplosivezonesnordegradetheneutrino energiesonaccountof

=

0.

Emission of

φ

in solar nuclear reactions can be constrained using the Borexino search forsolar axions [9],and disfavors some fraction of the parameter space with



2 in between 10−12and10−10,asshowninthiswork.

Inaddition toastrophysical constraints,boundson



from di-rectsearchesofverylightscalarstypicallyprobe



2



10−7.When combined,existingconstraintsleaveanunexploredpartofthe pa-rameterspaceforthescalarmodel,250 keV



<

2me,10−10





2



10−7,andthe

r

p-motivatedrangefallsinthemiddleofthis allowedterritory.TheexistingconstraintsaresummarizedinFig. 2.

3. Productionofscalarsinnuclearreactions

Searches of light scalar particles in nuclear reactions, such as3H

(

p

,

γ

)

4He and 19F

(

p

,

α

)

16Ohavebeen successfully imple-mented[14,15]onthesurface,wherethemainbackgroundcomes fromcosmic events.Forsub-MeVmassesof

φ

,thelatterreaction isespeciallyadvantageousas

φ

isproducedinthede-excitationof the0+state:

16O

(

6

.

05

)

16O

+ φ,

(9)

withenergyrelease Q

=

6

.

05 MeV.IntheSM,thesingle-

γ

decay ofthisstate isnot possibledueto angularmomentum conserva-tion, and the main de-excitation process is 16O∗

16O

+

e+e

withthe long lifetime 96

±

7 ps [16]; thus, the relative branch-ing to new physics can be greatly enhanced. Following [17] for

Q ,theNPbranchingratio

Γ

φ

e+e− is

B

=

8

π

(

gp

/

e

)

2Q5

α

b

(

s

)(

Q

2me

)

3

(

Q

+

2me

)

2



4

×

103



gp e



2

,

(10)

wheres

= (

Q

2me

)/(

Q

+

2me

)

andb

(

s

)

0

.

92 isdefinedin[17]. The excited state 16O∗ can be efficientlyproduced in

100 keV– MeV p accelerators.

To estimate the

φ

yield from p

+

19F

16O

(

6

.

05

)

+

α

, we

modelthecrosssectionbelow3 MeVusing[18,19]andextrapolate to the Coulomb-suppressed region. Specifically, we take

σ

(

E

)



σ

0f

(

E

)

,with

σ

0

=

18 mbn andmodeltheCoulombrepulsionwith

f

(

E

<

E0

)

=

E0 E exp



Eg

/

E0

Eg

/

E



,

(11)

intheE

<

E0

1

.

5 MeV range.HereEg

=

2

(

π α

ZF

)

2

μ

=

45

.

5 MeV istheGamowenergyand

μ

istheproton–fluorinereducedmass,

E is the c.o.m. energy, and normalization ensures continuity at

f

(

E0

)

=

1,whererepulsioncanbeneglected.

ThesignalyieldforaprotonbeamofenergyEp (i.e. the prob-abilityto producea quantum of

φ

per each injectedproton) and targetmaterialoffluorine number-densitynF is

(

Ep

)

=

B

×

nF Ep

0 dE

σ

p

(

E

)

|

dE

/

dx

|

.

(12)

|

dE

/

dx

|

depends on the material that includes fluorine, and is readily available in[20]. For example,for the C3F8 material, the probabilityofproducingone

φ

perinjectedprotonisNφ(3 MeV

)

3

×

10−2

(

gp

/

e

)

2.

Theangulardistributionofemerging

φ

isfullyisotropicas nu-clearrecoilvelocitiesarenegligible,andthefluxatthepositionof thedetectorisgivenby

Φφ

=

Nφ(Ep

)

× (

dNp

/

dt

)/

4

π

L2.Insidethe detector,theemitted

φ

scatteroffelectronsthroughe

φ

e

γ

with crosssectionsgivenby(5).Thus,theonlyremainingfree parame-ters(distanceL,numberofacceleratedprotonsperseconddNp

/

dt, theirenergyEp aswellasthenumberofelectronsinthedetector volume)arelocation,source,anddetector-specific.2

4. Productionoflightstatesinradioactivedecays

An alternative realistic mechanism forproducing light weakly coupled particles is using the high-intensity radiative sources placed near a neutrino detector. In particular, we focus on the specific radioactive source 144Ce–144Pr

(

ν

¯

e

)

motivatedby the SOX proposal by the Borexino Collaboration. The production of the scalar inthis reaction proceedsvia 144Ce

→ β ¯

ν

+

144Pr followed by144Pr

→ β ¯

ν

+ (

144Nd

144Nd

+ φ)

.Onceproduced,thescalar canbedetectedataneutrinodetector.

5. Possibleacceleratorrealizations

Alltheingredients forasuccessfulrealizationofouridea cur-rentlyexistattheundergroundLaboratoriNazionalidelGranSasso (LNGS) inItaly, home ofboth theLUNAacceleratorandBorexino detector.Inaddition,thereareseveralotherfacilitiesofinterest in-cludingSNOLABinCanadaandtheKamiokaObservatoryinJapan. Both SNO

+

and Super-Kdetectors inthese laboratoriescould be sensitive to new sub-MeV states if a proton accelerator were to beplaced intheir vicinity.Furthermore,theSanfordUnderground ResearchFacility(SURF)hascurrentplanstohosttheDualIon Ac-celerators for Nuclear Astrophysics (DIANA), which are expected

2 DependingontheUVmodelassumptionsthatyieldtheeffectivetheoryin(3),

theφγ γdecaymaydominatethesignalyieldinsidethedetector.However,this ishighlymodel-dependent,soweconservativelyrestrictourfocustothe model-independentscatteringsignalthatdependsonlyonthe couplings ge,p intheIR effectivetheory.

(5)

64 E. Izaguirre et al. / Physics Letters B 740 (2015) 61–65

to deliver 10–100 mA 3 MeV proton beams. SURF is also home totheLargeUndergroundXenon(LUX) experiment,whichdespite its smallervolumecompared toBorexino andSuper-Kamiokande, couldalsobesensitivetonewsub-MeVstates.

TheLUNAaccelerator[21]candelivermAcurrentsofMeVscale proton energies [22]. Our main results and the plot with sensi-tivityprojectionsassume a target whichis notcurrentlyused by the LUNA experiment (e.g. C3F8), but can easily be installed. In Fig. 2weshowarealistic scenarioassumingtheexisting400 keV accelerator L

=

100 m away inthe canonical LUNAscenario. We also show projections for an upgraded 3 MeV beam [23] 10 m awayfromtheBorexinodetectorintheGranSassoservicetunnel. Forall our acceleratorprojections we optimistically assume 1025 protons-on-target (POT), achievable witha 50 mA beamrunning foroneyear.Veryimportantly,at6.05 MeVenergyBorexinois al-mostbackground-freeandhasgoodenergyresolution,sothateven ahandful ofevents

(

10

)

wouldshow asignificantexcessinthe correspondingenergybin,andconstituteadiscovery.

Onepracticallimitationofthisproposalcouldbearequirement ofnotincreasingtheneutronbackgroundinLNGS.Inourexample, the main source of neutrons is

α

nuclei produced in each reac-tionstep,whichyieldneutronsinsecondarycollisionswithtarget nuclei. Using[24],we estimate theneutron yield from19F

(

α

,

n

)

23Na in our setup to be

O

(

few Hz

)

. Such low rates are irrele-vantatLNGS, whichcanaccommodate 103 Hz,butmightmatter ifalternateproductionmethodsareemployed,thusrequiringextra shielding.

The Super-Kamiokande (Super-K) detector [25] in Kamioka, Japan,containsa50,000-tonwaterˇCerenkovdetector.InFig. 2we showtheexpected



sensitivityofahigh-intensity3 MeV proton source,assuminga C3F8 target 10 mawayfromthedetector. De-spiteapenalty duetoarelatively highthresholdfortheelectron energyinSuper-K, onecan see an incrediblystrong potential for thereachtonewphysics.

6. Possibleradioactivesourcerealizations

Forscalar productionvia radioactivedecays, one possibilityis phase B of the SOX proposalby the Borexino Collaboration [26], which intendsto deploy a

2 PBq sourceof 144Ce–144Pr7.15 m fromtheBorexinocenter.Roughly2%of144Ce decaysare accom-paniedby the

γ

-radiation fromthedecay ofthemetastable Nd∗ daughternucleidescribedabove.The1.49and2.19 MeVtransition energies are well above the Borexino threshold, so this method covers the full mass range of interest, generating

1013

(

gp

/

e

)

2

φ

-particles per second.Giventheplanned exposures[26],we es-timate the Borexino reach in this case, and add corresponding sensitivitylinesonFig. 2.

7. Existingconstraints

Whilemanyofthepastbeam-dumpexperimentscanbe sensi-tiveto sub-MeVparticles,weconcentrate ontheone thatisable toconstraintheproductof gpge,namelytheLSNDexperimentat LosAlamos.Itsmeasurementoftheelasticelectron–neutrinocross section[11]isalsosensitivetolightscalarsthatinducee

γ

events dueto scattering on electrons. This analysishas previously been usedto constrain newvector particles producedin

π

0 decaysto dark sector states [27,28]. In our scenario, a scalar

φ

cannot be producedfrompseudoscalar

π

0decays.Instead,thedominant pro-cessis

π

− absorption via

π

p

n

φ

.The analogousSM process

π

p

n

γ

hasbranchingratio

35%[29],soweapproximatethe

φ

branchingas



2

×

35%.Takingthe

π

productionrateatLSND

toberoughly10%ofthe

π

+productionimplies

1022

π

forthe

exposure in [11].Assuming isotropic

φ

emission andthe scatter-ing crosssectioninEq.(5)with Q

mp

+

mn



mπ ,and implementingthecutsfromthisanalysis,weobtainaroughlyflat bound



2



10−8 form

φ

<

MeV as showninFig. 2.This

sensitiv-ityexceedseven theboundsfrom

(

g

2

)

e from[30],whichonly imply



2



10−7 over thismass range, assuming mass weighted couplings gp

= (

mp

/

me

)

ge;forge

=

gp,theboundsfrom

(

g

2

)

e arecomparabletothosesetbyLSND.

In the 100 keV–MeV mass window

φ

’s cannot be produced thermallyinthesolarinterior,butcanbe producedinnuclear re-actions. A particularly relevantprocess is p

+

d

3He

+ φ

(that accompanies thed

(

p

,

γ

)

3He reaction occurringforevery individ-ual pp eventofenergygeneration). If

φ

is sufficientlylonglived, andnotabsorbedinthesolarinterior,it willreachtheEarthand deposit5.5 MeVofenergyinBorexino.Theabsenceofsuchevents [9]setsanimportantconstraintonourmodel.

The solarflux of5.5 MeV

φ

particles at Borexino is approxi-matedusingthe pp-neutrinofluxvia

Φ

φ,solar





2PescPsurv

Φ

ppν

,

(13)

where

Φ

ppν

=

6

.

0

×

1010cm−2s−1 [9].The probability of

escap-ingthesunis Pesc

=

exp

(

R dr n

σ

eφ),theprobabilitythatthe scalar doesnot decaybetweenthe Sun andthe Earth is Psurv

=

exp

(

−

/

φ

)

, where



φ

=

Q c

/

Γ (φ

γ γ

)

is theboosted

de-cay length, and



is the Earth–Sun distance. The Borexino rate is

˙

Nφe

= Φ

φ,solarnB

σ

eφVB (14)

where n ,B are mean-solar andBorexino e− densities, VB is the Borexinovolume,andthecrosssectionoffelectronsisgivenin(6). ThecurrentlimitsonthisprocessareO

(

5

)

events[9]andthe con-straint is depicted by the oval region in Fig. 2. For



2



10−10, scattering off electrons prevents

φ

from leavingthe Sun andfor



2

 ×

10−12theproductionandscatteringareinsufficienttoyield anappreciablesignalatBorexino.

The constraints from thermal energy loss in red giants and white dwarfs follow the standard considerations. Calculating the thermal energy loss

g2

eexp

(

mφ/Tstar

)

and reinterpreting the axionconstraintsfrom[12],weexcludethe



250 keV

param-eterspaceforall



ofinterest.

To conclude, inthispaper we haveproposed a novel strategy to hunt forsub-MeV particles produced in underground acceler-ators andradioactivesources located 10–100 m away from large undergroundneutrinodetectors.Thisexperimentalprogramoffers unprecedented sensitivity to a variety of NP scenarios including thosethatresolvetherppuzzle.

Acknowledgements

We thank Drs.A.Arvanitaki, J.Beacom, andI.Yavinfor help-fulconversations.ThePerimeterInstituteforTheoreticalPhysicsis supportedby theGovernmentofCanadathroughIndustry Canada andbytheProvinceofOntario.

References

[1]R.Essig,J.A.Jaros,W.Wester,P.H.Adrian,S.Andreas,etal.,arXiv:1311.0029, 2013.

[2]P.J.Mohr, B.N. Taylor,D.B. Newell, Rev.Mod. Phys. 84 (2012) 1527, arXiv: 1203.5425.

[3]R.Pohl,A.Antognini,F.Nez,F.D.Amaro,F.Biraben,etal.,Nature466(2010) 213.

[4]A.Antognini,F.Nez,K.Schuhmann,F.D.Amaro,FrancoisBiraben,etal.,Science 339(2013)417.

(6)

[5]D.Tucker-Smith,I.Yavin,Phys.Rev.D83(2011)101702,arXiv:1011.4922. [6]V.Barger,C.-W.Chiang,W.-Y.Keung,D.Marfatia,Phys.Rev.Lett.106(2011)

153001,arXiv:1011.3519.

[7]B.Batell,D.McKeen,M.Pospelov,Phys.Rev.Lett.107(2011)011803,arXiv: 1103.0721.

[8]S.G.Karshenboim,D.McKeen,M.Pospelov,arXiv:1401.6154,2014.

[9]G.Bellini,etal.,BorexinoCollaboration,Phys.Rev.D85(2012)092003,arXiv: 1203.6258.

[10]J. Hosaka, et al., Super-Kamiokande Collaboration, Phys. Rev. D 73 (2006) 112001,arXiv:hep-ex/0508053.

[11]L.Auerbach,etal.,LSNDCollaboration,Phys.Rev.D63(2001)112001,arXiv: hep-ex/0101039.

[12]G.Raffelt,A.Weiss,Phys.Rev.D51(1995)1495,arXiv:hep-ph/9410205. [13]K.M.Nollett,G.Steigman,Phys.Rev.D89(2014)083508,arXiv:1312.5725. [14]S.Freedman,J.Napolitano,J.Camp,M.Kroupa,Phys.Rev.Lett.52(1984)240. [15]D.Kohler,B.Watson,J.Becker,Phys.Rev.Lett.33(1974)1628.

[16]D.Tilley,H.Weller,C.Cheves,Nucl.Phys.A564(1993)1. [17]K.A.Snover,A.E.Hurd,Phys.Rev.C67(2003)055801. [18]P.Cuzzocrea,etal.,Lett.NuovoCimento2 (28)(1980)515.

[19]C.Angulo,M.Arnould,M.Rayet,P.Descouvemont,D.Baye,etal.,Nucl.Phys.A 656(1999)3.

[20] M.Z.M.J.Berger,J.S.Coursey,J.Chang,http://physics.nist.gov/PhysRefData/Star/ Text/PSTAR.html,2009.

[21]C.Broggini,D.Bemmerer,A.Guglielmetti,R.Menegazzo,Annu.Rev.Nucl.Part. Sci.60(2010)53,arXiv:1010.4165.

[22] D.Montanari,BorexinoCollaboration,2009.

[23]A.Guglielmetti,LUNACollaboration,EPJWebConf.66(2014)07007. [24]P.R.Wrean,R.W.Kavanagh,Phys.Rev.C62(2000)055805.

[25]Y. Fukuda, et al., Super-KamiokandeCollaboration, Nucl. Instrum. Methods Phys.Res.,Sect.A,Accel.Spectrom.Detect.Assoc.Equip.501(2003)418. [26]G.Bellini,etal.,BorexinoCollaboration,J.HighEnergyPhys.1308(2013)038,

arXiv:1304.7721.

[27]B.Batell,M.Pospelov,A.Ritz,Phys.Rev.D80(2009)095024,arXiv:0906.5614. [28]P. deNiverville,M. Pospelov,A.Ritz,Phys. Rev.D84(2011) 075020,arXiv:

1107.4580.

[29]N.Samios,Phys.Rev.Lett.4(1960)470.

[30]G. Giudice, P. Paradisi,M. Passera, J. High Energy Phys. 1211 (2012) 113, arXiv:1208.6583.

Referenties

GERELATEERDE DOCUMENTEN

Resultaten 23 3.1 Gemeten fosfaatconcentraties in het bodemvocht 23 3.1.1 Project ‘Fosfaatverliezen op grasland’ 23 3.2 Water fluxen en balansen 26 3.2.1 Project ‘Fosfaatverliezen

stikstofbronnen en / of reageren ze op specifieke vormen van fosfaat. Verder is onbekend hoe snel ze zich ontwikkelen en wat de betekent van oude stabiele humus is voor deze

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

Initially designed for research in nuclear physics and fundamental interactions, the focus of the research at the facility has, in relation with the establishment of a clinical

A condition of environmental justice exists when environmental risks and hazards and investments and benefits are equally distributed with a lack of discrimination,

(2) Acceleration due to the development of high-inductive electric fields during and after the micropinch. The formation of these electric fields may be near the cathode, due to

This study compared Finnish, Dutch, and global course books for German as a foreign language and analyzed how much grammar was offered, how it was presented and

on balance, we are convinced that —notwithstanding such problems— the design experiment method has so far helped us to develop a theoretical basis for the design of a practical