• No results found

Smart Brines for minimal surface adsorption in polymer enhanced oil recovery

N/A
N/A
Protected

Academic year: 2021

Share "Smart Brines for minimal surface adsorption in polymer enhanced oil recovery"

Copied!
1
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

0 50 100 150 200 250 Time(min) 1mM 10mM 100mM pH 8 0 50 100 150 200 250 -20 -15 -10 -5 0 f/ 9 Time (min) 1mM 10 mM 100mM pH 6

SMART BRINES FOR MINIMAL SURFACE ADSORPTION IN POLYMER

ENHANCED OIL RECOVERY(EOR)

Materials Science and Technology of Polymers

1

, Physics of Complex Fluids

2

, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands,

DPI, PO BOX 902, 5600 AX Eindhoven, The Netherlands

3

Amrutha Mohan

1,2,3

, I. Siretanu

2

, F. Mugele

2

and G.J. Vancso

1

a.mohan@utwente.nl

PROBLEM STATEMENT

The polymer EOR utilizes high molecular weight polymers to improve the viscosity of the displacing aqueous phase. This polymer-brine solution has a better sweep efficiency than the normal brine solution. But the polymers get adsorbed on the rock surface. Polymer adsorption on the pore surface has a negative impact and therefore needs to be minimized. Here we are investigating polymer adsorption fundamentally through QCM.

CONCLUSIONS

Upon passing the polymer solution, the sensor undergoes frequency shift (∆f) and Dissipation shift (∆D) due to adsorption, density and viscosity effects.. Polymer studied: Flopaam (40 kDa , 2000 ppm solution)

Acknowledgement: The work of Mohan, A. forms part of the research

programme of DPI, Project 807.

The project is sponsored by

SNF and Shell Global Solutions International BV.

DPI, P.O. Box 902, 5600 AX Eindhoven, the Netherlands

The EOR polymers (Flopaam) used in the experiments are provided by SNF.

[1] Wang, L. et al, Colloids Surf. A 2016, 494, 30-38

[2] Hu et. Al. Energy Fuels2019,3,31,127-134

[3] Giannotti, M.I. et al, ChemPhysChem 2007,8,2290-2307

O NH2 n C CH CH2 O O- m C CH CH2

Some factors affecting adhesion:  Charge on the polymer

 Surface charge (charge on the clays)  Ions present in the brine

 pH of the solution

Chemical formula of Flopaam: Random copolymer of Polyacrylamide (70%) (the left,n) and polyacrylic acid (30%) (the right,m)

Polymer Flooding Water Flooding

QCM-D

Topographical features of silica and alumina and their corresponding height profiles[1]

SUBSTRATES

SALTS (1,10,100 mM)

 NaCl

 CaCl2.2H2O

pH : 6 and 8

DI WATER SALT SOLUTION SALT + HPAM SALT SOLUTION DI WATER

A B C D E FLOW DIRECTION DISSIPATION FREQUENCY SHIFT

ANALYSIS

Assumptions:

• The system is very dilute the bulk properties of polymer solution≈the bulk properties of salt solution

• Newtonian fluid

• The adsorbed film is rigid and uniform

The frequency shift due to bulk can be calculated using modified Sauerbrey equation[2]

0 0 100 200 300 -30 -25 -20 -15 -10 -5 0 5f/n, D x10 6 Time 5 7 9

• Subtract the bulk shift obtained from salt flush

• average the frequency shifts (diff overtones) • Apply Sauerbrey (if the

deviation is < 5Hz) Apply Sauerbrey to extract mass adsorbed Where C= 17.7 ng/cm2 Hz SAUERBREY EQUATION Polymer Salt DI 0 50 100 150 200 250 300 mass adsor bed (ng/ cm 2 )

Monovalent salt (NaCl) on Alumina

Flush Regime 1mM (6) 1mM (8) 10mM (6) 10mM (8) 100mM (6) 100mM (8) Polymer Salt DI 0 100 200 300 400 500 600 700 800 mass adsor bed ng/ cm 2 )

Divalent salt (CaCl2) on Alumina

Flush Regime 1mM (6) 1mM (8) 10mM (6) 10mM (8) 100mM (6) 100mM (8) Polymer Salt DI 0 50 100 150 200 Flush Regime 1mM (6) 1mM (8) 10mM (6) 10mM (8) 100mM (6) 100mM (8)

Monovalent salt (NaCl) on Silica

Mass ad so rb ed * ( ng /cm 2 ) Polymer Salt DI 0 100 200 300 400 500 600 700 800 mass absor bed * ( ng/ cm 2 )

Divalent salt (CaCl2) on Silica

Flush Regime 1mM (6) 1mM (8) 10mM (6) 10mM (8) 100mM (6) 100mM (8) 0 50 100 150 200 250 300 -10 -8 -6 -4 -2 0 f/ 9 Time(min) 1mM 10mM 100 mM pH 6 0 50 100 150 200 250 300 Time (min) 1mM 10 mM 100 mM pH 8 0 50 100 150 200 250 300 350 400 -40 -30 -20 -10 0 f/ 9 Time (min) 1mM 10 mM 100 mM pH 6 0 50 100 150 200 250 300 350 400 450 1mM 10mM 100mM Time(min) pH 8

ALUMINA

SILICA

0 50 100 150 200 250 -50 -40 -30 -20 -10 0 f/ 9 Time(min) 1mM 10mM 100mM 0 50 100 150 200 250 300 Time (min) 1mM Ca 10mM Ca 100mM Ca

NaCl

CaCl

2

.H

2

O

CaCl

2

.H

2

O

NaCl

 Immediate adsorption of polymers upon injection

More adsorption in the presence of Ca2+ ions and pH 8.

 Adsorption mechanism can be a combination of ligand

exchange and cation bridging .

 Adsorption has kinetics and needs to be probed*

 More adsorption in the presence of Ca2+ ions and pH 8.

 Adsorption mechanism is mainly via cation bridging .

The adsorption mechanism differs on alumina and silica

For alumina and silica in presence of monovalent salts, there is

no pH dependence for adsorption.

Ca

2+

(divalent) ions and pH 8 combination lead to

increased adsorption of Flopaam on both silica

and alumina !!

Referenties

GERELATEERDE DOCUMENTEN

Nearly each and every functional initiator or functional group at the polymer chain end resulted in enhanced polymer/filler interaction and reduced compound hysteresis,

Op basis van al deze kenmerken, die ook werden vastgesteld bij het materiaal dat de campagnes van 2004 en 2005 opleverde, kan de lithische industrie volledig worden

Tijdens het onderzoek werden in totaal 107 fragmenten aardewerk verzameld: 102 fragmenten handgevormd aardewerk, en 5 fragmenten uit de late middeleeuwen tot Nieuwe

jaarlijks vrijkomende hoeveelheid bouw- en sloopafval in Noord- Brabant volgens eerdere ei j fers uit 1984 ( 1 ) met een aantal an- dere provincies, door toepassing

However, dealing with non-equilibrium physics of the &#34;maximally&#34; entangled matter described by large N CFT’s and holographic strange metals one expects the

for ⌬ ␴ given in Eq.. It is interesting to compare this expression to previous results obtained in the limit of large polymer length. 共5.17兲 For ␧⫽0, the ground state

De Wintervergadering die eerder stond aangekondigd voor 17 januari gaat niet door.. Omdat