• No results found

The modal analysis of a RT-robot by using white noise signals

N/A
N/A
Protected

Academic year: 2021

Share "The modal analysis of a RT-robot by using white noise signals"

Copied!
152
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The modal analysis of a RT-robot by using white noise signals

Citation for published version (APA):

Elfving, J. (1989). The modal analysis of a RT-robot by using white noise signals. (TH Eindhoven. Afd. Werktuigbouwkunde, Vakgroep Produktietechnologie : WPB; Vol. WPA0779). Technische Universiteit Eindhoven.

Document status and date: Published: 01/01/1989 Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne Take down policy

If you believe that this document breaches copyright please contact us at: openaccess@tue.nl

providing details and we will investigate your claim.

(2)

THE MODAL ANALYSIS OF ART-ROBOT BY USING WHITE NOISE SIGNALS By: Jyrki Elfving

Teknillinen Korkeakoulu

(3)

UNIVERSITY OF TECHNOLOGY EINDHOVEN Faculty of Mechanical Engineering Group iPA 15 June 1989 Research project Professor Coach Subject General view

: J.O.G.

Elfving (University of Helsinki)

Prof.dr.ir. J.E. Rooda Ir. P.C. Mulders

Modal Analysis of a RT-(rotation/translation) robot.

In the laboratory of control technology is built a RT-(rotation/translation) robot with a force sensor. This robot should be completed with an optimal flexible controller.

In order to construct this controller it is necessary to have good knowledge of the model i.e. the mechanical structure of this robot.

Project

Perform a modal analysis of this RT-robot by using white noise signals. Analyse in this way the structure of the linear arm as well as the rotation-module as well as the complete RT-robot.

(4)

THANKS

I want to thank my coach Ir P. Mulders for his kindness and good guiding in my work.

I also want to thank all those people who worked in the same lab and welcomed me into their group. I want to express my special thanks for perfect co-operation to Wilburt Bax with whom I did the measurement project.

I also want to thank people from IRCE and the staff of the international relations/external training projects for good organizing of practical things.

EINDHOVEN, July 1989

(5)

CONTENTS

1. SUMMARY 1

2. THE WORK ENVIRONMENT 2

2.1 Eindhoven University of Technology 2

2.2 Mechanical engineering department . . . • • . 2

2.3 Flair project 2

2.4 My traineeship project . . . • • 3 2.5 Engineering education in the Netherlands .. 3 3. THE STRUCTURE OF ROBOT AND HARDWARE . . . • . . . 3 3.1 General notes . . . • . . . . 3 3.2 The iSBC (86/05) control unit . . . • 4

3.3 The power servo amplifier 5

3.4 Specification of the mechanical parts

of the r o b o t . . . 6

3.5 The linear robot arm 6

3.6 The rotation module 6

3.7 The basic idea of this robot 7

4. MEASUREMENT DEVICE • . . • . . . • • . . . 7 5. RECORDED MEASUREMENTS . • . . . 7 5 .1 Measurement . • . . . 8 5.2 Averages 8 5 . 3 Sign a 1 8 5.4 Trigger 8 5.5 Measuring area 8 5.6 Coherence function 8

5.7 Transfer function in other forms 9

6. CONCLUSIONS AND RESULTS OF MEASUREMENTS 9

APPENDIX A: The structure of robot APPENDIX B: Recorded measurements APPENDIX C: Bibliography

(6)

1. SUMMARY

The eigenfrequencies of the both modules of translation-rotation robot has been measured with Hewlett Packard 5423A Structural Dynamics Analyzer. The robot was measured in two

conditions and in three position each. The different

positions gave very similar results whereas those two

conditions gave compeletely different results.

The reliability which was indicated by coherence function was generally very good. In some frequency areas and in certain loads and positions the amplifier gave external disturbances. It may be good idea to make a check out measurements with full load. Also the effect of control unit to the system is still unknown.

Some of the screws got loose during the measuring. We found no other reason than dense vibration for that.

(7)

2. THE WORK ENVIRONMENT

2.1 Eindhoven University of technology Technische Universiteit

listed below (number students) :

Eindhoven (TUE) has nine departments

in brackets shows the number of

- Technology in its social application (60)

Industrial engineering and science management (1150) - Mathematics (360) - Computer science (438) - Technical physics (529) - Mechanical engineering (872) - Electrical engineering (1083) - Chemical engineering (656)

- Architecture, structural eng. and urban planning (716) TUE has given 9000 diplomas since opening in 1956. The percentage of female students is 7.

2.2 The mechanical engineering department

Design and production are the two main groups into which the mechanical engineers are divided. The nature of the tasks varies from scientific research and development, to industri-al organisation. To specialize in their studies students participate in the work done by their departement in its four divisions:

- Fundamentals of mechanical engineering - Product design and development

- Design for industrial processing

- Production engineering and production automation (WPA)

2.3 The FLAIR project (FLexible Automation and Industrial Robots)

The research project FLAIR is financed and directed by the Dutch government. Its aim is to get some experience in flexible automation and industrial robot systems. The mecha-nical and electrical department of the University are invol-ved in this project as well as several private firms.

The project is divided into five parts: - The general aspects of automation - The handling of parts

- Kinematics and dynamics of mechanical structures

- The drive systems, the control systems and applications of the systems

- The arc-welding and sensory systems

(8)

2.4 My traineeship project In view

has been position ture.

of flexible automation, an one axis linear robot arm designed at the university to get some experience in control, arc-welding, on a simple mechanical

struc-According to this aim, my work was to make the model analysis of this robot with Wilburt Bax. The results of our analysis will be later used as a basis for the control algorythm. The dynamics of the robot was also calculated by hand and our task was also to check the accuracy of these calculations.

2.5 The engineering education in the Netherlands

There are three universities which award the engineering degree in the Netherlands. The oldest one is located in Delft (1842). The second one is located in Eindhoven (1956) and the most recent one is in Twente (1961). The total amount of students in these universitys is about 20000. TUD has about 10000 students, TUE has about 5000 and TUT has also 5000.

The full university education in the Netherlands used to take at least 5 years. During this old system there was no time limit to complete one's studies in university. Since 1982 a new act concerning the structure of university education took office. This act specifies both the duration of a course and the period of time permitted for its completion.

The new system divides the study into two phases:

1) The first phase has a duration of 4 years and comprises two examinations: the first or preliminary "propadeutisch" examination at the end of first year and the second or "doctoraal" in the end of fourth year. Students can use two extra years to complete the first phase which has to be finished at the end of these six years.

3. THE STRUCTURE OF ROBOT AND HARDWARE

3.1 General notes

The robot can be divided into three separate units: 1) con-trol unit, 2) amplifier and 3) mechanical unit. Because the control algorythm was not ready and the control unit was not completely connected to the robot we had to expect that the control unit is an ideal component. Possible future adjuste-ments and measureadjuste-ments of control/robot interface must be done after completing the control. The amplifier and mecha-nical unit together make an unsplitable controlable unit and in measurements they were measured together.

(9)

3.2 The iSBC 86/05 control unit

The Intel iSBC 86/05 Intel Single Board Computer is a comple-te 16-bit compucomple-ter syscomple-tem on a single princomple-ted circuit assem-bly. It is a member of Intel's large family of Single Board Computers and provides an economical self-contained computer based solution for applications in the area of process con-trol.

The central processor is an Intel 8086-2 microprocessor whose clock is selectable to 5 or 8 MHz. This single board computer includes 8 Kbytes of static RAM, up to 64 Kbytes of ROM, 3 parallel I/O ports, a serial communication interface, 3 timers, an interrupt controller and two iSBX connectors. The 8087 numeric processor can be plugged on the host board to perform real arithmetic and numerous built-in functions such as log, tangent, etc.

ISBC Block Diagram

• 7

~I~

....11IIO-.r

--

...

:[1>-.

r---

s

%---

~--:t , I I . . .·IU. .• _ , I _11IIO-.r 'IIIOOuU~' • COtdltc:rOll COtdltCTOti I I ,

L;-r'

~---

--,

~----.:

...'...

-r===--,..--~

--

1 - - - ' UTili. WUWt.. I

-r--~'7...,

...--...I-_.r...,1

r--...:Io~~}

....

••no_

...

,.Ina_ '

: .-.c_

I

• II ••' " , I. .t .A ... UICAl _ _ "'1&

....-=-

_ft'I

...

I

::0:':.

I

,

~

,

,

...

'

..__~ J

--

...

c.u • INCDT ,

·

,

--

. .,,,

,

I • " - : 1 - I L. ~ .J

--",

_NLUTlIl _IIUAC.

.

.,

...

v

ISBC .18105 Block Diagram

(10)

3.3 The Power servo amplifier

Axodyn power servo amplifiers series 05 LV comprise continu-ously operating transistored amplifiers. The amplifier is a multi-stage design for linearity and gain control. The output current and the output voltage are optimally controlled through the power stage in a parallel process.

The power section of the 05 LV comprises driver and power stages. Each transistor is provided with its own emitter resistance to improve current distribution and the symmetri-cal arrangement allows the unlimited four quadrants operati-ons.

This device includes also a speed regulator which is a tacho control, but it isn't used in this application.

AMPLIFIER - UQ ~---+_--__l.._----+_---___4~---,O

r----.----1Il---...

---.----o

+

Un

V control + V control 5

(11)

3.4 Specification of the mechanical parts of the robot

When this robot was constructed the following specifications were settled: a) Linear module: maximum strike maximum speed maximum acceleration maximum load accuracy b) Rotation module:

maximum rotation angle maximum rotation speed

maximum rotation acceleration accuracy

minimum height of module

same motor than in linear module

3.5 The linear robot arm

0.635

m

1 mls 10

mls

50 kg 0.01

mm

rad 12 radls 12 radls 3.1E-4

This kind of design is commonly used in machine-tools: the DC servo-motor drives the carriage by means of a coupling and a spindle. The behaviour of such a freedrive is simple but tendency in machine-tools to higher accuracy and speed requi-res sophisticated technology to drive this system. The motor is controlled in a closed-loop system by means of an analog servo power supply and a tachometer. The robot arm is treated as a load disturbance acting on the motor's shaft.

In addition to the drive system, the linear robot arm con-sists of:

- a home made force sensor mounted on the extremity of the arm

- one Hall effect switch at each end of the arm to prevent the robot of damages

- an incremental linear transducer to measure the position and the velocity

3.6 The rotation module

The rotation module consists of motor and four step transmis-sion gear which make the rotation plate to rotate. To avoid the play in the gear they have been pre loaded by torsional springs. The rotation module has threat bearings which are very stiff in radial direction. The measuring device for the module is an incremental sensor with optical scanning head.

(12)

3.7 The basic idea of this robot

The mechanical part of the robot has two modules: rotation module and linear module. So this robot has only two degrees of freedom whereas the commercial ones have usually 5-6 degrees of freedom at minimum. The idea of this robot is to learn to build robots from completely independent modules. This structure of independent modules is characteristic also

to the control unit, amplifier and software. In other words, if one module will be removed/added also software and hardwa-re for that module in the control unit can be removed/added without other adjustements. Also new modules to the amplifier can be removed/added freely.

4. MEASUREMENT DEVICE

a) Accelerometer

The sensor used in our measurements was an accelerometer type 4381 from Bruel

&

Kjaer. It's typical undamped natural fre-quency is 25 Hz. Because the technical vibrations are in frequency area 0-100 Hz this kind of device is most suitable for our purposes. The accelerometer is made from titanium, welded and sealed and it's construction is Delta shear. The pietzoelectric material is PZ23. A thin film of oil or grease is also used to achieve a good contact between accelerometer and robot and also to improve mounting stiffness.

The charge signal from accelerometer was amplified with KIAG SWISS charge amplifier to make it suitable for further analy-sis.

b) Hewlett Packard 5423A

The measurement and analysis device was Hewlett Packard's Structural Dynamics analyzer 5423A. It consists of display unit, analyser itself, 54470B digital filter and 54410A analog/digital converter. The analyzer is a two-channel Fast-Fourier-Transform based signal Analyzer which is designed primarily for the measurement and analysis of the dynamic characteristics of mechanical structures. With i t you can measure transfer functions or power spectra from a vibrating structure, and observe the animated mode shapes of structure on the display.

(13)

5. RECORDED MEASUREMENTS

Measurements were made in two vibrating conditions with three linear positions each:

rotation module vibrating linear module in the middle

linear module in the other end; motor close to the centrum

linear module in the other end; motor far from the centrum

linear module vibrating

linear module in the middle

linear module in the other end; motor close to the centrum

linear module in the other end; motor far from the centrum

The accelerometer was mounted to the end of the linear arm. The parameters and the functions used in our measurements were the following:

5.1 Measurements

The main purpose of our measurements was naturally to define the transfer function of the entity of amplifier and mechani-cal unit of robot. The transfer function is basis for the control algorythm and especially the peak frequencys must be avoided in practical application because there has the robot also resonance peaks.

5.2 Averages

The number of averages shows how many times one vibrating condition has been measured and the final result is average of these measurements. Usually fifty averages were enough to reach stability.

5.3 Signal

This parameter indicates the signal type. In our measurements is used pseudo-random signal which is most suitable for this kind of measurement. The measurement device itself gives pseudo-random signal so there is no need for extra device set-up for noise resource.

(14)

5.4 Trigger

The trigger parameter indicates the type of triggering mecha-nism for averages. Free run means that measuring device takes averages as quickly as machine can procedure.

5.5 Measuring area

Parameters CENT FREQ, BANDWITH and TIME LENGT define the measuring area.

5.6 Coherence function

Coherence function indicates the reliability of the measure-ment. The coherence function is between 1.0 and 0.0. The closer the coherence function is to 1.0 the better is relia-bility of the transfer function. The closer the coherence function is to 0.0 the more there is external disturbances (in our application they corne mainly from amplifier). In practice coherence of 0.7 is sufficient.

5.7 Transfer function in other forms

Use of other variables than Mag/Hz indicates the resonance peaks very clear. We have used in our measurements variables Phase/Hz and Imag/Real. In Phase/Hz form the resonances can be seen as a straight lines crossing the whole phase scaling and in Imag/Real form resonance peaks can be seen as a ap-proximately circle shapes. The size of circle also indicates the importance of resonance.

6 CONCLUSIONS AND RESULTS OF MEASUREMENTS

After analysing the recorded measurements in the way which is explained above following results can be seen:

I

Vibrating: motor in the rotation module Position of linear arm: in the middle Number of dominating vibrations: 1

Frequencys of dominating vibrations: 13.4 Hz Number of secondary vibrations: 2

Frequencys of secondary vibrations: 1) 112.8 Hz 2) 161.3 Hz

(15)

Number of minor vibrations: 4

Frequencys of minor vibrations: 1) 287 Hz 2) 347 Hz 3) 411 Hz 4) 448 Hz

Frequency area to avoid: from 5 Hz to 23 Hz

Recommended frequency area: from 0 Hz to 5 Hz and from 23 Hz to 110 Hz

I I

Vibrating: motor in the rotation module

Position of linear arm: the other end; motor far from the central axel

Number of dominating vibrations: 1

Frequencys of dominating vibrations: 10.9 Hz Number of secondary vibrations: 4

Frequencys of sec. vibrations: 1) 37 Hz 2) 110 Hz 3) 198 Hz 4) 337 Hz

Number of minor vibrations: 3

Frequencys of minor vibrations: 1) 86 Hz 2) 277 Hz 3) 521 Hz

Frequency area to avoid: from 5 Hz to 20 Hz

Recommended frequency area: from 0 Hz to 5 Hz and from 20 Hz to 80 Hz

I I I

Vibrating: motor in the rotation module

Position of linear arm: the other end; motor close to the central axel

Number of dominating vibrations: 1

Frequencys of dominating vibrations: 11.6 Hz Number of secondary vibrations: 2

Frequencys of secondary vibrations: 1) 90.5 Hz 2) 121.8 Hz

Number of minor vibrations:2

Frequencys of minor vibrations: 1) 366.0 Hz 2) 515.9 Hz

Frequency area to avoid: from 3 Hz to 25 Hz

Recommended frequency area: from 0 to 3 Hz and from 25 Hz to higher

IV

Vibrating: motor in the linear arm Position of linear arm: in the middle Number of dominating vibrations: 2

Frequencys of dominating vibrations: 1) 100 Hz 2) 148 Hz

Number of secondary vibrations: 1

Frequencys of secondary vibrations: 117 ~

(16)

Number of minor vibrations: 4

Frequencys of minor vibrations: 1) 35 Hz 2) 250 Hz 3) 290 Hz 4) 550 Hz

Frequency area to avoid: from 75 Hz to higher Recommended frequency area: from 0 Hz to 75 Hz

v

Vibrating: motor in the linear arm

Position of linear arm: the other end; motor far from central axel

Number of dominating vibrations: 2

Frequencys of dominating vibrations: 1) 98 Hz 2) 138 Hz Number of secondary vibrations: 1

Frequencys of secondary vibrations: 25 Hz

Number of minor vibrations: 4

Frequencys of minor vibrations: 1) 250 Hz 2) 310 Hz 3) 520 Hz 4) 580 Hz

Frequency area to avoid: from 75 Hz to higher Recommended frequency area: from 0 Hz to 75 H

VI

Vibrating: motor in the linear arm

Position of linear arm: the other end; motor close to the central axel

Number of dominating vibrations: 2

Frequencys of dominating vibrations: 1) 95 Hz 2) 118 Hz

Number of secondary vibrations: 1

Frequencys of secondary vibrations: 60 Hz

Number of minor vibrations: 1

Frequencys of minor vibrations: 530 Hz

Frequency area to avoid: from 100 Hz to higher Recommended frequency area: from 0 Hz to 100 Hz

The frequency areas in rotation module are quite clear. There is two low-vibration areas which are accessable. The lower frequency area starts from 0 Hz and ends to 2-3 Hz. The higher frequency area starts from 25 Hz and ends to 80 Hz The frequency areas in practical applications are not so clear at all in translation module. Vibration is very small close to 0 Hz and i t grows rapidly towards to 100 Hz which is usually considered as a limit for mechanical applications. The resonances can be considered as tolerable anyway if the

frequency is smaller than 75 Hz.

(17)
(18)
(19)

43 54 53 48 47

(20)
(21)

Nr. Translatiemodule 49. Steun (12*) 50. Beschermkap 51. Keetkop 52. Bevestigingsplaat meetkop 53. Hall-effect scbakel~ar (2*) 54. Eindpositieoever (magneet; 2*) 55. Aanslao eindschakelaar (2*) 73. Motorstoel 74. Koppeling 75. Meetlineaal 76. Meetkop 77. Bevestigingsplaat meetkop 78_ Klemplaat aeetkop 79. Hall-effect scbakelaar (2*) 80. Eindpositiegever (aagneet; 2*) 81. Eindschakelaar (aicroswitch) 82. Bevestigingsplaat eindschakelaar 83. Aanslag eindscbakelaar (2*) 56. Armprohel 57. Spindel (spoed: 25 mm.) 58. Kooelomloopmoer 59. Lagerhuis 60. Grondplaat 61. Achterste kopplaat 62. Voorste kopplaat 63. Hoekcontactlager (2*) 64. Hoekcontactlager (2*) 65. Lagerspanplaat 66. Schotelveer 67. Bevestigingsplaat last 68. Steun kogelomloopmoer 69. Rolblok 70. Trekspie 71. Geleidingsprofiel 72. Gelijkstroommotor met tachogenerator Nr. Rotatiemodule

1. Draaitafelhuis met onderplaat

2. Draaiplateau 3. Gelijkstroommotor met tachogenerator 4. Tandkrans (tandwiel 4; z=136) 5. Draadlager 6. Bovenste lageiring 7. Onderste lagerring 8. Versteviging (T-profieli 2*) 9. Afdichtingsring 10. Tussenplaat 11. Tussenplaat 12. Tussenplaat 13. Bovenplaat 14. Topplaat 15. Kontageflens 16. montagedeksel 17. Afstandblok (15*) 18. As (as 3.> 19. Gedeeld tandwiel (tandwiel 3.2; z=23) 20. Tussenbus (bus 3.) 21. Torsieveer (torsieveer 3.) 22. Gedeeld tandwiel (tandwiel 3.1; z=83) 23. Hoekcontactlager (2*)

[ - boven: lager 3.2.]- onder: lager 3.1. 24. As met ronsel (as 2. en tandwiel 2.2; z=23) 25. Contraschijf (contraschijf 2.) 26. Tussenbus (bus 2.) 27. Torsieveer (torsieveer 2.) 28. Gedeeld tandwiel (tandwiel 2.1; z=83) 29. Hoekcontactlager (2*)

[ - boven: lager 2.2.]- onder: lager 2.1. 30. As met ronsel (as 1. en tandwiel 1.1; z=21) 31. Contraschijf (contraschijf 1.) 32. Tussenbus (bus 1.) 33. Torsieveer (torsieveer 1.) 34. Gedeeld tandwiel (tandwiel 2.2; z=45) 35. Hoekcontactlager (2*)

[ - boven: lager 1.2.]- onder: lager 1.1. 36. Ronsel (tandwiel 0; z=21) 37. Lagerhuis met afdichting

38. Lagerhuis met afdichting

r----1t---1 39. Lagerhuis met afdichting

40. Lagerdeksel met afdichting

41. Lagerdeksel met afdichting

42. Lagerdeksel met afdichting

43. Hoekmeetsysteem

44. Ring voor aeetband

45. Pulsgever

46. Koppeling

47. Eindschakelaar (microswitcb) 48. Bevestigingsplaat

eindschakelaar

(22)

Vibrating: motor in the rotation module Position of linear arm: in the middle

(23)

MEASUREMENT STATE • STABLE

._---

- ----~.-

--',

TRANSFER FUNCTION TRIGGER: MEASUREMENT : AVERAGE: SIGNAL:

75

RANDOM I FREE RUN • CHNL 1

!

L . . - - - ~

0.0

HZ IJ.F : CENT FREQ : BANDWIDTH: TIME LENGTH :

800.000

HZ

320.000

mS IJ.T :

3.12500

HZ

312.500 /AS

CHAN # 1

*

2

RANGE AC/DC

10

V AC

1 V

AC DELAY

-0.0

S

0.0 S

CAL (EU/V)

1.00000

H4.000

(24)

TRANS

RI:

1 fA: 75

20.000

MAG

0.0

fA: 75 2

RI:

MAG

0.0

COHER

900.00

m

0.0

HZ

800. 0

(25)

IA: 75 1 RI:

TRANS

1BO. 00

r , = ;

-BOO. 0 0.0

PHASE

-1BO. 00 ~---r----...pLL ..L._---._

_---.-1

---'Ir--~

-

-r---- -

- , - - - i HZ

TRANS

RI: 1 IA: 75

15.000

IMAG

-15.000

(26)

FREQUENCY AND DAMPING

F R E QUE N C Y

DAM PIN G

r ---

--

---MODEl

NO.

I

HZ

R/S

HZ

R/S

I

*

1

19.121

!

120.138

33.133

6.714

42.188

2

112.786

708.527

4.290

4.842

30.422

3

181.274

1.013 K

4.158

8.708

42.149

4

288.845

1.801 K

2.007

5.754

36.150

5

346.926

2.180 K

1.841

6.3B7

40.12B

(27)

FREQUENCY AND DAMPING

F R E QUE NC Y

DAM PIN G

MODEl

NO.

!

HZ

R/S

I ·

HZ

R/S

I

~-_.--- _~_ _~ ._ _ _ _ _ 4 -I I

161.274

I

!

I

3

1.013

K

I

4.156

i

6.708,

42.149

I

I I I t

4

286.645

1.801

K

I

2.007

I

5. 754

i

36.150

i I

5

346.926

2.180

K

i

1.841

1

6. 387

l

40.128

i

6

410.472

2.579

KI

1.666

I

BoB3Bi

42.964

*

7

447.546

2.812

KI

1.4341

6.420

40.338

(28)

1..--- . _.._ _ MEASUREMENT : AVERAGE: SIGNAL: TRIGGER: MEASUREMENT STATE TRANSFER FUNCTION 75 • STABLE RANOOM FREE RUN • CHNL 1

-

--

-

--

- -

-

~

CENT FREQ : BANDWIDTH: TIME LENGTH :

0.0 HZ

400.000 HZ

640.000

mS ~F : ~T :

625.000

pS

CHAN # 1

*

2

RANGE

10

V

1 V

AC/DC AC AC DELAY

0.0

S

0.0 S

CAL (EU/V)

1.00000

114.000

(29)

TRANS

20.000

Rf: 3 fA: 75 MAG

0.0

COHER

0.0

Rf: 4 HZ fA: 75

400. 0

900.00

m MAG

0.0

0.0

HZ

400. 0

(30)

fA: 75 3 RI:

PHASE

TRANS

180.00

-180.00

-+---...,...---..---...----,.1L-L-IL---.:.--,.--.lL----,-.---,---r

0.0

HZ

400. 0

TRANS

20.000

IMAG

-20.000

Rf:

a

fA: 75

-BO.OOO

REAL

60.000

(31)

FREQUENCY AND DAMPING

----

---_._----F R E QUE N C Y

DAM PIN G

-r---

---I--MODE

NO. ,

HZ

R/S

%

HZ

i

R/S

I

I

1

16.079

I

I

1 I

101.028

36.280

6.2601

39.333

2

I

I I

113.785

714.934

2.997

3.4121

21.437

I

!

3

160.293

1.007 K

2. 206

1

3.5381

22.228

I

4

I

287.135

1.804 K

1.897

I

5.447

34.223

I

5

344.892

2.167 K

2.026

B.9BB

43.909

(32)

MEASUREMENT STATE

----

- .---

._---

_

.._--_..

_----MEASUREMENT : - -

TRAN~ER-FUN~TION---

- - - --

---I

AVERAGE : 7 5 . STABLE SIGNAL: TRIGGER: RANDOM FREE RUN • CHNL 1

1....---I

_._~

CENT FREQ : BANDWIDTH: TIME LENGTH :

-- - -_._-- - ._- .-- ---:;-l

0.0 HZ

AF :

185.312 mHZ

I

50.0000 HZ

J

5.12000

S AT :

5.00000

mS

---CHAN'

*

1

*

2 RANGE AC/DC

10

V AC

2.5 V

AC DELAY

0.0

S

0.0

S CAL (EU/V)

1.00000

114.000

(33)

TRANS

RI:

5 IA: 75

25.000

MAG

0.0

COHER

900.00

m

MAG

RI:

6 IA: 75

0.0

0.0

HZ

50.0

a

(34)

fA: 75 5

RI:

TRANS

180.00-,- ...,... ----,

PHASE

50.0

a

HZ 0.0 -180. 00 ~-___,-~1.r_-__r--.__-~-____r--_r_-__r_-~-____I fA: 75 5

Rf:

TRANS

2 5 . 0 0 0 . . . - - - _ - - - .

IMAG

-25.000 ----~--~--~--~--~--__r_--~---J

(35)

FREQUENCY AND DAMPING

F REG UE NC Y

DAM PIN G

MODE

NO.

HZ

R/S

s

HZ

-

R/S

I

1

I

13.416

84.294

30.411

4.283

26.910

I

(36)

MEASUREMENT STATE

MEASUREMENT :

TRANSFER FUNCTION

AVERAGE:

75

• STABLE

SIGNAL:

RANDOM

_____J

TRIGGER:

FREE RUN

• CHNL 1

CENT FREQ :

BANDWIDTH:

TIME LENGTH :

75.0000

HZ

50.0000

HZ

5.12000 S

AF :

AT :

195.312

mHZ

10.0000

mS

CHAN

f

*

1

*

2

RANGE

AC/DC

10

V

AC

2.5

V

AC

DELAY

0.0 S

0.0 S

CAL (EU/V)

1.00000

114.000

(37)

TRANS

5.0000

RI:

7

IA:

75

MAG

0.0

55.000

HZ

100. 0

COHER

RI:

8

IA:

75

700.00_

~~

A

m

rJ~

~ ~

~

~

-"-tV

~

~ I~

-V

V

I

-MAG

-0.0

I I I I I HZ I I I

100.00

(38)

fA: 75 7

Rf:

TRANS

180.00--.--

---,

PHASE

55.000

100. 0

TRANS

4.0000

IMAG

-4.0000

Rf:

7 fA: 75

-10.000

REAL

10.000

(39)

• STABLE MEASUREMENT : AVERAGE: SIGNAL: TRIGGER: MEASUREMENT STATE TRANSFER FUNCTION

100

RANDOM FREE RUN • CHNL 1 CENT FREQ : BANDWIDTH: TIME LENGTH :

150.000 HZ

100.000 HZ

2.56000

S AF : AT :

390.625 mHZ

5.00000

mS CHAN f 1

*

2

RANGE AC/DC

10

V AC

2.5 V

AC DELAY

0.0 S

0.0

S

CAL (EU/V)

1.00000

114.000

(40)

TRANS 7.0000 MAG 0.0 fA: 100 110.00 HZ 200. 0 fA: 100

COHER

700.00~---,---,

m

MAG 0.0 110.00 HZ 200. 0

(41)

fA:

100

TRANS

180.00...,...

-,

PHASE

-180.00

- J - - - - r - - o r - - - - , - - - - . . . , - - r---...,....----,---,.--..--Il..---t

TRANS

6.0000

IMAG

-6.0000

fA:

100

-20.000

REAL

20.000

(42)

FREQUENCY AND DAMPING

F R E QUE NC Y

DAM PIN G

!

MODE \

NO.

I HZ

R/S

s

HZ

R/S

I I

1

115.507

725.750

2.072

2.393

15.038

2

158.531

996.080

4.482

7.113

44.890

(43)

MEASUREMENT : MEASUREMENT STATE TRANSFER FUNCTION RANDOM FREE RUN • CHNL 1 AVERAGE: SIGNAL: TRIGGER:

75

• STABLE

CENT FREQ :

aoo.ooo

HZ AF :

781.250

mHZ BANDWIDTH:

200.000

HZ I

_~:~ooo~

TIME LENGTH :

1.28000

S AT : CHAN f 1

*

2

RANGE AC/DC

10 V

AC

1 V

AC DELAY

0.0 S

0.0 S

CAL (EU/V)

1.00000

114.000

(44)

TRANS

3.5000

MAG

0.0

Rf: 11

220.00

HZ fA: 75

400. 0

fA: 75 Rf: 12 MAG

COHER

900.00 __

- - - , r - - - - l

m

0.0

400. 0

(45)

IA: 75

RI:

11

PHASE

TRANS

180. 00

--,----I""I"iT::-:-:.-;~---____:_---__,

-180. 00

-l...!~~....lL...L...l.;L!--~---:L.,--~_---r----lL---..,.----_-.--_---.-_~

220.00

HZ

400. 0

TRANS

3.0000

IMAG

-3.0000

RI:

11

fA: 75

-10.000

REAL

10.000

(46)

FREQUENCY AND DAMPING

- -

--

...

_----

---

---F REG U E NC Y

- - - ---

DAM PIN G

--- _...---_._-

---MODE

NO.

-

HZ

R/S

s

HZ

R/S

1

285.603

1. 784

K

1.880

I

5.388,

33.824

2

342.070

2.148

K 8. 714 1

42.185

1.

962

1

2.458

KI

3

381.181

1.588

I

8. 250

1

38.272

I

II I

I

I

(47)

MEASUREMENT STATE

I

MEA~~;EMENT

:

TRANSFER FUNCTION

AVERAGE:

75

• STABLE

J

SIGNAL:

RANDOM

,I

I

TRIGGER:

FREE RUN

• CHNL 1

_~J

I

CENT FREQ :

500.000 HZ

AF :

781.250 mHZ

,

BANDWIDTH:

200.000 HZ

2.50~~J

TIME LENGTH :

1.28000 S

AT :

CHAN'

1

*

2

RANGE

AC/DC

10

V

AC

1 V

AC

DELAY

0.0 S

0.0 S

CAL (EU/V)

1.00000

114.000

(48)

fA:. 75 Rf: 13 TRANS 1 . 6 0 0 0 - - 1 ' 1 : ' " - - - , MAG 0.0

COHER

900.00

m

MAG 0.0 Rf: 14 420.00 HZ fA: 75 600. 0

(49)

IA:

75

RI:

13

TRANS

180.00 --,--

--.-

--:--

-,

600. 0

HZ

420.00

PHASE

-180. 00

.-....----.---..-~...,...._-~-_.--_r__-__r_-____r-=---_r__-'---T

TRANS

1.5000

IMAG

-1.5000

RI:

13

IA:

75

-4.0000

REAL

4.0000

(50)

FREQUENCY AND DAMPING

F R E QUE N C Y

DAM PIN G

----

~

-.-MODE

NO.

HZ

R/S

s

HZ

R/S

I

1

444.072

2.790 K

1.330

5. 908

1

37.108

I

(51)

Vibrating: motor in the rotation module

Position of linear arm: the other end; motor far froIT th~

(52)

MEASUREMENT STATE

--I

MEASUREMENT : TRANSFER FUNCTION AVERAGE :

75

• STABLE

f SIGNAL: RANDOM

----~

TRIGGER: FREE RUN • CHNL 1

----

. _ ~ _...

I

CENT FRED:

0.0

HZ ~F :

3.12500

HZ I \ BANDWIDTH:

BOO.OOO

HZ I TIME LENGTH:

320.000

mS ~T :

__312.500

~

CHAN f 1

*

2

RANGE AC/DC

10

V AC

2.5 V

AC DELAY

0.0 S

0.0

S

CAL (EU/V)

1.00000

114.000

(53)

fA: 75 1 Rf: TRANS 1 0 . 0 0 0 - - r - . - - - , MAG 0.0 0.0 HZ

BOO. 0

COHER

Rf: 2 fA: 75

BOO.OO

m MAG

0.0

0.0 HZ

BOO. 0

(54)

fA: 75 1

Rf:

PHASE

TRANS

180.00 -,--_--;--_

-180.00

-+-_---'-...,..-_ _---,--_ _- . -_ _; -_ _....,.-_ _..,---_ _, _ _- - ;

0.0

HZ

800. 0

TRANS

8.0000

IMAG

-8.0000

Rf:

1

fA: 75

-20.000

REAL

20.000

(55)

FREQUENCY

AND DAMPING

78.444

38.414

38.386

37.860

68.051

PIN G

H~-~~_

i

6. 026

i , I

0. 831

1 I

6.270j

I

12.485

1 1

6.273

4.435

1.832

4

281.233

5

342.315

F R E QUE N C Y

DAM

II

MODE:

NO. :

I HZ

R/S

I

I

I !

15.223 [

I

1

!

85.648

36. 804

1

I

2

I

102.286

1

842.681

10.530

!

1

I 1I I I

,

3.154

I

3

I

188.676 :

1.248 K

I

(56)

FREQUENCY AND DAMPING

FREQUENCY

_I

DAMPING

MODE

HZ

--~~~-_ ,-=l--~:ZJ

NO.

RIS

I

I

'

I ,

3

198.676

1.248 Ki

i

3.154

I

6. 270

I1

39.396

I

281.233

!

I

.

I

4

1. 767 K;

4.435 :

12.4851

78.444

5

342.315

2.151 K:

i

1.832

I

8.273

I

I

39.414

I I • B

521.550

3.277 K

2.796

14.590

91.875

7

583.367

3.885 K

1.400

8.167

51.316

(57)

MEASUREMENT STATE

-MEASUREMENT: TRANSFER

FUNC~;~N--

- -- - --- - -- -

--I

I

AVERAGE : 7 5 . STABLE I

I

SIGNAL: RANDOM I

TRIGG~R_:

FREE

~~~_~~~_!

~

CEN~

FR;a-; --- - - --

--;.-~-~~-

- - -AF-

~

- - - 1.58250

~

BANDWIDTH : 400. 000 HZ

J

TIME LENGTH : 840. 000 mS 6T : 825. 000 /AS

---_.-

---

._---CHAN

f

1

*

2

RANGE AC/DC 10 V AC 2.5 V AC DELAY 0.0 S 0.0

S

CAL (EU/V) 1.00000 114.000

(58)

TRANS

10.000

RI:

IA: 75 MAG

0.0

0.0

COHER

RI:

4 IA: 75

900.00

m

MAG

0.0

(59)

fA:. 75 3

Rf:

TRANS

180.00- - - r - - . - - - : - - - , ; - - ,

PHASE

-180.00 - I - - - . . . , . . . - - - - L . - - . - - - r - - - r - - - . , . . . - - - r - - - y - - - ' - i

0.0

HZ 400. 0 fA: 75 3 Af:

IMAG

-10. 000 -..,r---,.---r---r---r---~._--___r'

TRANS

10.000 __

---:::=--=:---....,---,

-30.000

REAL

30.000

(60)

FREQUENCY AND DAMPING

F R E QUE N C Y

DAM PIN G

=+-

-MODE

NO. :

HZ

R/S

I

- - - -

HZ

- - -

R/S

I I I

1

13.659

85.822

37.611

5.544,

34.836

2

37.872

238.701

9.179

3.473

21.819

3

83.503

524.864

3.768

3.147

19.772

4

109.954

890.861

5.379

5.923

37.215

5

197.822

1.243 K

2.544

5.034

31.829

(61)

FREQUENCY

AND DAMPING

F R E QUE N C Y

DAM PIN G

MODEl

HZ

R/S

s

HZ

R/S

NO.

i ; I

8S050s1

I

I

I

3

I

524.864

3.788

i

3.147

18.772

4

!

! i

108.854

880.881

5.378

I

5.823j

37.215

I

5

187.822

1.243 K

I

2.544 I

5.034

31.828

8

277.518

1. 744 K

3.803

10.838

88.103

7

337.316

2.118 K

1.823

8.487

40.780

(62)

MEASUREMENT :

I

AVERAGE:

, I

SIGNAL:

TRIGGER:

MEASUREMENT STATE

TRANSFER FUNCTION

75

• STABLE

RANDOM

FREE RUN

• CHNL

1 --- ---

-

-,

I I

J

CENT FREQ :

BANDWIDTH:

TIME LENGTH :

0.0

HZ

50.0000

HZ

5.12000 S

AF :

AT :

195.312

mHZ I

5.00000

mS

CHAN

f 1 if

2

RANGE

AC/DC

10 V

AC

2.5

V

AC

DELAY

0.0 S

0.0 S

CAL (EU/V)

1.00000

114.000

(63)

fA: 75 5

Rf:

TRANS 1 4 . 0 0 0 - r - - - , r - - - , MAG 0.0

CDHER

Rf:

B fA: 75 900.00

m

MAG 0.0 0.0 HZ 50.0 0

(64)

IA: 75 5

RI:

TRANS

180.00-,--

---..-

---,

PHASE

50.0

a

HZ

0.0

-180.00

- ! - - - , - - - J L - - , - - - - . . , . . - - - . - - - , - - - - r - - - r - - - , - - - , - - - - 1

TRANS

RI: 5 IA: 75

10.000

IMAG

-10.000

(65)

FREQUENCY AND DAMPING

F R E QUE N C Y

DAM PIN G

MODE

NO.

HZ

R/S

s

HZ

R/S

1

10.857

68.216

36.606

4.

271

1

26.834

2

36.697

230.571

5.400

1.984

12.469

I

(66)

MEASUREMENT STATE

-TRANSFER FUNCTION RANDOM FREE RUN • CHNL 1 MEASUREMENT : AVERAGE: SIGNAL: TRIGGER:

75

• STABLE

CENT FREQ :

75.0000

HZ /iF :

195.312

mHZ BANDWIDTH :

50.0000

HZ

I

4".T_I_ME_·_L_EN_G_TH_:

5_._1_20_0_0

_S /i_T_:

10_o

O~.

CHAN f 1

*

2

RANGE AC/DC

10

V AC

2.5 V

AC DELAY

0.0 S

0.0

S

CAL (EU/V)

1.00000

114.000

(67)

TRANS

7.0000

MAG

0.0

COHER

700.00

m

MAG

Rf:

Rf:

7 B

fA:

75

fA:

75

100. 0

0.0

55.000

HZ

100. 0

(68)

IA: 75 7

RI:

TRANS

180.00

-r---=----..--,-"'T""OT:JIt"'nt"---,

PHASE

100. 0

HZ

55.000

-180. 00

~-____r--_r_---,.J~~~:....:...._.__-___,_--.__-_,__-___r---I

TRANS

8.0000

IMAG

-6.0000

RI:

7 fA: 75

-20.000

REAL

20.000

(69)

FREQUENCY AND DAMPING

248

962

S

DAM PIN G

F R E QUE N C Y

-MODE

NO.

HZ

RlS

s

HZ

RI

,

!

918.567

~

I

1

85.974

540.188

789.759 •

I

4.

I

2.108

1

2

98.217

617.114

iI

2.146

13.

(70)

MEASUREMENT STATE

MEASUREMENT :

TRANSFER FUNCTION

I

AVERAGE:

75

• STABLE

SIGNAL:

RANDOM

TRIGGER:

FREE RUN

• CHNL 1

----

~ -

-

--

-

-

-

~-

-

-

-

- - - ,

CENT FREQ :

BANDWIDTH:

TIME LENGTH:

200.000

HZ

200.000

HZ

1.28000

S . l1F : 11T :

781.250

mHZ

2.50000

mS

CHAN

f

1

*

2

RANGE

AC/DC

10

V

AC

2.5

V

AC

DELAY

0.0 S

0.0 S

CAL (EU/V)

1.00000

114.000

(71)

TRANS

RI:

9 IA: 75

6.0000

MAG

0.0

COHER

RI:

10

IA: 75

BOO.OO

m

MAG

0.0

(72)

fA: 75

s

Rf:

TRANS

1 B O . 0 0 - r - - - ----;-, 300.

a

HZ

PHASE

-1BO. 00 --l---,---..,...--"""T"""-~--_r__-...,....-___,;__-_r_-_r-....JY fA: 75

s

Rf:

IMAG

-6. 0000 --I--~---,.__--_r__--....,._--...,....--___r--___,---l

TRANS

6.0000 ---~---, -15.000

REAL

15.000

(73)

FREQUENCY AND DAMPING

F R E QUE N C Y

DAM PIN G

MODE

NO.

HZ

R/S

I HZ

R/S

II

1

98.570

819.335

7.760

I

7.872

I

48.205

1

2

195.789

1.230 K

2.682

5.253

33.008

3

279.326

1. 755 K

5.434

15.200

95.505

(74)

MEASUREMENT STATE

.---_._---

_.-TRANSFER FUNCTION 781.250 mHZ AF : 400.000 HZ

IcE~~-F~;;-:--

--ISANDWIDTH : 200 •000 HZ

j

TIME LE_N_GT_H_: 1_._2_80_0_0_S---,--__A_T_: 2_.5_0_00_0_ms_...J CHAN f 1

*

2

RANGE AC/DC 10 V AC 2.5 V AC DELAY 0.0 S 0.0

S

CAL (EU/V) 1.00000 114.000

(75)

TRANS

RI:

11

IA: 75

8.0000

MAG

0.0

320.00

HZ

500. 0

COHER

800.00

m

MAG

RI:

12

IA: 75

0.0

320.00

HZ

500. 0

(76)

500. 0

fA: 75

RI:

11

PHASE

TRANS

1BO.00~

_ _

--r- ~

TRANS

6.0000

IMAG

-6.0000

RI:

11

fA: 75

-15.000

REAL

15.000

(77)

FREQUENCY AND DAMPING

F R E QUE NC Y

DAM PIN G

-r----MODE!

NO.

I

HZ

R/S

s

HZ

R/S

I

I

II I

1

337.800

I

2.122 K

I

1.587

i

5.293

33.256

2

375.535 I

2.360 K

1.747

8.582

41.230

3

396.040

2.488 K 828.578

3.282

20.619

(78)

MEASUREMENT STATE

--I

MEASUREMENT : TRANSFER FUNCTION AVERAGE: 75 • STABLE

I

SIGNAL: RANDOM

TRIGGER: FREE RUN • CHNL 1 CENT FREQ : BANDWIDTH: TIME LENGTH :

100.000 HZ

100.000 HZ

2.58000

S

6F : 6T :

390.825 mHZ

5.00000

mS CHAN

f

1

*

2

RANGE AC/DC

10

V AC

2.5 V

AC DELAY

0.0

S

0.0

S

CAL (EU/V)

1.00000

114.000

(79)

fA: 75 TRANS 6.0000~---r---, MAG 0.0

COHER

700.00

m

MAG fA: 75 150. 0 0.0 60.000 HZ 150. 0

(80)

fA: 75

TRANS

180. 00

~---"'"7"JnIl'"""l'""':lr__---,

PHASE

-180. 00

...l----r---¥-'--~-___r--...,.._-_,__-____,r__-~-___r_-___T

TRANS

60.000

HZ

150. 0

fA: 75

4.0000

IMAG

-4.0000

-15.000

REAL

15.000

(81)

FREQUENCY AND DAMPING

F R E QUE N C Y

DAM PIN G

MODE

NO.

HZ

R/S

s

HZ

R/S

1

84.306

529.713

3.276

2.763

17.360

2

100.603

632.109

2.072

2.085

13.098

3

108.435

681.318

3.014

3.269

20.543

I

(82)

Vibrating: motor in the rotation module

Position of linear arm: the other end; motor close to the central axel

(83)

• STABLE MEASUREMENT : AVERAGE: SIGNAL: TRIGGER: MEASUREMENT STATE TRANSFER FUNCTION

100

RANDOM FREE RUN • CHNL 1 CENT FREQ : BANDWIDTH: TIME LENGTH:

0.0 HZ

BOO.OOO HZ

320.000

mS AF : AT :

3.12500 HZ

312.500

/AS

CHAN f 1

*

2

RANGE AC/DC

10

V

AC

2.5 V

AC DELAY

0.0

S

0.0

S

CAL (EU/V)

1.00000

114.000

(84)

TRANS

so.ooo

MAG

Rf:

1

fA:

100

0.0

COHER

800.00

m

MAG

0.0

Rf:

2

HZ

fA:

100

BOO. 0

0.0

0.0

HZ

BOO. 0

(85)

fA: 100 1

Rf:

TRANS

1BO.

00 . . . - - - - -...

---""'=""'--...

---,11":""""""---,

PHASE

-1BO.

00 -+----r---...,.-...JI--....,...---r---r----_r__---:lI+---! 0.0 HZ

BOO. 0

fA: 100 1

Rf:

TRANS

30.000....,... ...,..~---___,

IMAS

-30. 000 -.L..-,...---~--_r__-__r--_r_-~--__._--r---""""'T""---l

(86)

FREQUENCY AND DAMPING

F R E QUE NC Y

DAM PIN G

MODE

NO.

HZ

R/S

s

HZ

R/S

1

19.646

123.439

24.981

5.068

31.846

2

90.549

568.936

12.087

11.025

69.272

3

121.844

765.568

2.973

3.625

22.774

4

366.029

2.300 K

2.480

9.079

57.048

5

515.874

3.241 K

2.009

10.385

65.122

(87)

• STABLE MEASUREMENT : AVERAGE: SIGNAL: TRIGGER: MEASUREMENT STATE TRANSFER FUNCTION

75

RANDOM FREE RUN • CHNL 1 CENT FREQ : BANDWIDTH: TIME LENGTH:

0.0 HZ

400.000 HZ

840.000

mS AF : AT :

1.58250 HZ

825.000

/AS

CHAN # 1

*

2 RANGE AC/DC

10

V AC

2.5 V

AC DELAY

0.0

S

0.0

S

CAL (EU/V)

1.00000

114.000

(88)

TRANS

ao.ooo

MAG

RI:

7 fA: 75

0.0

COHER

0.0

RI:

8 HZ fA: 75

400. 0

900.00

m

MAG

0.0

0.0

HZ

400. 0

(89)

J I fA: 75 0.0

TRANS

Rf:

7

180.00Jr

I

1

I

l

1

PHASE

I -1BO.00 -+---.,..---r--~MJlL---r-1 ~-~ HZ fA: 75

Rf:

7

TRANS

30. 000-r---~:::::__==::::---__,

IMAS

-30. 000 --..---...----r---"T--~-_,___-___r_-____r--_r__---'

(90)

FREQUENCY AND DAMPING

F R E QUE NC Y

--

.-_

...

DAM PIN G

~--

-

~ ~

~I--~-MODE

NO.

HZ

R/S

s

HZ

R/S

I

I

I I t

4.750;

1

15.703

98.664

28.956

!

29.848

2

86.661

544.509

11.378

I!

9.9251

,

62.358

3

120.509

757.182

1.745

2.103

13.214

4

361.882

2.274 K

a.081

I

11.154

70.080

(91)

MEASUREMENT STATE

MEASUREMENT :

TRANSFER FUNCTION

I

AVERAGE:

75

• STABLE

I

SIGNAL:

RANDOM

I

TRIGGER:

FREE RUN

• CHNL 1

-CENT FREQ :

0.0 HZ

AF :

195.312 mHZ

BANDWIDTH:

50.0000 HZ

TIME LENGTH:

5.12000 S

AT :

5.00000 mS

CHAN

f

1

*

2

RANGE

AC/DC

10 V

AC

5 V

AC

DELAY

0.0 S

0.0 S

CAL (EU/V)

1.00000

114.000

(92)

TRANS

40.000

MAG

0.0

COHER

900.00

m

MAG

RI:

RI:

3 IA: 75 IA: 75

0.0

0.0

HZ

50.0 0

(93)

fA: 75

a

RI:

TRANS

180.00~

:---

---,

PHASE

-180. 00

-+---,r--~-r--__,_--r__-_r_-___r--.__-_,_-___.-____I

0.0

HZ

50.0 0

TRANS

RI:

a

fA: 75

ao.ooo

IMAG

-30.000

(94)

FREGUENCY AND DAMPING

F REG U E N C Y

DAM PIN G

MODE

NO.

HZ

R/S

I HZ

R/S

1

11.643

73.158

37.683

4.737

28.762

(95)

MEASUREMENT STATE

MEASUREMENT :

TRANSFER FUNCTION

AVERAGE:

100

• STABLE

SIGNAL:

RANDOM

TRIGGER:

FREE RUN

• CHNL 1

I

CENT FREQ :

75.0000 HZ

AF :

195.312 mHZ

BANDWIDTH:

50.0000 HZ

TIME LENGTH:

5.12000 S

AT :

10.0000 mS

CHAN

# 1

*

2

RANGE

AC/DC

10 V

AC

5 V

AC

DELAY

0.0 S

0.0 S

CAL (EU/V)

1.00000

114.000

(96)

TRANS RI: 5

IA:

100

6.0000

MAG

0.0

100. 0

COHER

RI: 6

fA:

100

700.00

m

MAG

(97)

IA: 100 5

RI:

TRANS

180.00--.- ----.

PHASE

-180. 00 --I--~--_r_-_,.._-____.r___-~-_r--r_-~-___r-____T 55.000 HZ 100. 0 IA: 100

RI:

5

TRANS

6.0000 __- - - .

IMAG

-6. 0000 ...---,r----..---r---~----'"'-'=:II<...-__y---__r_--_.---' -15.000

REAL

15.000

(98)

MEASUREMENT: MEASUREMENT STATE TRANSFER FUNCTI;----·-·.. ·•· --

--l

AVERAGE: 1 0 0 . STABLE SIGNAL : RANDOM ....T_R_IG_G_ER_: FR_E_E_R_UN_ _, _C_H_NL_1

J

CENT FREO : BANDWIDTH: TIME LENGTH: 200.000 HZ 200.000 HZ 1.28000 S AF : AT : 781.250 mHZ 2.50000 mS CHAN f 1

*

2 RANGE AC/DC 10 V AC 2.5 V AC DELAY 0.0 S 0.0

S

CAL (EU/V) 1.00000 114.000

(99)

TRANS RI: 9

IA:

100

4.0000

MAG 0.0 COHER

800.00

m

MAG RI: 10

IA:

100

0.0

300. 0

(100)

fA: 100 9

Rf:

TRANS

180.00....,... _ 300. 0

PHASE

-180. 00 ...----r---r---.;....,---1-.¥~--_r_"_I.--"-_._....:--___,--_.__--___r_-L..__.t fA: 100 9

Rf:

TRANS

4.0000~---__,

IMAG

-4. 0000 """"L---~---r---..::lo-_f_---___,r_---_,_----I -10.000

REAL

10.000.

(101)

FREQUENCY AND DAMPING

FREQUENCY

I

DAMPING

MODE

NO.

HZ

R/S

I HZ

R/S

1

121.414

762.869

2.280

2.769

17.396

2

277.327

1. 742 K

2.825

7.838

49.249

(102)

• STABLE

MEASUREMENT :

AVERAGE:

SIGNAL:

TRIGGER:

MEASUREMENT STATE

TRANSFER FUNCTION

100

RANDOM

FREE RUN

• CHNL 1

CENT FRED:

BANDWIDTH:

TIME LENGTH:

400.000

HZ

200.000

HZ

1.28000

S

AF :

AT :

781.250

mHZ

2.50000

mS

CHAN'

1

*

2

RANGE

AC/DC

10 V

AC

2.5 V

AC

DELAY

0.0

S

0.0

S

CAL (EU/V)

1.00000

114.000

(103)

TRANS

RI:

11

IA:

100

8.5000

MAG

0.0

COHER

820.00

RI:

12

HZ

IA:

100

500. 0

BOO.OO

m MAG

0.0

500. 0

(104)

500. 0

fA:

100

Rf: 11

320.00

PHASE

TRANS

1BO.00--,-

- - - ,

-1BO.00

- J - - - r - - r - - - r - - - - r - - - - J . . , - - . , . - - - - , - - - , - - , - - - ,

TRANS

3.0000

IMAG

-3.0000

Rf: 11

fA:

100

-10.000

REAL

10.000

(105)

FREQUENCY AND DAMPING

F R E QUE NC Y

DAM PIN S

-

-MODE

NO.

HZ

R/S

I HZ

R/S

1

365.B69

2.299 K

2.661

9.73B

61.1BB

2

475.B77

2.990 K

1.276

8.075

3B.171

3

4B9.4B9

3.076 K

1.146

5.611

35.256

(106)

Vibrating: motor in the linear arm Position of linear arm: in the middle

(107)

MEASUREMENT STATE

._-- _._--- - ----_._-_.

__

._---~

MEASUREMENT : TRANSFER FUNCTION • STABLE AVERAGE: SIGNAL: TRIGGER:

50

RANDOM FREE RUN • CHNL 1

··BeO.OOD

WlC~H.z-A~~

-

-781~~~~

-200.960 RZ

15{'~'cc:(,

It

L! i CENT FREQ : BANDWIDTH: TIME LENGTH :

1.28000

S

AT :

2.50000

mS CHAN # 1

*

2

RANGE AC/DC

10

V

AC

2.5 V

AC DELAY

0.0 S

0.0 S

CAL (EU/V)

1.00000

114.000

(108)

IA: 75 1

RI:

TRANS 35.000~---,r---, MAG 0.0 0.0 HZ

BOO. 0

COHER

RI:

2 IA: 75

900.00

m

MAG

0.0

(109)

fA: 75 1

Rf:

PHASE

TRANS

180.00...--..._ - - - . . . . - -__---....,

-180. 00

-+-...--r---~--_r_-____..____-___r--__T'"--__,_---'...,

0.0

HZ

800. 0

TRANS

30.000

IMAG

-30.000

Rf:

1 fA: 75

-100.00

REAL

100.00

(110)

FREQUENCY AND DAMPING

F R E QUE N C Y

DAM PIN G

MODE

NO.

HZ

R/S

I HZ

R/S

1

99.934

627.907

7.580

7.597

47.731

2

148.150

930.851

13.403

20.038

125.901

3

585.278

3.552 K

3.919

22.171

139.303

(111)

MEASUREMENT STATE

---~--~-. .

--_

.._--- - _ . _ ~

MEASUREMENT :

TRANSFER FUNCTION

I

AVERAGE :

7 5 . STABLE

I

SIGNAL:

TRIGGER:

CENT FREG :

BANDWIDTH:

TIME LENGTH :

RANDOM

FREE RUN

0.0 HZ

400.000 HZ

840.000

mS

• CHNL

1

CHAN

# 1

*

2

RANGE

AC/DC

10

V

AC

1 V

AC

DELAY

0.0

S

0.0 S

CAL (EU/V)

1.00000

114.000

(112)

TRANS

Rf:

3 fA: 75

35.000

MAG

0.0

0.0

HZ

400. 0

COHER

900.00

m

MAG

RI:

4 fA: 75

0.0

0.0

HZ

400. 0

(113)

fA: 75 3

Rf:

PHASE

TRANS

180.00....,...._ _

~ ~

---,

-180. 00

-+--~~----r---

...

- - . . . , . . . . - - - - r - - - . . , . - - - . , - - - l

0.0

HZ

400. 0

TRANS

30.000

IMAG

-30.000

Rf:

3 fA: 75

-100.00

REAL

100.00

(114)

FREGUENCY AND DAMPING

F REG U E N C Y

DAM PIN G

MODE

NO.

HZ

R/S

I HZ

R/S

1

87.763

614.266

6.500

B.3BB

40.008

2

149.121

936.858

8.718

14.562

81.483

(115)

MEASUREMENT STATE TRANSFER FUNCTION FREE RUN • CHNL 1 MEASUREMENT : AVERAGE: SIGNAL: TRIGGER: 75 RANDOM • STABLE CENT FREQ : BANDWIDTH: TIME LENGTH : 0.0 HZ 200.000 HZ 1.28000

S

AF : AT : 781.250 mHZ 1.25000 mS CHAN f 1

*

2

RANGE AC/DC 10 V AC 2.5 V AC DELAY 0.0

S

0.0 S CAL (EU/V) 1.00000 114.000

(116)

TRANS

RI:

5 fA: 75

40.000

MAG

0.0

COHER

0.0

RI:

6 HZ IA: 75

200. 0

900.00

m MAG

0.0

0.0

HZ

200. 0

(117)

IA: 75 5

RI:

TRANS

180.00...,..._ _

----..,...,~---____.

PHASE

-180. 00

--+---.-::=L.-...----.---.---~-___r--~-____r_-___,.-___I

0.0

HZ

200. 0

TRANS

RI:

5 IA: 75

30.000

IMAG

-30.000

(118)

FREQUENCY AND DAMPING

F R E QUE NC Y

DAM PIN G

-MODE

NO.

HZ

R/S

s

HZ

R/S

1

95.714

601.389

7.089

6.783

42.816

2

117.271

738.833

2.869

3.385

21.145

3

136.984

880.895

9.548

13.139

82.558

(119)

MEASUREMENT : AVERAGE: SIGNAL: TRIGGER: MEASUREMENT STATE TRANSFER FUNCTION 50 • STABLE RANDOM FREE RUN • CHNL 1

---1

CENT FREQ : 550.000 HZ AF : 781.250 mHZ BANDWIDTH: 200.000 HZ

I

J-T_I_ME_L_EN_G_TH_: 1._2_80_0_0_S AT_:_ _

2_.5_0_00~

CHAN f 1

*

2

RANGE AC/DC

10 V

AC 2.5

V

AC DELAY 0.0 S

0.0 S

CAL (EU/V)

1.00000

114.000

(120)

TRANS

Rf:

7 fA: 50

10.000

MAG 0.0

COHER

Rf:

B fA: 50

900.00

m MAG

0.0

(121)

fA: 50 7

Rf:

PHASE

TRANS

180.00

- - - r - - - : : - - - ,

TRANS

10.000

IMAG

-10.000

Rf:

7 fA: 50

-30.000

REAL

30.000

(122)

FREQUENCY AND DAMPING

F R E QUE NC Y

DAM PIN G

MODE

NO.

HZ

R/S

s

HZ

R/S

1

560.063

3.519 K

3.448

19.322

121.407

(123)

Vibrating: motor in the linear arm

Position of linear arm: the other end; motor far from the

(124)

• STABLE MEASUREMENT : AVERAGE: SIGNAL: TRIGGER: MEASUREMENT STATE TRANSFER FUNCTION

50

RANDOM FREE RUN • CHNL 1 CENT FREG : BANDWIDTH: TIME LENGTH :

0.0 HZ

BOO.OOO HZ

320.000

mS AF : AT :

3.12500 HZ

312.500

lAS

CHAN'

1

*

2

RANGE AC/DC

10

V AC

2.5 V

AC DELAY

0.0

S

0.0

S

CAL (EU/V)

1.00000

114.000

(125)

TRANS

35.000

MAG

0.0

0.0

Rf:

9 HZ fA:

50

BOO.

a

COHER

Rf:

10

fA:

50

900.00

m MAG

0.0

0.0

HZ

BOO.

a

(126)

BOO.

a

fA: 50 HZ 9

Rf:

0.0

PHASE

-1BO. 00-+-...:...a.--r----r---..,...----r---,-~___,.----3-...,...--__1

TRANS

1BO .00....,....---,,~

-=--_ _----:-

...,

TRANS

SO.OOO

IMAG

-SO.OOO

Rf:

9 fA: 50

-100.00

REAL

100.00

Referenties

GERELATEERDE DOCUMENTEN

11 In the present study, we screened genetic variants in the androgen metabolism genes CYP3A5, CYP3A4 and CYP3A43 to determine whether these play a role in the development

It is noted here since this subject will not arise again, that when referring to the cross and post-cross events in the life of Christ, Kenyon made no reference to this change

Après deux années d'interruption dues aux impératifs agricoles, consa- crées à des sondages dans les sites paléolithique rnayen de Petit-Spiennes III (Arch. Comme les

Data were entered into SPSS and multiple regression analysis was performed in order to estab- lish if: (1) there was a statistically significant difference between the level of

Spoor 220 kan op basis van het ingezamelde aardewerk gedateerd worden vanaf de late middeleeuwen tot in een meer recente periode, maar voor de haard/ovenstructuur rondom

Experiments were laid out in a split plot design with three phosphorus fertility levels (Extractable phosphorus: low = 5, medium = 15 and high = 30 mg kg-I) as the main plot

door vorming van nieuwe coalities: sectorale verdrogingsnetwerken gaan op in integrale gebiedscommissies, waarmee de koppeling van het verdrogingsbeleid aan andere beleidsvelden

This suggestion can be further strengthened by the literature that has found TNF-α to be more tightly associated with systemic stress than psychological challenge (Nukina et