• No results found

New methods for the analysis of trial-to-trial variability in neuroimaging studies - References

N/A
N/A
Protected

Academic year: 2021

Share "New methods for the analysis of trial-to-trial variability in neuroimaging studies - References"

Copied!
17
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

New methods for the analysis of trial-to-trial variability in neuroimaging studies

Weeda, W.D.

Publication date

2012

Link to publication

Citation for published version (APA):

Weeda, W. D. (2012). New methods for the analysis of trial-to-trial variability in neuroimaging

studies.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

(2)

References

Aguirre, G. K., Zarahn, E., and D’esposito, M. (1998). The variability of human, bold hemodynamic responses. Neuroimage, 8(4):360–9.

Aikake, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19:716–723.

Arieli, A., Sterkin, A., Grinvald, A., and Aertsen, A. (1996). Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science, 273(5283):1868–71.

Aron, A. R., Durston, S., Eagle, D. M., Logan, G. D., Stinear, C. M., and Stuphorn, V. (2007). Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. Journal of Neuroscience, 27(44):11860–4.

Bassett, D. S. and Bullmore, E. (2006). Small-world brain networks. Neuroscientist, 12(6):512–523.

Baumeister, A. (1998). Intelligence and the ”personal equation”. Intelligence, 26(3):255–265.

Bielak, A. A. M., Hultsch, D. F., Strauss, E., Macdonald, S. W. S., and Hunter, M. A. (2010). Intraindividual variability in reaction time predicts cognitive outcomes 5 years later. Neuropsychology, 24(6):731–41.

Bilodeau, M. and Brenner, D. (1999). Theory of multivariate statistics. Springer texts in statistics. Springer.

(3)

Biswal, B., Yetkin, F., Haughton, V., and Hyde, J. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34:537–541.

Bowman, F. D. (2005). Spatio-temporal modeling of localized brain activity. Biostatis-tics, 6(4):558–75.

Boynton, G., Engel, S., Glover, G., and Heeger, D. (1996). Linear systems analysis of functional magnetic resonance imaging in human v1. Journal of Neuroscience, 16:4207–4221.

Caryl, P. G. (1996). Event related potentials (erps) in elementary cognitive tasks reflect task difficulty and task threshold. Intelligence, 22:1–22.

Chambers, C. D., Garavan, H., and Bellgrove, M. A. (2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience & Biobehavioral Reviews, 33(5):631–46.

Christoffels, I. K., Formisano, E., and Schiller, N. O. (2007). Neural correlates of verbal feedback processing: an fmri study employing overt speech. Human Brain Mapping, 28(9):868–79.

Coyle, T. R. (2003). A review of the worst performance rule: Evidence, theory, and alternative hypothesis. Intelligence, 31:567–587.

de Munck, J., Bijma, F., Gaura, P., Sieluzycki, A., Branco, M., and Heethaar, R. (2004). A maximum-likelihood estimator for trial-to-trial variations in noisy meg/eeg data sets. IEEE Transactions on Biomedical Engineering, 51:2123–2128.

De Pascalis, V., Varriale, V., and Matteoli, A. (2008). Intelligence and p3 components of the event-related potential elicited during an auditory discrimination task with masking. Intelligence, 36:35–47.

Deary, I. J. (2005). Reaction time, age, and cognitive ability: Longitudinal findings from age 16 to 63 years in representative population samples. Aging, Neuropsychol-ogy, and Cognition, 12:187–215.

Deary, I. J. and Caryl, P. G. (1997). Neuroscience and human intelligence differences. Trends in Neuroscience, 20:365–371.

(4)

Donders, F. C. (1969). On the speed of mental processes [reprint translation]. Acta Psychologica, 30:412–31.

Duann, J.-R., Jung, T.-P., Kuo, W.-J., Yeh, T.-C., Makeig, S., Hsieh, J.-C., and Se-jnowski, T. J. (2002). Single-trial variability in event-related bold signals. Neu-roimage, 15(4):823–35.

Eichler, M. (2005). A graphical approach for evaluating effective connectivity in neu-ral systems. Philosophical Transacations of the Royal Society of London. Series B, Biolog-ical Sciences, 360(1457):953–67.

Eriksen, C. W. and Schultz, D. W. (1979). Information processing in visual search: a continuous flow conception and experimental results. Perception and Psychophysics, 25(4):249–63.

Faisal, A. A., Selen, L. P. J., and Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4):292–303.

Falkenstein, M., Hohnsbein, J., and Hoormann, J. (1993). Late visual and auditory erp components and choice reaction time. Biological Psychology, 35(3):201–24. Falkenstein, M., Hohnsbein, J., and Hoormann, J. (1994). Effects of choice

complex-ity on different subcomponents of the late positive complex of the event-related potential. Electroencephalography and clinical Neurophysiology, 92:148–160.

Fears, T., Benichou, J., and Gail, M. (1996). A reminder of the fallibility of the wald statistic. American Statistician, 50(3):226–227.

Fein, G. and Turetsky, B. (1989). P300 latency variability in normal elderly: effects of paradigm and measurement technique. Electroencephalography and clinical Neu-rophysiology, 72:384–394.

Fisher, R. A. (1915). Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika, 10(4):pp. 507–521. Fiske, D. W. and Rice, L. (1955). Intra-individual response variability. Psychological

(5)

Fjell, A., Rosquist, H., and Walhovd, K. (2009). Instability in the latency of p3a/p3b brain potentials and cognitive functioning in aging. Neurbiology of Aging, 30:2065– 2079.

Fjell, A. M. and Walhovd, K. B. (2007). Stability of brain potentials, mental abilities, and cortical thickness. Neuroreport, 18:725–728.

Flandin, G. and Penny, W. D. (2007). Bayesian fmri data analysis with sparse spatial basis function priors. Neuroimage, 34(3):1108–25.

Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., and Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fmri): use of a cluster-size threshold. Magnetic Resonance in Medicine, 33(5):636–47.

Fox, M., Snyder, A., Zacks, J., and Raichle, M. (2006). Coherent spontaneous activ-ity accounts for trial-to-trial variabilactiv-ity in human evoked brain responses. Nature Neuroscience, 9:23–25.

Friman, O., Borga, M., Lundberg, P., and Knutsson, H. (2003). Adaptive analysis of fmri data. Neuroimage, 19(3):837–845.

Friston, K., Ashburner, J., Kiebel, S., Nichols, T., and Penny, W. (2007). Statistical Para-metric Mapping: The Analysis of Functional Brain Images. Academic Press, London, UK.

Friston, K., Buechel, C., Fink, G. R., Morris, J., Rolls, E., and Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6(3):218–29.

Friston, K., Fletcher, P., Josephs, O., Holmes, A., Rugg, M., and Turner, R. (1998). Event-related fmri: Characterizing differential responses. Neuroimage, 7:30–40. Friston, K., Holmes, A., Worsley, K., Poline, J.-P., Frith, C., and Frackowiak, R. (1995).

Statistical parametric maps in functional imaging: A general linear approach. Hu-man Brain Mapping, 2:189–210.

Friston, K. J. (2011). Functional and effective connectivity: A review. Brain Connectiv-ity, 1(1):13–36.

(6)

Friston, K. J., Harrison, L., and Penny, W. (2003). Dynamic causal modelling. Neu-roimage, 19(4):1273–302.

Friston, K. J., Rotshtein, P., Geng, J. J., Sterzer, P., and Henson, R. N. (2006). A critique of functional localisers. Neuroimage, 30(4):1077–87.

Garrett, D. D., Kovacevic, N., McIntosh, A. R., and Grady, C. L. (2011). The impor-tance of being variable. Journal of Neuroscience, 31(12):4496–503.

Genovese, C. R., Lazar, N. A., and Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15(4):870–8. Geurts, H. M., Grasman, R. P. P. P., Vert´e, S., Oosterlaan, J., Roeyers, H., van Kam-men, S. M., and Sergeant, J. A. (2008). Intra-individual variability in adhd, autism spectrum disorders and tourette’s syndrome. Neuropsychologia, 46(13):3030–41. Gevins, A. (1984). Analysis of the electromagnetic signals of the human brain:

Mile-stones, obstacles, and goals. IEEE Transactions on Biomedical Engineering, 31(833-850).

Glaser, E. M. and Ruchkin, D. S. (1976). Principles of neurobiological signal analysis. Academic Press, New York, NY, USA.

Glover, G. H. (1999). Deconvolution of impulse response in event-related bold fmri. Neuroimage, 9(4):416–29.

Goncalves, M. S. and Hal, D. A. (2003). Connectivity analysis with structural equation modelling: an example of the effects of voxel selection. Neuroimage, 20(3):1455 – 1467.

Hamel, R. and Schmittmann, V. D. (2006). The 20-minute version as a predictor of the Raven advanced progressive matrices test. Educational and Psychological Measure-ment, 66:1039–1046.

Handy, T. (2004). Event-related potentials: a methods handbook. MIT Press, Cambridge, MA.

Hartvig, N. V. (2002). A stochastic geometry model for functional magnetic resonance images. Scandinavian Journal of Statistics, 29:333–353.

(7)

Hartvig, N. V. and Jensen, J. L. (2000). Spatial mixture modeling of fmri data. Human Brain Mapping, 11(4):233–48.

Hayasaka, S. and Nichols, T. E. (2004). Combining voxel intensity and cluster extent with permutation test framework. NeuroImage, 23(1):54–63.

Hick, W. E. (1952). On the rate of gain of information. The Quartlerly Journal of Exper-imental Psychology, 4(1):11–26.

Hogan, M. J., Carolan, L., Roche, R. A. P., Dockree, P. M., Kaiser, J., Bunting, B. P., Robertson, I. H., and Lawlor, B. A. (2006). Electrophysiological and information processing variability predicts memory decrements associated with normal age-related cognitive decline and alzheimer’s disease (ad). Brain Research, 1119:215– 226.

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., and Hagmann, P. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 106(6):2035–40.

Huettel, S., Song, A., and McCarthy, G. (2008). Functional Magnetic Resonance Imaging. Sinauer, Sunderland, MA, USA, 2nd edition.

Huettel, S. A. and McCarthy, G. (2001). The effects of single-trial averaging upon the spatial extent of fmri activation. Neuroreport, 12(11):2411–6.

Hultsch, D. F., MacDonald, S. W. S., and Dixon, R. A. (2002). Variability in reaction time performance of younger and older adults. The journals of gerontology. Series B, Psychological sciences and social sciences, 57(2):101–15.

Hunton, D. L., Miezin, F. M., Buckner, R. L., van Mier, H. I., Raichle, M. E., and Petersen, S. E. (1996). An assessment of functional-anatomical variability in neu-roimaging studies. Human Brain Mapping, 4(2):122–39.

Hyman, R. (1953). Stimulus information as a determinant of reaction time. Journal of Experimental Psychology, 45(3):188–196.

(8)

Jaskowski, P. and Verleger, R. (1999). Amplitude and latencies of single-trial erp’s estimated by a maximum-likelihood method. IEEE Transactions on Biomedical Engi-neering, 46(8):987–993.

Jaskowski, P. and Verleger, R. (2000). An evaluation of methods for single-trial esti-mation of p3 latency. Psychophysiology, 37:153–162.

Jensen, A. R. (1992). The importance of intraindividual variation in reaction time. Personality & Individual Differences, 13:869–881.

Jensen, A. R. (1998). The g Factor: The Science of Mental Ability. Praeger, Westport, CT. Jensen, A. R. (2006). Clocking the Mind: Mental Chronometry and Individual Differences.

Elsevier, Amsterdam.

Jezzard, P., Matthews, P., and Smith, S. (2001). Functional MRI: An Introduction to Methods. Oxford University Press, Oxford, UK.

Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J., Iragui, V., and Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37(2):163–78.

Jung, T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., and Sejnowski, T. J. (2001). Analysis and visualization of single-trial event-related potentials. Hu-man Brain Mapping, 14(3):166–85.

Kiebel, S. J., Goebel, R., and Friston, K. J. (2000). Anatomically informed basis func-tions. Neuroimage, 11(6 Pt 1):656–67.

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F., and Baker, C. I. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuro-science, 12(5):535–40.

Krueger, G. and Glover, G. (2001). Physiological noise in oxygenation-sensitive mag-netic resonance imaging. Magmag-netic Resonance in Medicine, 46:631–637.

Kuriki, S., Takeuchi, F., and Kobayashi, T. (1994). Characteristics of the background fields in multichannel-recorded magnetic field responses. Electroencephalography and Clinical Neurophysiology, 92(1):56–63.

(9)

Larson, G. E. and Alderton, D. L. (1990). Reaction time variability and intelligence: A worst performance analysis of individual differences. Intelligence, 14(3):309 – 325. Lazar, N. (2008). The Statistical Analysis of Functional MRI Data. Springer, New York,

NY, USA.

Lazzaro, I., Anderson, J., Gordon, E., Clarke, S., Leong, J., and Meares, R. (1997). Sin-gle trial variability within the p300 (250-500 ms) processing window in adolescents with attention deficit hyperactivity disorder. Psychiatry Research, 73(1-2):91–101. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., and Oeltermann, A. (2001).

Neuro-physiological investigation of the basis of the fmri signal. Nature, 412(6843):150–7. L ¨ovd´en, M., Li, S.-C., Shing, Y. L., and Lindenberger, U. (2007). Within-person

trial-to-trial variability precedes and predicts cognitive decline in old and very old age: longitudinal data from the berlin aging study. Neuropsychologia, 45(12):2827–38. Lukic, A. S., Wernick, M. N., Galatsanos, N. P., Yang, Y., and Strother, S. C. (2004).

Re-versible jump markov chain monte carlo signal detection in functional neuroimag-ing analysis. IEEE International Symposium on Biomedical Imagneuroimag-ing, pages 868–871. Lukic, A. S., Wernick, M. N., Tzikas, D. G., Chen, X., Likas, A., Galatsanos, N. P.,

Yang, Y., Zhao, F., and Strother, S. C. (2007). Bayesian kernel methods for analysis of functional neuroimages. IEEE Transactions On Medical Imaging, 26(12):1613–24. MacDonald, S. W. S., Li, S.-C., and B¨ackman, L. (2009). Neural underpinnings of

within-person variability in cognitive functioning. Psychology and Aging, 24(4):792– 808.

MacDonald, S. W. S., Nyberg, L., and B¨ackman, L. (2006). Intra-individual variabil-ity in behavior: links to brain structure, neurotransmission and neuronal activvariabil-ity. Trends in Neurosciences, 29(8):474–80.

Marchini, J. L. and Lafaye de Micheaux, P. (2011). AnalyzeFMRI: Functions for analysis of fMRI datasets stored in the ANALYZE or NIFTI format. R package version 1.1-131. Mayhew, S., Iannetti, G., Woolrich, M., and Wise, R. (2006). Automated single-trial

measurement of amplitude and latency of laser-evoked potentials (leps) using mul-tiple linear regression. Clinical Neurophysiology, 117:1331–1344.

(10)

McCarthy, G. and Wood, C. C. (1985). Scalp distributions of event-related potentials: an ambiguity associated with analysis of variance models. Electroencephalography and Clinical Neurophysiology, 62(3):203–8.

McIntosh, A. R. and Gonzalez-Lima, F. (1994). Structural equation modeling and its application to network analysis in functional brain imaging. Human Brain Mapping, 2(1-2):2–22.

Mesulam, M. M. (1985). Principles of behavioral neurology. Davis, Philadelphia, USA. Moy, G., Millet, P., Haller, S., Baudois, S., de Bilbao, F., Weber, K., L ¨ovblad, K.,

Lazeyras, F., Giannakopoulos, P., and Delaloye, C. (2011). Magnetic resonance imaging determinants of intraindividual variability in the elderly: combined anal-ysis of grey and white matter. Neuroscience, 186:88–93.

Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. John Wiley & Sons Inc., New York, NY, USA.

Myers, J. and Well, A. (2003). Research design and statistical analysis. Number v. 1 in Inquiry and Pedagogy Across Diverse Contexts Series. Lawrence Erlbaum Asso-ciates.

Neumann, J., von Cramon, D. Y., Forstmann, B. U., Zysset, S., and Lohmann, G. (2006). The parcellation of cortical areas using replicator dynamics in fmri. Neu-roimage, 32(1):208–19.

Nichols, T. and Hayasaka, S. (2003). Controlling the familywise error rate in func-tional neuroimaging: a comparative review. Statistical Methods in Medical Research, 12:419–446.

NIfTI Data Format Working Group (2005). Neuroimaging Informatics Technology Initia-tive.

Ogawa, S., Lee, T. M., Kay, A. R., and Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87(24):9868–72.

Parrish, T. B., Gitelman, D. R., LaBar, K. S., and Mesulam, M. M. (2000). Impact of signal-to-noise on functional mri. Magnetic Resonance in Medicine, 44(6):925–32.

(11)

Parzen, E. (1960). Modern Probability Theory and Its Applications. Wiley, New York, NY, USA.

Penny, W. and Friston, K. (2003). Mixtures of general linear models for functional neuroimaging. IEEE Transactions On Medical Imaging, 22(4):504–514.

Pham, D., Moecks, J., Koelher, W., and Gasser, T. (1987). Variable latencies of noisy signals: Estimation and testing in brain potential data. Biometrika, 74:525–533. Picton, T., Bentin, S., Berg, P., Donchin, E., Hillyard, S., Johnson Jr, R., Miller, G., Ritter,

W., Ruchkin, D., Rugg, M., and Taylor, M. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37:127–152.

Poline, J. B., Worsley, K. J., Evans, A. C., and Friston, K. J. (1997). Combining spatial extent and peak intensity to test for activations in functional imaging. Neuroimage, 5(2):83–96.

Quian Quiroga, R. (2000). Obtaining single stimulus evoked potentials with wavelet denoising. Physica D-Nonlinear Phenomena, 145(3-4):278–292.

Quian Quiroga, R. and Garcia, H. (2003). Single-trial event-related potentials with wavelet denoising. Clinical Neurophysiology, 114(2):376–90.

R Development Core Team (2007). R: A Language and Environment for Statistical Com-puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

R Development Core Team (2009). R: A Language and Environment for Statistical Com-puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

R Development Core Team (2010). R: A Language and Environment for Statistical Com-puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.

Raftery, A. (1999). Bayes factors and bic - comment on ”a critique of the bayesian in-formation criterion for model selection”. Sociological Methods & Research, 27(3):411– 427.

(12)

Ramsey, J. D., Hanson, S. J., Hanson, C., Halchenko, Y. O., Poldrack, R. A., and Glymour, C. (2010). Six problems for causal inference from fmri. Neuroimage, 49(2):1545–58.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85:59–108. Ratcliff, R. (2002). A diffusion model account of response time and accuracy in a

brightness discrimination task: Fitting real data and failing to fit fake but plausible data. Psychonomic Bulletin & Review, 9:278–291.

Ratcliff, R. (2006). Modeling response signal and response time data. Cognitive Psy-chology, 53:195–237.

Ratcliff, R., Hasegawa, Y. T., Hasegawa, Y. P., Smith, P. L., and Segraves, M. A. (2007). Dual diffusion model for single–cell recording data from the superior colliculus in a brightness–discrimination task. Journal of Neurophysiology, 97:1756–1774.

Ratcliff, R., Philiastides, M. G., and Sajda, P. (2009). Quality of evidence for perceptual decision making is indexed by trial-to-trial variability of the eeg. Proceedings of the National Academy of Sciences of the United States of America, 106(16):6539–44.

Ratcliff, R. and Rouder, J. N. (2000). A diffusion model account of masking in two– choice letter identification. Journal of Experimental Psychology: Human Perception and Performance, 26:127–140.

Ratcliff, R., Schmiedek, F., and McKoon, G. (2008). A diffusion model analysis of the worst performance rule for reaction time and IQ. Intelligence, 36:10–17.

Ratcliff, R., Thapar, A., and McKoon, G. (2006). Aging and individual differences in rapid two–choice decisions. Psychonomic Bulletin & Review, 13:626–635.

Ratcliff, R., Thapar, A., and McKoon, G. (2010). Individual differences, aging, and iq in two-choice tasks. Cognitive Psychology, 60(3):127–57.

Ratcliff, R. and Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9:438–481.

(13)

Raven, J., Raven, J. C., and Court, J. H. (1998). Manual for Raven’s Progressive Ma-trices and Vocabulary Scales. Section 4: The Advanced Progressive MaMa-trices. Harcourt Assessment, San Antonio, TX.

Rissman, J., Gazzaley, A., and D’Esposito, M. (2004). Measuring functional connec-tivity during distinct stages of a cognitive task. Neuroimage, 23:752–763.

Salthouse, T. A. (1998). Relations of successive percentiles of reaction time distribu-tions to cognitive variables and adult age. Intelligence, 26:153–166.

Samanez-Larkin, G. and D’Esposito, M. (2008). Group comparisons: imaging the aging brain. Scan, 3:290–297.

Saville, C. W. N., Dean, R. O., Daley, D., Intriligator, J., Boehm, S., Feige, B., and Klein, C. (2011). Electrocortical correlates of intra-subject variability in reaction times: average and single-trial analyses. Biological Psychology, 87(1):74–83.

Schmiedek, F., L ¨ovd´en, M., and Lindenberger, U. (2009). On the relation of mean reaction time and intraindividual reaction time variability. Psychology and Aging, 24(4):841–57.

Schmiedek, F., Oberauer, K., Wilhelm, O., S ¨uß, H.-M., and Wittman, W. W. (2007). Individual differences in components of reaction time distributions and their re-lations to working memory and intelligence. Journal of Experimental Psychology: General, 136:414–429.

Schnabel, R., Koontz, J., and Weiss, B. (1985). A modular system of algorithms for unconstrained minimization. Acm Transactions On Mathematical Software, 11(4):419– 440.

Schott, J. (1997). Matrix analysis for Statistics. Wiley, New York, NY, USA.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6:461– 464.

Seber, G. and Wild, C. (1989). Nonlinear Regression. Wiley, New York, NY, USA. Simon, J. R. (1969). Reactions toward the source of stimulation. Journal of Experimental

(14)

Sin, C. and White, H. (1996). Information criteria for selecting possibly misspecified parametric models. Journal of Econometrics, 71(1-2):207–225.

Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C., Behrens, T., Johansen-Berg, H., Bannister, P., De Luca, M., Drobnjak, I., Flitney, D., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J., and Matthews, P. (2004). Advances in func-tional and structural mr image analysis and implementation as fsl. Neuroimage, 23:S208–S219.

Smith, S., Miller, K., Salimi-Khorshidi, G., Webster, M., Nichols, T., Ramsey, J., and Woolrich, M. (2011). Network modelling methods for fmri. Neuroimage, 54(2):875– 891.

Smith, S. M. and Nichols, T. E. (2009). Threshold-free cluster enhancement: Address-ing problems of smoothAddress-ing, threshold dependence and localisation in cluster infer-ence. Neuroimage, 44(1):83–98.

Spearman, C. (1904). The proof and measurement of association between two things. The American Journal of Psychology, 15(1):pp. 72–101.

Sporns, O. (2010). Networks of the Brain. MIT Press, Cambridge MA.

Sporns, O. (2011). The human connectome: a complex network. Annals of the New York Academy of Sciences, 1224:109–25.

Sternberg, S. (1969). The discovery of processing stages: Extensions of donders’ method. Acta Psychologica, 30:276 – 315.

Tabelow, K., Clayden, J. D., Lafaye de Micheaux, P., Polzehl, J., Schmid, V. J., and Whitcher, B. (2011). Image analysis and statistical inference in neuroimaging with r. Neuroimage, 55(4):1686–1693.

Tabelow, K. and Polzehl, J. (2011). fmri: Analysis of fMRI experiments. R package version 1.4-4.

Tabelow, K., Polzehl, J., Voss, H. U., and Spokoiny, V. (2006). Analyzing fmri experi-ments with structural adaptive smoothing procedures. Neuroimage, 33(1):55–62.

(15)

Thirion, B., Flandin, G., Pinel, P., Roche, A., Ciuciu, P., and Poline, J.-B. (2006). Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fmri datasets. Human Brain Mapping, 27(8):678–93.

Tzikas, D. G., Likas, A., Galatsanos, N. P., Lukic, A. S., and Wernick, M. N. (2004). Relevance vector machine analysis of functional neuroimages. IEEE International Symposium on Biomedical Imaging, pages 1004–1007.

van Gaal, S., Ridderinkhof, K., Scholte, H., and Lamme, V. (2010). Unconscious acti-vation of the prefrontal no-go network. Journal of Neuroscience, 30:4143–4150. van Ravenzwaaij, D., Brown, S., and Wagenmakers, E.-J. (2011). An integrated

perspective on the relation between response speed and intelligence. Cognition, 119(3):381–93.

Verleger, R. (1997). On the utility of p3 latency as an index of mental chronometry. Psychophysiology, 34:131–156.

Vickers, D., Nettelbeck, T., and Willson, R. J. (1972). Perceptual indices of perfor-mance: The measurement of ‘inspection time’ and ‘noise’ in the visual system. Per-ception, 1:263–295.

Voss, A., Rothermund, K., and Voss, J. (2004). Interpreting the parameters of the diffusion model: An empirical validation. Memory & Cognition, 32:1206–1220. Voss, A. and Voss, J. (2007). Fast-dm: a free program for efficient diffusion model

analysis. Behavior Research Methods, 39(4):767–75.

Voss, A. and Voss, J. (2008). A fast numerical algorithm for the estimation of diffusion model parameters. Journal of Mathematical Psychology, 52(1):1 – 9.

Wagenmakers, E.-J. and Brown, S. (2007). On the linear relation between the mean and the standard deviation of a response time distribution. Psychological Review, 114:830–841.

Wagenmakers, E.-J., Grasman, R. P. P. P., and Molenaar, P. C. M. (2005). On the relation between the mean and the variance of a diffusion model response time distribution. Journal of Mathematical Psychology, 49:195–204.

(16)

Wagenmakers, E.-J., Ratcliff, R., Gomez, P., and McKoon, G. (2008). A diffusion model account of criterion manipulations in the lexical decision task. Journal of Memory and Language, 58:140–159.

Waldorp, L. (2009). Robust and unbiased variance of glm coefficients for misspecified autocorrelation and hemodynamic response models in fmri. International Journal of Biomedical Imaging, 2009:723912.

Waldorp, L., Christoffels, I., and Van de Ven, V. (2011). Effective connectivity of fmri data using ancestral graph theory: Dealing with missing regions. Neuroim-age, 54:2695–2705.

Waldorp, L., Huizenga, H., and Grasman, R. (2005a). The wald test and cramer-rao bound for misspecified models in electromagnetic source analysis. IEEE Transac-tions On Signal Processing, 53(9):3427–3435.

Waldorp, L., Huizenga, H., Nehorai, A., Grasman, R., and Molenaar, P. (2005b). Model selection in spatio-temporal electromagnetic source analysis. IEEE Trans-actions On Biomedical Engineering, 52(3):414–420.

Walhovd, K. B. and Fjell, A. M. (2007). White matter volume predicts reaction time instability. Neuropsychologia, 45:2277–2284.

Wang, Z., Maier, A., Leopold, D. A., Logothetis, N. K., and Liang, H. (2007). Single-trial evoked potential estimation using wavelets. Computers in Biology and Medicine, 37(4):463–73.

Weeda, W. (2011). Activated Region Fitting, fMRI data analysis (3D). R package version 2.5-2.

Weeda, W., Waldorp, L., Christoffels, I., and Huizenga, H. (2009). Activated region fitting: A robust high power method for fmri analysis using parameterized regions of activation. Human Brain Mapping, 30:2595–2605.

Weeda, W., Waldorp, L., Grasman, R., van Gaal, S., and Huizenga, H. (2011). Func-tional connectivity analysis of fmri data using parameterized regions-of-interest. Neuroimage, 54:410–416.

(17)

White, H. (1980). Using least squares to approximate unknown regression functions. International Economic Review, 21:149–170.

White, H. (1982). Maximum likelihood estimation of misspecified models. Economet-rica, 50(1):1–25.

Wink, A. M. and Roerdink, J. B. T. M. (2006). Bold noise assumptions in fmri. Inter-national Journal of Biomedical Imaging, 2006:12014.

Woody, C. (1967). Characterization of an adaptive filter for the analysis of variable la-tency neuroelectric signals. Medical and Biological Engineering and Computing, 5:539– 554.

Woolrich, M., Behrens, T., Beckmann, C., and Smith, S. (2005). Mixture models with adaptive spatial regularization for segmentation with an application to fmri data. IEEE Transactions On Medical Imaging, 24(1):1–11.

Worsley, K., Marrett, S., Neelin, P., Vandal, A., Friston, K., and Evans, A. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4:58–73.

Xu, L., Johnson, T. D., Nichols, T. E., and Nee, D. E. (2009). Modeling inter-subject variability in fmri activation location: a bayesian hierarchical spatial model. Bio-metrics, 65(4):1041–51.

Referenties

GERELATEERDE DOCUMENTEN

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of

Je mag het dictaat gebruiken, maar het gebruik van aantekeningen en een rekenmachine is

Die zijn alle delers van 18, dus in elk van de factorgroepen geldt x 18 = 1 voor alle elementen x... Dus elk element van G is een nulpunt van het polynoom, dus we hebben al

Je mag het dictaat gebruiken, maar het gebruik van aantekeningen en een rekenmachine is niet toegestaan. d) Laat zien dat de groep (Z/nZ) ∗ niet cyclisch is. b) Laat zien dat N

d) Uit c) en opgave 8.4 volgt de inclusie [G, G] ⊂ N. Deze laatste groep heeft precies drie elementen waarvan de orde een deler van 3 is, namelijk 0, 4 en 8. Het gezochte aantal is

Er mag verwezen worden naar resultaten die in het dictaat bewezen zijn, maar niet naar opgaven, tenzij anders vermeld.. Op de achterkant staan formules en resultaten waar je ook

Er mag verwezen worden naar resultaten die in het dictaat bewezen zijn, maar niet naar opgaven, tenzij anders vermeld.. Op de achterkant staan formules en resultaten waar je ook

Als je de antwoorden niet op de logische volgorde opschrijft, vermeld dan duidelijk waar welk antwoord staat..