• No results found

Cover Page The following handle holds various files of this Leiden University dissertation: http://hdl.handle.net/1887/80839

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The following handle holds various files of this Leiden University dissertation: http://hdl.handle.net/1887/80839"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The following handle holds various files of this Leiden University dissertation:

http://hdl.handle.net/1887/80839

Author: Haffert, S.Y.

(2)

High-resolution integral-field spectroscopy

of exoplanets

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties te verdedigen op dinsdag 26 November 2019

klokke 11.15 uur

door

Sebastiaan Yannick Haffert

geboren te Zoetemeer, Nederland

(3)

Promotor: Prof. dr. Christoph Keller Co-promotor: Prof. dr. Ignas Snellen

Promotiecommissie: Prof. dr. Huub R¨ottgering Universiteit Leiden Prof. dr. Bernard Brandl Universiteit Leiden Prof. dr. Ewine van Dishoeck Universiteit Leiden

Prof. dr. Paul Urbach Technische Universiteit Delft Prof. dr. Roland Bacon Universit´e de Lyon

Prof. dr. Anne-Marie Lagrange Universit´e Grenoble Alpes Dr. Laura Kreidberg Harvard University

Cover design: An artist’s impression of the two accreting proto-planets around PDS 70 made by J. Olmsted (NASA/STScI). Text design by E. Timmerman (Op-tima).

ISBN: 978-94-6361-342-2

An electronic copy of this thesis can be found at https://openaccess.leidenuniv.nl c

(4)
(5)

iv

(6)

Contents

1 Introduction 1

1.1 The direct imaging challenge . . . 5

1.1.1 The Earth atmosphere . . . 5

1.1.2 Adaptive optics . . . 6

1.1.3 High-contrast imaging . . . 9

1.1.4 Post-processing . . . 11

1.1.5 The powers of ten in exoplanet spectroscopy . . . . 13

1.2 Thesis outline . . . 16

1.3 Outlook . . . 17

2 The Leiden Exoplanet Instrument 23 2.1 Introduction . . . 24

2.2 Prototype optical design . . . 25

2.2.1 LEXI Adaptive optics system . . . 25

2.2.2 Non-common path correction and coronagraph . . . 28

2.2.3 High-resolution spectrograph . . . 30

2.3 First light . . . 31

2.4 Conclusion and outlook . . . 34

3 On-sky results of the Leiden EXoplanet Instrument(LEXI) 37 3.1 Introduction . . . 38

3.2 LEXI overview . . . 39

3.3 The adaptive optics module of LEXI . . . 41

3.4 Focal-plane wavefront sensing with the cMWS . . . 44

3.5 Single-mode fiber-fed spectroscopy . . . 47

3.6 Conclusion and outlook . . . 51

4 The Single-mode Complex Amplitude Refinement corona-graph I. 55 4.1 Introduction . . . 56

4.2 Modal filtering using single-mode fibers . . . 59

4.2.1 Nulling in single-mode fibers . . . 59

4.2.2 Single-mode fiber arrays using microlenses . . . 60

4.3 Coronagraphy with a single-mode fiber array . . . 64

4.3.1 Conventional coronagraphy . . . 64

4.3.2 Direct pupil-plane phase mask optimization . . . 67

4.4 Single-mode fiber coronagraph properties . . . 73

4.4.1 Fiber mode field diameter . . . 73

(7)

CONTENTS vi

4.4.3 Spectral bandwidth . . . 78

4.4.4 Tip-tilt sensitivity and stellar diameter . . . 78

4.4.5 Sensitivity to other aberrations . . . 79

4.5 Comparison to the vortex coronagraph . . . 80

4.6 Conclusion . . . 86

5 The Single-mode Complex Amplitude Refinement corona-graph II. 89 5.1 Introduction . . . 90

5.2 Optical setup details and first results . . . 92

5.2.1 Lab setup description . . . 92

5.2.2 Fiber alignment procedure . . . 94

5.2.3 Apodizing phase plate designs . . . 94

5.2.4 Liquid crystal plate . . . 96

5.2.5 Lab setup results . . . 96

5.3 Tolerance simulation analysis . . . 104

5.3.1 Fiber alignment tolerance . . . 105

5.3.2 MLA surface . . . 106

5.3.3 Fiber mode shape . . . 107

5.3.4 FIU Monte Carlo analysis . . . 108

5.4 Conclusions . . . 110

6 Two accreting protoplanets around the young star PDS 70113 6.1 Content . . . 114

6.2 Methods . . . 121

6.2.1 VLT/MUSE observations and data reduction. . . 121

6.2.2 High-resolution spectral differential imaging (HRSDI). 122 6.2.3 Aperture photometry of both companions and SNR determination. . . 123

6.2.4 Astrometry of the Hα emission from PDS 70 b and c. 123 6.2.5 Orbit radius and mean motion resonance estimation. 126 6.2.6 SPHERE and NACO archival data reduction. . . 129

6.2.7 Astrometry and photometry extraction of PDS 70 b and c from NACO and SPHERE data. . . 130

6.2.8 Mass determination of PDS 70 c. . . 131

7 Multiplexed gratings for gas sensing in planetary atmo-spheres 135 7.1 Introduction . . . 136

(8)

vii CONTENTS

7.2.1 Bragg grating basics . . . 139

7.2.2 Multiplexed Bragg gratings . . . 141

7.2.3 Simulating diffraction efficiencies . . . 144

7.3 Advantages of multiplexed Bragg gratings . . . 145

7.4 Multiplexed Bragg grating implementation . . . 147

7.4.1 Static system . . . 147

7.4.2 Dynamic system . . . 148

7.4.3 Challenges when implementing as a hyper-spectral imager . . . 149

7.5 Applications of the Highly Multiplexed Bragg Grating . . . 151

7.5.1 Highly Multiplexed Bragg Grating instrument model 151 7.5.2 Abundance retrieval of molecular species . . . 152

7.5.3 Molecule maps . . . 154

7.5.4 Exoplanet detection . . . 156

7.6 Conclusion . . . 158

8 English Summary 161

(9)

Referenties

GERELATEERDE DOCUMENTEN

Ex vivo approaches encompass the in vitro transduction of patient-derived cells (for example, myogenic stem or progenitor cells) with gene-editing viral vectors, which is followed

Hoofdstuk 2 laat zien dat “in trans paired nicking” genoom-editing kan resulteren in de precieze incorpo- ratie van kleine en grote DNA-segmenten op verschillende loci in

Dur- ing her studies in Hebei Medical University, she received a national undergraduate scholarship in 2008 and a national graduate scholarship in 2011 from the Ministry of

Making single-strand breaks at both the target sites and the donor templates can trigger efficient, specific and accurate genome editing in human cells.. The chromatin context of

In Chapter 3, we compared the cellular auxin transport in Chara cells with that in classical land plants models, proposed the potential model for auxin polar

For starting experiments with Chara cells it is easiest to collect the algae material directly from nature and keep them alive in the lab in an aquarium for couple of days or

However, based on our detailed knowledge of auxin function, signaling and transport in land plants, combined molecular and cell physiological research in Chara and Nitella

Based on the above data, it seems that the plant hormone auxin does induce cellular physiological responses in Chara cells, such as membrane potential