• No results found

A cluster density functional theory study of the interaction of the hydrogen storage system NaAIH4 with transition metal catalysts

N/A
N/A
Protected

Academic year: 2021

Share "A cluster density functional theory study of the interaction of the hydrogen storage system NaAIH4 with transition metal catalysts"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

A cluster density functional theory study of the interaction of the hydrogen storage system NaAIH4 with transition metal catalysts

Marashdeh, A.A.

Citation

Marashdeh, A. A. (2008, March 5). A cluster density functional theory study of the interaction of the hydrogen storage system NaAIH4 with transition metal catalysts.

Retrieved from https://hdl.handle.net/1887/12626

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/12626

Note: To cite this publication please use the final published version (if applicable).

(2)

A cluster density functional theory study of the interaction of the hydrogen storage system NaAlH

4

with transition metal

catalysts

PROEFSCHRIFT

Ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus Prof. Mr. P. F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op woensdag 5 maart 2008 klokke 13.45 uur

door

Ali Awad Marashdeh

geboren te Ramtha, Jordanië in 1973

(3)

Promotiecommissie

Promotor: Prof. Dr. G. J. Kroes

Co-

Promotor: Dr. R. A. Olsen

Referent: Prof. Dr. R. Broer

Overige leden: Prof. Dr. E. J. Baerends (Vrije Universiteit Amsterdam) Prof. Dr. G. J. Kramer (Technische Universiteit Eindhoven) Prof. Dr. J. Brouwer

Prof. Dr. M. T. H. Koper Prof. Dr. M. C. van Hemert

The work described in this thesis was performed at the Leiden Institute of Chemistry, Leiden University (Einsteinweg 55, 2300 RA Leiden). It is part of the research program of Advanced Chemical Technologies for Sustainability (ACTS) and was made possible by their financial support. For the computer time, the National Computing Facilities Foundation (NCF) is acknowledged.

(4)

To my parents, wife, daughter, brothers and sisters

(5)

Contents

1 Introduction 7

1.1 Renewable energy technology ……… 7

1.1.1 The source of energy ……… 7

1.1.2 Energy storage ……… 7

1.2 Hydrogen ………. 8

1.3 Hydrogen storage ……… 8

1.4 NaAlH4 ……… 9

1.5 My research goal ……… 12

1.6 The outline of my thesis ……… 12

1.7 Outlook ……… 13

1.7.1 Ti + NaAlH4 ……… 14

1.7.2 Ti2 + NaAlH4 ……… 14

1.7.3 TiH2 + NaAlH4 ……… 14

1.7.4 (Ti, Zr, Sc, Pd, Pt) + NaAlH4 ……… 15

1.7.5 The hydrogenation process and dehydrogenation of Na3AlH6 …… 16

1.8 References ……… 16

2 Methods and approximations 21 2.1 The Born-Oppenheimer approximation: separating the nuclear and electronic motions ...…...……… 21

2.2 Solving the electronic Schrödinger equation by Density Functional Theory… 23 2.3 Finding (local) minima on the potential energy surface ……… 25

2.4 A cluster approach to modeling NaAlH4 ……… 27

2.5 References ……… 28

3 A density functional theory study of Ti-doped NaAlH4 clusters 31 3.1 Introduction ……… 31

3.2 Method ……… 33

3.3 Results and Discussion ……… 34

3.3.1 Undoped NaAlH4 clusters: Electronic structure and stability …… 34

(6)

3.3.2 Ti-doped NaAlH4 clusters ……… 38

3.4 Conclusions ……… 41

3.5 References ...……… 42

4 NaAlH4 clusters with two titanium atoms added 45 4.1 Introduction ……… 45

4.2 Method ……… 48

4.3 Results and Discussion ……… 50

4.3.1 The adsorption of two titanium atoms on the surface of the Z=23 cluster ………. 50

4.3.2 The stability of the two titanium doped NaAlH4 clusters ………… 54

4.3.2.1 Ti exchanging with Na ……… 54

4.3.2.2 Ti exchanging with Na and Al ……… 55

4.3.2.3 Ti exchanging with Al ……… 55

4.3.2.4 Ti in interstitial sites ……… 56

4.3.3 Is Ti found on the surface or inside the cluster? ……… 56

4.3.4 Does Ti prefer to be inside the NaAlH4 cluster or in Ti bulk? …… 57

4.3.5 Density of electronic states of Ti doped clusters ……… 58

4.3.6 A proposed model for the role of Ti ……… 61

4.4 Conclusions ……… 62

4.5 References ……….……… 63

5 A density functional theory study of the TiH2 interaction with a NaAlH4 cluster 67 5.1 Introduction ……… 67

5.2 Method ……… 71

5.3 Results and Discussion ……… 72

5.3.1 The adsorption of TiH2 on the (001) surface of the cluster ……… 72

5.3.2 The stability of TiH2 inside the cluster ……… 74

5.3.3 The interaction of H2 with a Ti, Na or Al atom on the surface of the cluster ……… 75

5.3.4 The local structure around Ti ……… 77

(7)

5.3.5 Further support of the zipper model ……… 78

5.4 Conclusion ………. 79

5.5 References ……… 80

6 Why Some Transition Metals are Good Catalysts for Reversible Hydrogen Storage in Sodium Alanate, and Others are not: A Density Functional Theory Study 83 6.1 Introduction ……… 83

6.2 Method ……… 87

6.3 Results and Discussion ……… 90

6.3.1 Adsorption of TM atoms on NaAlH4(001) ……… 90

6.3.2 Absorption of TM atoms in the surface of NaAlH4(001) ………… 93

6.3.3 Interpretation with a zipper model for mass transport ……… 97

6.4 Conclusions ……… 98

6.5 References ……… 99

7 Zero point energy corrected dehydrogenation enthalpies of Ca(AlH4)2, CaAlH5 and CaH2+6LiBH4 103

7.1 Introduction ……… 103

7.2 Method ……… 105

7.3 Results and Discussion ……… 106

7.4 Conclusions ……… 110

7.5 References ……… 110

Summary 113

Samenvatting 119

Curriculum Vitae 125

Publication list 127

Acknowledgment 129

Referenties

GERELATEERDE DOCUMENTEN

A complete set of equations was derived, describing the equilibrium hydrogen partial pressure, the equilibrium electrode potential, the exchange current density, and the

6.4: Final optimised geometry for the Zr atom adsorbed on /absorbed in different positions relative to the (001) surface of the (Z=23) NaAlH 4 cluster, for the most favourable

After studying the adsorption of the TiH 2 molecule on the (001) surface of NaAlH 4 in different sites, the TiH 2 molecule or its Ti atom was moved inside the cluster either by

In this thesis some periodic bulk calculations have been performed, those presented in Chapters 3 through 6 with ADF-BAND code [14] with the same basis and fit sets as used in

We have found that large geometry optimized clusters (tetragonal cluster of 20 and 42 NaAlH 4 formula units, and semispherical clusters of 23 and 45 NaAlH 4 formula units)

(f) Two Ti atoms absorb in interstitial sites between the first and the second layer [2Ti@Inter_12]. The energy reference used is discussed in Section 2. The notations used to

We have performed density functional theory calculations at the generalized gradient approximation (PW91) level for a NaAlH 4 cluster with TiH 2 adsorbed on (absorbed in) the

Calculations employing a cluster model of NaAlH 4 have shown that Ti atoms present on NaAlH 4 (001) in monoatomically dispersed form prefer to exchange with a surface Na