• No results found

composites dioxide nanofibers Visible light reduction photocatalytic of Cr(VI) by surface modifiedCNT/titanium Journal of Molecular Catalysis A: Chemical

N/A
N/A
Protected

Academic year: 2022

Share "composites dioxide nanofibers Visible light reduction photocatalytic of Cr(VI) by surface modifiedCNT/titanium Journal of Molecular Catalysis A: Chemical"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Journal of Molecular Catalysis A: Chemical

j o ur na l h o me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / m o l c a t a

Visible light photocatalytic reduction of Cr(VI) by surface modified CNT/titanium dioxide composites nanofibers

Alaa Mohamed

a,c,∗

, T.A. Osman

b

, M.S. Toprak

a

, M. Muhammed

a

, Eda Yilmaz

d

, A. Uheida

a,∗

aDepartmentofMaterialsandNanoPhysics,KTH−RoyalInstituteofTechnology,SE16440,Stockholm,Sweden

bMechanicalDesignandProductionEngineeringDepartment,CairoUniversity,12613Giza,Egypt

cProductionEngineeringandPrintingTechnologyDepartment,AkhbarElYomAcademy,12655Giza,Egypt

dNationalNanotechnologyResearchCenter,BilkentUniversity,06800Ankara,Turkey

a r t i c l e i n f o

Articlehistory:

Received26June2016

Receivedinrevisedform22July2016 Accepted11August2016

Availableonline12August2016

Keywords:

Photocatalyticreduction Chromium(VI) Compositenanofibers Visiblelight

a b s t r a c t

InthisworkwereportahighlyefficientphotocatalyticreductionofCr(VI)basedonPAN-CNT/TiO2-NH2

compositenanofibersfabricatedbyusingelectrospinningtechniquefollowedbychemicalcrosslinking ofsurfacemodifiedTiO2NPsfunctionalizedwithaminogroup.Thestructureandmorphologyofthefab- ricatedcompositenanofiberswerecharacterizedbyFTIR,SEM,TEM,TGA,andXPS.Theresultsindicate thatthecompositenanofiberspossessexcellentphotoreductionperformanceforCr(VI)undervisible light(125W)after30min,whichismuchfasterthanpreviousreports.Theeffectsofvariousexperi- mentalparameterssuchascatalystdose,irradiationtime,initialconcentrationofCr(VI),andpHonthe photoreductionefficiencyofCr(VI)wereinvestigated.ThehighestphotoreductionefficiencyofCr(VI) wasobtainedatlowacidityandlowamountofTiO2/CNTphotocatalyst.Thekineticexperimentaldata wasattainedandfittedwellwithapseudo-first-ordermodel.TheUV–visspectrophotometerandXPS analysesprovedthatchromateCr(VI)wasreducedtoCr(III).Inaddition,itcanbeconcludedthatthe additionofthephenolenhancesthephotocatalyticreductionofCr(VI).Furthermore,thephotoreduction mechanismhasalsobeendiscussed.Finally,thefabricatedcompositenanofiberswerefoundtobestable afteratleastfiveregenerationcycles.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Chromium plays an essential role in plant and animal metabolism,andiswidelyusedinmanyindustrialprocessessuch aselectroplating,textiledyeing,paint,leathertanneries,andpig- mentindustriesascriticalindustrymaterials[1].Crexistsmainly inhexavalentCr(VI)andtrivalentCr(III)formsinthenaturalenvi- ronment[2].ThehexavalentchromiumCr(VI)ishighlytoxicand carcinogenictohumans,animals,and plants.The WorldHealth Organization(WHO)recommendsthemaximumallowablelimit forthedischargeofCr(VI)intoinland surfacewateris 0.1ppm, andintothedrinkingwateris0.05ppm.Therefore,thepreferred treatmentisa reduction ofCr(VI)totheless harmfulCr(III), in ordertoavoidthedeleteriousimpactoftheCr(VI)onthehuman health. Toxicity of Cr(III) is relatively low and it is one of the essentialmicronutrientforhumanhealth[3].Inreality,industrial

∗ Correspondingauthor.

E-mailaddresses:alakha@kth.se(A.Mohamed),salam@kth.se(A.Uheida).

wastewaterconsistsofamixtureoforganicandinorganicpollu- tants.Therefore,phenoliccompoundsareusedasamodelpollutant becausetheyarewidelyusedinthepreparationofresins,herbi- cides,andfungicideswhicharehighlytoxictomostaquaticlife [4,5].Therefore,thereisanurgentneedtoremovephenolfromthe wastewater.

Hence, the reduction of Cr(VI) into Cr(III) received great attentionintheenvironmentalremediationprocesses.Different techniqueshavebeenreportedforthetreatmentofCr(VI)pollution includingchemical reduction,ion exchange,sorption, photocat- alytic, and bacterial reduction [6–10]. However, most of these methodsrequireeitherhighenergyorlargequantitiesofchem- icalsand arenotwidelyused[8,9].Recently, thephotocatalytic processeshavereceivedconsiderableattentionbecausebeingeco- nomicallyviable,facile,andeffectivemethodforarapidefficient destructionofenvironmentalpollutants[11,12].Manysemicon- ductorcatalysts,suchasTiO2,ZnO,ZnS,ZrO2,CdSandWO3,have beenstudiedtoinvestigatethephotocatalyticreductionofCr(VI)to Cr(III)[13–19].Amongvarioussemiconductorcatalysts,TiO2was consideredasoneofthemostpromisingcandidatesduetoitsopti-

http://dx.doi.org/10.1016/j.molcata.2016.08.010 1381-1169/©2016ElsevierB.V.Allrightsreserved.

(2)

solutionafterreactionisessential,becauseitisdifficulttoseparate andrecoverafterprocessingwithwastewater,causingsecondary pollutionand thisprocess istime consumingand costly,which limitsitsapplicationforwaterpurification.Therefore,researchers are focusing on the development of polymer based compos- itematerials,mainlybyincorporationordepositionofmetalor semiconductor and metal semiconductor NPs in/on polymeric nanofibersduetotheirenhancedpropertiesandpotentialappli- cationincatalysisandenvironmentalremediation[23–25].Inthis regard,electrospinningtechniqueisaneconomicandeffectiveway ofsynthesizingpolymer nanofibers[26,27],which displaylarge specificsurfacearea,finefabricstructure,highaspectratio,flex- iblesurfacefunctionality,tunablesurfacemorphologiesandbetter adsorptionaswellasfiltrationproperties[28,29].Polyacrylonitrile (PAN)isthemostwidelyusedpolymerformanufacturinghighper- formancefibersduetoitsexcellentcharacteristicsandcommercial availability,aswellasitsnon-toxicnature[30].Accordingtoour knowledge,fewstudiesworkingonthereductionofCr(VI)under visiblelightirradiationusingnanocompositesmaterials[31–35].

Thesestudieshavealot ofproblemlikelongerirradiationtime (2–4h)andhighpowerintensity(>125W)toobtainthemaximum reduction.

Inthis work,wedevelop anewsystembased oncomposite nanofibersconsistingofPAN, andCNTfabricatedusinganelec- trospinningtechniquefollowedbyfurthercrosslinkingofsurface amino-modifiedTiO2NPstothesePAN/CNTnanofibrousmatrices inordertoincreasetheadsorptionofheavymetalsduetothelarge numberofbindingactivesitesincorporatedonthesurfaceofTiO2 NPs.Ourpreviousworkverifiesthesuccessofthissystemunder UVandvisiblelightirradiationcomparedtoearlierreports[36,37].

Theobjectivesofthisstudyweretofabricatecompositenanofibers containingPAN polymer, MWCNT, and surface amino-modified TiO2NPsandtodevelopanefficientandeconomicphotocatalytic compositenanofibersforthephotoreductionofCr(VI)inaqueous solutionsunder visible light irradiation.The effectof operating parametersincludesinitialsolutionpH,theamountofphotocat- alyst,andCr(VI)concentrationonthephotocatalyticreductionof Cr(VI)wereinvestigated.Furthermore,thesynergisticphotocat- alyticmechanismhasalsobeendiscussed.

2. Experimental

2.1. Materials

Polyacrylonitrile, PAN (MW=150,000); N,N- dimethylformamide (DMF), sodium hydroxide (NaOH) and hydrochloricacid(HCI),titaniumdioxidepowder(TiO2 Degussa P-25),and3-aminopropyltriethoxysilane(APTES),werepurchased from Sigma Aldrich. Multi-walled carbon nanotubes, MWCNTs (purity 95wt%; diameter: 10–40nm; length: 20␮m; specific surface area 460m2/g) were synthesized and the procedure is describedelsewhere[38].Potassiumdichromate(K2Cr2O7), and caffeic acid(3,4-dihydroxycinnamic acid, 99%)were purchased

theexcesssolvent.Inaddition,thesurfacefunctionalizationofTiO2 nanoparticleswiththeaminogroupwascarriedoutaccordingtoa well-establishedproceduredescribedinRef.[39].Thecrosslinking ofthePAN/CNTcompositenanofiberstoTiO2-NH2NPswascarried outasdescribedelsewhere[36].

Themorphology of thecomposite nanofiberswas examined usingScanningElectronMicroscopy(SEM,GeminiZeiss-Ultra55) and Transmission Electron Microscopy (TEM, JEM-2100F, Joel).

Fouriertransforminfraredspectroscopy(FTIR,NicoletiS10)was usedtoindicatethespectraofPANandPAN-CNT/TiO2-NH2com- positenanofibersbeforeand afterCr(VI)reduction.Thethermal stabilitiesofthecomposite nanofibersamplesweredetermined byusingthermogravimetricanalysis(TGA),TGAQ500,TAinstru- ment.Thiswasdonebyheatingthesamplefromroomtemperature until 800C witha heating rateof 20Cmin−1 undersynthetic air. The concentrationof Cr(VI) in the solutionwas measured usingUV–vis/NIRspectrophotometer(modelLAMBDA750,Perkin Elmer).SurfacechemicalcompositionsofPAN-CNT/TiO2-NH2com- positenanofiberswereanalyzedusingThermoScientificK-Alpha x-ray photoelectron spectrometer with monochromated Al K␣ radiation.Samplesurfacewasneutralizedagainstchargingwith flood gunemissionduring themeasurementsand allthe spec- trawerecorrectedaccordingtotheC1speakagainstadditional chargingeffects.

2.3. Photocatalyticreductionexperiments

Photocatalyticexperimentswereconductedinacolumn(2cm diameter, 30cm height) in which composite nanofibers matof 5cm×5cmwasplacedinthemiddleofthecolumn.A30mLaliquot ofCr(VI)withinitialCr(VI)concentrationof20mg/Lwasused.The columnwasshakingatroomtemperaturefor30minandcovered fromanysourceoflighttoassurethattheadsorptionequilibrium ofCr(VI)wasreached. Thesolutionwaspumpedata flowrate of7mL/min.Thelight intensityobtainedfromtheXenonlamp (125W,420nm)wasdeterminedtobe100mW/cm2.Duringillu- mination,3mLofthesuspensionwastakenfromthecolumnat scheduledintervals.TheCrconcentrationpriortoandafterphoto- catalyticreductionwasmeasuredthreetimesusingaUV–vis/NIR spectrophotometer.

3. Resultsanddiscussions

3.1. Catalystcharacteristics

TheSEMandTEMimagesofphotocatalyticmaterialcomposed ofPAN-CNT/TiO2-NH2areshowninFig.1.TiO2NPsaredistributed onthesurfaceofnanofibers,whichconfirmsthatTiO2NPsattached tothesurfaceofnanofibersduetothecrosslinkingprocedure.The compositenanofibersappearsmoothanduniformwithanaverage diameterof126±4nm.

In orderto confirmthesurface functionalizationof thefab- ricated composite nanofibers, FTIR spectra of PAN nanofibers, and PAN-CNT/TiO2-NH2 composite nanofibers before and after

(3)

Fig.1. (a)SEMand(b)TEMmicrographofPAN-CNT/TiO2-NH2compositenanofibers.

3500 3000 2500 2000 1500 1000 500

Cr-Cr=OO

(c) (b)

% Tr an sm itt an c e

Wavenumber (cm

-1

)

(a)

C-H C=N

NH2

O-H C=O N-H

C-C N-O C-H C-H

Fig.2.FTIRspectraof(a)PAN(b)PAN-CNT/TiO2-NH2and(c)PAN-CNT/TiO2-NH2

loadedwithCr(VI).

thephotoreductionof Cr(VI)wereobtainedas shownin Fig.2.

Thespectrumfor PAN nanofibersexhibited characteristicpeaks ofnitrile(2342cm−1),carbonyl(1700cm−1)andC Hstretching (3159cm−1)[40].FromFig.2b,thepeakcorrespondingtonitrile is markedly decreased due to theconversionof nitrile toami- doxime,afterthe crosslinkingof (PAN-CNT)to(TiO2-NH2).The absorptionintherange3100–3700cm−1 isassignedtoN Hand O Hvibrations.ThebendingvibrationsoftheaminegroupNHor NH2 observedat1680cm−1confirmtheconversionofthenitrile grouptoamidoxime[41].Thebandobservedat3159,1520,and 1152cm−1assignedtothealiphaticC Hbendingvibrationofthe CH2ofpolymericchain,whilethebandobservedat900cm−1 is assignedtoN O.AfterthephotoreductionofCr(VI)atpH2,Fig.2c two new peaksat 620 and 570cm−1 appear in the FTIR spec- trumof compositenanofibers,which areattributedtotheCr–O andCr=ObondsfromtheCr(VI)species.Inaddition,thebandat 1200–1470cm−1correspondingtoN HandO Hbendingiscon- siderablyincreasedduetothepresenceofCr(VI)suggestingthatthe amineandoximegroupofamidoximeareinvolvedinthebinding ofchromiumduringCr(VI)uptake[42].

Fig. 3 shows TGA thermograms of PAN nanofibers, PAN- CNTcompositesnanofibers, andPAN-CNT/TiO2-NH2 composites nanofibersinthetemperaturerangefromroomtemperatureto 800C.ThethermogramofPANnanofibersshowsthree decom- positionsteps.Inthefirststageupto290C,therewasnoweight

0 100 200 300 400 500 600 700 800 0

20 40 60 80 100

Wei g h t ( % )

Temperature (

o

C)

40.6 %

9.6 %

(a) (b) (c)

Fig.3. TGAthermogramsof(a)PANnanofibers,(b)PAN-CNTnanofibers,and(c) PAN-CNT/TiO2-NH2compositesnanofibers.

loss.About,∼45%ofweightlosswasobservedinthesecondstage from290Cto300C,indicatingthatasignificantchemicalreac- tiontookplace,andvolatilegassesevolved.Inthelaststageupto 720C,completedecompositionwasobserved.Furthermore,the weightofthePAN-CNTcompositenanofibersdecreasedrapidlyin thetemperaturerangeof338–650C,duetothecombustionand decompositionofcompositenanofiberstakingplaceatthistem- peraturerange.Afterthetemperaturewasincreasedto650C,the CNTremainedandnomoreweightlossoccurred,whichmeantthat nanofiberswereremovedcompletely.ForthePAN-CNT/TiO2-NH2 compositenanofibers,theweightdecreasedrapidlyinthetemper- aturerange338–705C,afterthattheTiO2remainedandnomore weightlossoccurred,whichmeantthatnanofiberswereremoved completely.Moreover,theTiO2contentinthecompositescouldbe easilycalculatedfromtheweightremainderafterthesampleswere heatedover705C.SincethesamplePANnearlycompletelydisap- pearedover720C,theCNT/TiO2andCNTcontentsincompositions weredeterminedtobe40.6wt%and9.6wt%forthesamplePAN- CNT/TiO2-NH2andPAN-CNTcompositenanofibers,respectively.

3.2. PhotocatalyticperformanceofPAN-CNT/TiO2-NH2

compositesnanofibers

3.2.1. Effectofcatalystcontent

Theamountofcatalystisanimportantparameterinoptimiz- ingtheoperationalconditions.Inthisstudy,theeffectofcatalyst loadingonthephotoreduction ofCr(VI) wasinvestigatedusing

(4)

0 10 20 30 40 50 60 0.0

Irradiation Time (min)

250 300 350 400 450

Wavelength (nm) Fig.4.EffectofcatalystdosageonphotoreductionefficiencyofCr(VI)(Cr(VI)=20ppm,andpH2).

acatalystdosage(TiO2/CNT)rangingfrom10to35mgtoavoid anineffectiveexcessamountofthephotocatalystandtheresults obtainedareshownin Fig.4.Theresultsindicatethatthepho- toreductionefficiencyofCr(VI)graduallyincreasesasthecatalyst dosageincreasesfrom10to35mg.Thismaybeattributedinterms ofavailabilityoftheactivesitesonthephotocatalystsurfaceand thepenetrationofvisiblelightthroughthewater,leadingtoan increaseinthephotoreductionofCr(VI)[43,44].

3.2.2. Effectofirradiationtime

In this study, the photoreduction activity of Cr(VI) using PAN-CNT/TiO2-NH2andPAN/TiO2-NH2compositenanofiberswas investigatedunderthevisible lightasa functionof thecontact time.ThephotoreductionexperimentsofCr(VI)wereconducted atinitialCr(VI)concentrationof20mg/L,pH2andtheamountof photocatalystis20mg.TheresultsobtainedareshowninFig.5.It canbeseenthatabout60%ofphotoreductionwasachievedinless than15minirradiationtimeusingPAN-CNT/TiO2-NH2composites nanofibers,andacompletereductionwasobservedafter30min.

Thismaybeduetotheavailabilityofmoreactivebindingsiteson thesurfaceofTiO2NPsthatcrosslinkedtothecompositenanofibers inordertoincrease theadsorptionof Cr(VI),thereforeenhance thephotoreduction efficiency. Furthermore,the PAN-CNT/TiO2- NH2compositenanofibersleadtohighloadingofCr(VI)inashort time,duetoincreasedactivesurfacesiteswhichwillfacilitatehigh exposureoflightandthenhighphotoreductionefficiency.Accord- ingtopreviousstudiesundervisiblelightathighpowerof500W [31–35],ittakesabout2–4htogetacompletephotoreduction.On theotherhandforthePAN/TiO2-NH2compositenanofibersabout 50%ofphotoreductionwasachievedinlessthan20minirradia- tiontime andnochangesinthephotoreductionefficiencywere observedafter30minirradiationtime.Theseresultsindicatedthat thephotocatalyticreductionefficiencyincreasedwiththeincorpo- rationofCNTsandTiO2.Thistrendresultedfromthehighsurface areaofCNTs/TiO2photocatalytic.Inaddition,CNTscaneffectively generateagreaternumberofelectronsandholes,andaccelerate theprocess of thephotocatalytic reactionto enhancethe pho- tocatalyticactivity.The photoreduction efficiencyof Cr(VI)was determinedfromtheresultsobtainedfromUV–visspectroscopy.

Theresultsobtainedareshown inFig.5b inwhich thepeak at 350nmcorrespondingtoCr(VI)wasshiftedto302nm,correspond- ingtoCr(III).Thekineticexperimentsdataofthephotocatalytic reductionofCr(VI)areshowninFig.5cwassuccessfullyfittedwell usingcommonlyappliedpseudo-first-orderequation[45],which canbeexpressedasfollows:

ln



C

0

C



=kat (1)

WhereC0istheinitialconcentrationofCr(VI)andCistheconcen- trationofCr(VI)ataspecifictime,andkaistherateconstantof pseudo-firstordermodel(min−1).

3.2.3. EffectofpHonthephotoreductionofCr(VI)

pH of the solution plays a major role in the photocatalytic processasitisknowntoinfluencethesurfacechargeofthesemi- conductor thereby affectingthe adsorption, interfacial electron transfer,and the photoreductionprocess [46]. Theeffect ofpH onthephotocatalyticreduction efficiencyofCr(VI)ispresented inFig.6.Asobserved,thephotoreductionefficiencyofCr(VI)was highlydependentonthe pHwithmaximum photoreductionat pH=2. TheamountofCr(VI)decreased intheaqueoussolution withincreasingpH.AsseenfromFig.6that100%photoreduction efficiencyofCr(VI)wasobtainedatpH2.Then,thephotoreduc- tionofCr(VI)decreasedsharplyto72%aspHvalueincreasedto 9.Thevariation inreductionefficiencyof Cr(VI)atdifferentpH valuesmaybeattributedtotheaffinitiesofPAN-CNT/TiO2-NH2 compositesnanofibersforthedifferentspeciesofCr(VI)existing atacidicpHvaluesnamelyH2CrO40,HCrO4,CrO42−,andCr2O72−

[40].TheNH2groupsonthesurfaceoftheTiO2nanoparticlescan eitherbeprotonatedtoformNH3+atlowpHorbedeprotonated toformNH2···OH athighpH.Itisclearthatnegativelycharged HCrO4and Cr2O72− areeasilytobeadsorbedtothepositively chargedPAN-CNT/TiO2-NH2compositesnanofibersatlowpHval- uesduetotheelectrostaticattraction,thereforeahigheryieldof photoreduction[47,48].Theelectrostaticrepulsionbetweenneg- ative Cr(VI)species and negatively chargedPAN-CNT/TiO2-NH2 compositesnanofibersincreasedwithincreasingpHvalues,and therebyresultedinthedecreaseofthereductionofCr(VI)[49].To investigatethekineticsofCr(VI)photoreductionunderdifferent pHvalues,theexperimentaldataweresuccessfullyfittedusingthe pseudo-firstorderasshownin(Fig.S1,Supplementarydata).

3.2.4. EffectofCr(VI)initialconcentration

TheeffectofinitialCr(VI)concentrationonthephotoreduction efficiencyofCr(VI)ontoPAN-CNT/TiO2-NH2compositenanofibers wasstudied at initialCr(VI) concentration of 10–100mg/L and pH=2. The obtainedresult areshown in Fig. 7 shows thatthe photoreductionefficiencyofCr(VI)graduallydecreaseswiththe increaseoftheinitialCr(VI)concentrationfrom10to100mg/L.

Thecompletereductioncanbeachievedafter30minat10–20mg/L initialCr(VI)concentration,whiletherespectivevaluedecreasesto 79%at100mg/L.Apossibleexplanationhastodowiththefactthat increasedCr(VI)concentrationincreasesthesolutionabsorbance and,therefore,agreaterfractionofthelightisinterceptedbefore reachingthecatalystsurface,thusdecreasingthedegreeofreduc-

(5)

Fig.5.(a)PhotoreductionofCr(VI)undervisiblelightirradiation(b)UV–viscurvesofCr(VI)beforeandafterphotoreduction(c)Fittingofpseudo-firstordermodel,(Cr (VI)=20ppm,pH=2,catalystamount=20mg).

250 300 350 400 450

pH 9 pH 7

pH 5

pH 4 pH 3

Absorption (a.u.)

Wavelength (nm)

pH 2

(a)

0 10 20 30 40 50 60

0.0 0.2 0.4 0.6 0.8 1.0

C/C0

Irradiation Time (min)

pH 2 pH 3 pH 4 pH 5 pH 7 pH 9

(b)

Fig.6.(a)UV–visspectraofphotoreductionofCr(VI)atdifferentpH(b)PhotoreductionofCr(VI)atdifferentpHontoPAN-CNT/TiO2-NH2compositenanofibers.

tion[33].Thekineticexperimentsforthephotoreductionofvarious concentrationsofCr(VI)areshownin(Fig.S2,Supplementarydata) wassuccessfullyfittedusingpseudo-first-order.Accordingto(Fig.

S2,Supplementarydata)withtheincreaseoftheinitialconcentra- tionofCr(VI),therateconstantkadecreased.Thiscanbeattributed totheincreaseinCr(VI)concentration,whichdecreasesthepath lengthofphotonsenteringintothereactionmixture,andfewer

photonsreachthecatalystsurface.Inaddition,theunchangeable value of light intensity,the amount of catalyst and irradiation timeleadtothedecreaseoftheavailabilityofactivesites.Con- sequently,thephotoreductionefficiencyofCr(VI)decreasesasthe concentrationincreases[3,50,51].Moreover,anincreaseinCr(VI) concentrationcanleadtothesaturationofthelimitednumberof

(6)

250 300 350 400 450 Wavelength (nm)

0 10 20 30 40 50 60

0.0

Irradiation Time (min)

Fig.7. (a)UV–visspectraofphotoreductionofCr(VI)atdifferentconcentration(b)PhotoreductionofCr(VI)atdifferentinitialconcentrationontoPAN-CNT/TiO2-NH2

compositenanofibers.

accessibleactivesitesonthephotocatalystsurface,resultingina reductioninthephotoreductionefficiency.

3.2.5. XPSdataanalysis

Inordertoinvestigatetheinfluenceactivityofthephotocat- alyticcompositenanofibersonthephotoreductionofCr(VI),the compositenanofibers afteradsorptionstep inthedarkand the photoreductionstep under visiblelight irradiation wasdirectly examinedbyXPS.Fig.8showntheXPSpatternsofthecompos- itenanofibers,whichshowedtheCr2pspectrarecordedforCr(VI) andCr(III).AstheCr2ppeakisadoublet,thepeakcomponentat lowerbindingenergycorrespondstoCr2p3/2orbital,whilethose athigherbindingenergycorrespondtoCr2p1/2orbital.Beforethe photoreductionprocesstookplace,bandscorrespondingtoCr(VI) appearedatabindingenergyof579.2and588.3eV,whichcon- firmstheadsorptionofCr(VI)onthesurfaceofPAN-CNT/TiO2-NH2

compositenanofibers.Aftertheirradiationofthenanocomposites withvisiblelight,newsignificantbandsappearcorrespondingto Cr(III)bindingenergyof577.1and586.5eV,whichconfirmsthe reductionofCr(VI)toCr(III)ontoPAN-CNT/TiO2-NH2composite nanofibers[52].Thewide-scanXPSspectrumshowsalsofourpeaks at458.2eV,531.3eV,284.6eV,and399.3eVcorrespondingtoTi2p, O1s,C1s,andN1s,respectively,indicatingtheexistenceofTi,O, C,andNelements.ThepeaksintheTi2pspectrumat458.2eVand 464.1eVrepresentedtoTi2p3/2andTi2p1/2,respectively,indicat- ingthattitaniumboundedtooxygenremainsinoxidationstateIV forthetitanium-oxocluster.TheO1sspectrumhasabroadpeakat 531.3eVthatisindicativeofoxygeninmetaloxidessuchasTiO2. Inaddition,thepeaksintheN1sregionat399.3eVcanbeassigned totheNoftheaminefunctionality.

3.2.6. PhotoreductionofCr(VI)inthepresenceofphenol

ThePAN-CNT/TiO2-NH2compositenanofiberswastestedsimi- larlytotheindustrialwastewaterconsistsofamixtureoforganic andinorganicpollutants.Inthisexperiment,wetestedthePAN- CNT/TiO2-NH2compositenanofibersat20ppmofCr(VI)aqueous solution and 20ppm of phenol as a combination of pollutants incontinuousmode[53,54].Fig.9shows thekineticfirst-order reaction for thedegradation efficiency of phenol and the pho- toreductionofCr(VI)intheabsenceorpresenceofphenol.This synergismisbasedonthephotogeneratedelectronsandholeson thesurfaceofthecompositenanofibers[22–26].Theresultsindi- catedthattherateofCr(VI)photoreductionwasabout1.4times higherinthepresenceofphenolthaninitsabsence,whichcan beexplainedbasedonthemechanismasdescribedinthefollow-

ingsections.Therefore,simultaneousredoxreactionsincreasethe efficiencyofthereaction,withaconcomitantdecreaseofwater treatmentcost.

3.2.7. Proposedreductionmechanism

ThemechanismofphotoreductionofCr(VI)canbesimplified schematicallyasshowninFig.10.TheNH2groupsonthesurface oftheTiO2/CNTcomposite nanofiberscaneitherbeprotonated toformNH3 atlowpH.ItisclearthatnegativelychargedCr(VI) speciesareeasytobeadsorbedtothepositivelychargedTiO2/CNT composite nanofibersat lowpH values dueto theelectrostatic interaction.AftervisiblelightirradiationCr(VI)reducedtoCr(III)on thesurfacesofTiO2/CNTcompositenanofibersandreleaseintothe solutionbyelectrostaticrepulsionbetweentheprotonatedsurfaces ofTiO2/CNTandthecationCr(III). ThephotoreductionofCr(VI) achievedundervisiblelight,whereTiO2/CNTNPsleadstothegen- erationofelectron-holepairsatthesurfaceofthephotocatalyst (Eq2).Afterthemigrationofelectron-holepairstothesurfaceof theparticles,thephotogeneratedelectronsreduceCr(VI)toCr(III) (Eq.(3)),andtheholesmayleadtogenerationofO2(Eq.(4))and produceOHradicalsintheabsenceofanyorganics(Eq.(5))[55].

Phenolcanscavengethevalencebandholeinthephotocatalytic reactionsystemleadingtoaninhibitionofrecombinationofelec- tronand holepairsonthecatalystsurface andacceleratingthe reductionofCr(VI)byphotogeneratedelectrons[56].Inthepres- enceofphenol,theholescanproduceOHradicalsmorethanin thepresenceofCr(VI),whichcanfurtherdegradethephenolto CO2 andH2O(Eq.(6))[57].Therefore,theholescanalsodirectly oxidizethephenol(Eq.(7)).

TiO2/CNT+h→h++e (2)

Cr2O72+14H++6e→2Cr3++7H2O (3)

2H2O+4h+→ O2+4H+ (4)

H2O+h+OH+H+ (5)

OH+Phenol →CO2+H2O (6)

H++Phenol →CO2+H2O (7)

3.2.8. Catalystreuse

Thereuseofthecatalystisconsideredasanimportantaspect and an economic necessity. In these experiments, the PAN- CNT/TiO2-NH2 composite nanofibers were used in consecutive photocatalytic conditions in order toevaluatethe durability of thecompositenanofibers.Attheendofeachcycle,thecomposite

(7)

595 590 585 580 575 570 Cr 2p1/2

Cr 2p3/2

Dark

Intensity (a.u.)

Binding Energy (eV) Cr 2p

Visible Light

472 468 464 460 456

458.2 eV Ti 2p

Intensity (a.u.)

Binding Energy (eV)

543 540 537 534 531 528 525

531.3 eV O 1s

Intensity (a.u.)

Binding Energy (eV)

294 291 288 285 282

284.6 eV C 1s

Intensity (a.u.)

Binding Energy (eV)

408 405 402 399 396 393

399.3 eV

Intensity (a.u.)

N 1s

Binding Energy (eV)

Fig.8. XPSspectraofthePAN-CNT/TiO2-NH2compositenanofibersforCr(VI)beforeandafterphotocatalyticreductionprocess.

nanofiberswaswashedwithdeionizedwaterandthendriedinair.

ThephotoreductionefficiencyofPAN-CNT/TiO2-NH2 composites nanofibersslightlydecreasedwiththecyclenumberrepeatedas showninFig.11.Afterfiveconsecutiveadsorption-photoreduction cycles,thephotoreductionefficiencyofthecompositesnanofibers decreasedbyabout3%,whichimpliesthatthecatalystretainedits photoreductionactivityforCr(VI).Theslightdecreaseofthepho- toreduction performance of thePAN-CNT/TiO2-NH2 composites nanofibersmight bedue totheadsorptionof theCr(III) gener- atedafterphotocatalyticreactions,whichresultsinthedecrease ofadsorptionandactivesitesonthesurfaceofPAN-CNT/TiO2-NH2

compositesnanofibers.Theseresultshavedemonstratedthatthe goodstabilityandreusabilitypropertywouldgreatlypromotethe

practicalapplicationsofcompositenanofibersinthereductionof heavymetalpollutantsfromwastewater.

4. Conclusions

Accordingtotheresultsobtainedinthiswork,thefabricated compositenanofibersdisplaypromisingphotocatalyticreduction efficiencyforCr(VI)inaqueoussolutionundervisiblelightirra- diation.Thekineticsofthephotoreductionprocessshowedthat completephotoreductionwasachievedafterapproximately30min andtheexperimentaldatafolloweda pseudo-first-ordermodel.

ThephotoreductionefficiencyofCr(VI)washigherinacidicsolu- tionsthanthatinalkalinesolutionsduetotheCr(VI)speciesand

(8)

0 10 20 30 40 50 60 0.0

Irradiation Time (min)

0 5 10 15 20 25

0

Irradiation Time (min)

Fig.9. PhotoreductionofCr(VI)intheabsenceorpresenceofphenol.(Cr(VI)=20ppm,phenol=20ppm,catalystamount=20mg,andpH2).

Fig.10. ProposedmechanismofphotocatalyticreductionofCr(VI)undervisible-lightirradiation.

0 20 40 60 80 100

Photoreduction efficiency (%)

Regeneration cycle

1st 2nd 3rd 4th 5th

Fig.11.ReusabilityofthecompositenanofibersforthephotoreductionofCr(VI).

theprotonationdegreeofthephotocatalyticsurface.Theaddition ofphenolenhancesthephotoreductionofCr(VI),duetoitsability

toadsorbonthecatalystsurface,whichcanalsoactasaholescav- enger.TheUV–visspectrophotometerandXPSanalysesprovedthat chromateCr(VI)wasreducedtoCr(III).Furthermore,theflexibil- ityandthereuseofthePAN-CNT/TiO2-NH2compositenanofibers, revealtheirpromising potentialforadvanced wastewatertreat- ment.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in theonlineversion,athttp://dx.doi.org/10.1016/j.molcata.2016.08.

010.

References

[1]L.Khezami,R.Capart,Removalofchromium(VI)fromaqueoussolutionby activatedcarbons:kineticandequilibriumstudies,J.Hazard.Mater.123(1–3) (2005)223–231.

[2]X.Guo,etal.,High-Performanceandreproduciblepolyaniline

Nanowire/TubesforremovalofCr(VI)inaqueoussolution,J.Phys.Chem.C 115(5)(2011)1608–1613.

[3]Y.Ku,I.-L.Jung,PhotocatalyticreductionofCr(VI)inaqueoussolutionsbyUV irradiationwiththepresenceoftitaniumdioxide,WaterRes.35(1)(2001) 135–142.

[4]M.Wang,M.Leitch,C.Xu,Synthesisofphenol–formaldehyderesolresins usingorganosolvpinelignins,Eur.Polym.J.45(12)(2009)3380–3388.

(9)

[5]D.Fabbri,A.B.Prevot,E.Pramauro,Effectofsurfactantmicrostructureson photocatalyticdegradationofphenolandchlorophenols,Appl.Catal.B:

Environ.62(1–2)(2006)21–27.

[6]L.B.Khalil,W.E.Mourad,M.W.Rophael,Photocatalyticreductionof environmentalpollutantCr(VI)oversomesemiconductorsunderUV/visible lightillumination,Appl.Catal.B:Environ.17(3)(1998)267–273.

[7]F.Jiang,etal.,AqueousCr(VI)photo-reductioncatalyzedbyTiO2andsulfated TiO2,J.Hazard.Mater.134(1–3)(2006)94–103.

[8]Y.C.Sharma,EffectoftemperatureoninterfacialadsorptionofCr(VI)on wollastonite,J.ColloidInterfaceSci.233(2)(2001)265–270.

[9]R.J.Kieber,G.R.Helz,Indirectphotoreductionofaqueouschromium(VI), Environ.Sci.Technol.26(2)(1992)307–312.

[10]J.Doménech,J.Mu ˜noz,PhotocatalyticalreductionofCr(VI)overZnOpowder, Electrochim.Acta32(9)(1987)1383–1386.

[11]Y.Zhang,J.C.Crittenden,D.W.Hand,Thesolarphotocatalytic decontaminationofwater,Chem.Ind.18(1994)714–717.

[12]Z.Yao,etal.,PhotocatalyticreductionofpotassiumchromatebyZn-doped TiO2/Tifilmcatalyst,Appl.Surf.Sci.256(6)(2010)1793–1797.

[13]P.Mohapatra,S.K.Samantaray,K.Parida,Photocatalyticreductionof hexavalentchromiuminaqueoussolutionoversulphatemodifiedtitania,J.

Photochem.Photobiol.A:Chem.170(2)(2005)189–194.

[14]J.A.Navı´ıo,etal.,Heterogeneousphotocatalyticreactionsofnitriteoxidation andCr(VI)reductiononiron-dopedtitaniapreparedbythewetimpregnation method,Appl.Catal.B:Environ.16(2)(1998)187–196.

[15]B.Sun,E.P.Reddy,P.G.Smirniotis,VisiblelightCr(VI)reductionandorganic chemicaloxidationbyTiO2photocatalysis,Environ.Sci.Technol.39(16) (2005)6251–6259.

[16]G.Bidoglio,etal.,HumicacidbindingoftrivalentTlandCrstudiedby synchronousandtime-resolvedfluorescence,Environ.Sci.Technol.31(12) (1997)3536–3543.

[17]D.Chen,F.Li,A.K.Ray,Externalandinternalmasstransfereffecton photocatalyticdegradation,Catal.Today66(2–4)(2001)475–485.

[18]D.S.Bhatkhande,V.G.Pangarkar,A.A.C.M.Beenackers,Photocatalytic degradationforenvironmentalapplications–areview,J.Chem.Technol.Biot.

77(1)(2002)102–116.

[19]J.Liqiang,etal.,Reviewofphotoluminescenceperformanceofnano-sized semiconductormaterialsanditsrelationshipswithphotocatalyticactivity, Sol.EnergyMater.Sol.Cells90(12)(2006)1773–1787.

[20]M.M.Rashad,etal.,Synthesisandcharacterizationofmesoporousanatase TiO2nanostructuresviaorganicacidprecursorprocessfordye-sensitized solarcellsapplications,J.Ind.Eng.Chem.19(6)(2013)2052–2059.

[21]M.a.T.DeVolder,S.H.Baughman,R.H.Hart,AJCarbonnanotubes:presentand futurecommercialapplications,Science339(2013)535–539.

[22]R.Leary,A.Westwood,Carbonaceousnanomaterialsfortheenhancementof TiO2photocatalysis,Carbon49(3)(2011)741–772.

[23]Y.Liu,etal.,EngineeringhighlyactiveTiO2photocatalystsviathe surface-phasejunctionstrategyemployingatitanatenanotubeprecursor,J.

Catal.310(2014)16–23.

[24]A.Kongkanand,R.MartínezDomínguez,P.V.Kamat,Singlewallcarbon nanotubescaffoldsforphotoelectrochemicalsolarcells:captureand transportofphotogeneratedelectrons,NanoLett.7(3)(2007)676–680.

[25]W.Feng,etal.,Synthesisandcharacterizationofnanofibroushollow microsphereswithtunablesizeandmorphologyviathermallyinducedphase separationtechnique,RSCAdv.5(76)(2015)61580–61585.

[26]A.B.Sulong,M.Nurhamidi,JaafarSahari,RizauddinRamli,BabaMd.Dero, JoohyukPark,Electricalconductivitybehaviourofchemicalfunctionalized MWCNTsepoxynanocomposites,Eur.J.Sci.Res.29(1)(2009)13–21.

[27]H.Guo,etal.,Polyacrylonitrile/Carbonnanotubecompositefilms,ACSAppl.

Mater.Interfaces2(5)(2010)1331–1342.

[28]H.Kuang-Ting,A.Justin,G.A.Suresh,Useofepoxy/multiwalledcarbon nanotubesasadhesivestojoingraphitefibrereinforcedpolymercomposites, Nanotechnology14(7)(2003)791.

[29]A.K.-T.Lau,D.Hui,Therevolutionarycreationofnewadvanced

materials—carbonnanotubecomposites,Compos.PartB:Eng.33(4)(2002) 263–277.

[30]D.J.Lipomi,Z.Bao,Stretchable,elasticmaterialsanddevicesforsolarenergy conversion,EnergyEnviron.Sci.4(9)(2011)3314–3328.

[31]C.Zhang,etal.,Polyacrylonitrile/manganeseacetatecompositenanofibers andtheircatalysisperformanceonchromium(VI)reductionbyoxalicacid,J.

Hazard.Mater.229–230(2012)439–445.

[32]Y.A.Shaban,EffectivephotocatalyticreductionofCr(VI)bycarbonmodified (CM)-n-TiO2nanoparticlesundersolarirradiation,WorldJ.NanoSci.Eng3 (2013)154–160.

[33]H.Wang,etal.,Facilesynthesisofamino-functionalizedtitanium metal-organicframeworksandtheirsuperiorvisible-lightphotocatalytic activityforCr(VI)reduction,J.Hazard.Mater.286(2015)187–194.

[34]Q.Wu,etal.,PhotocatalyticreductionofCr(VI)withTiO2filmundervisible light,Appl.Catal.B:Environ.142–143(2013)142–148.

[35]X.Zhang,etal.,One-dimensionalhierarchicalheterostructuresofIn2S3 nanosheetsonelectrospunTiO2nanofiberswithenhancedvisible photocatalyticactivity,J.Hazard.Mater.260(2013)892–900.

[36]A.Mohamed,etal.,Compositenanofibersforhighlyefficientphotocatalytic degradationoforganicdyesfromcontaminatedwater,Environ.Res.145 (2016)18–25.

[37]T.A.O.AlaaMohamed,M.S.Toprak,M.Muhammed,A.Uheida,Efficient compositenanofibersforsolarphotocatalyticdegradationoforganicdyesand pharmaceuticaldrug,Appl.Catal.B:Environ.(2016).

[38]A.Mohamed,etal.,Tribologicalbehaviorofcarbonnanotubesasanadditive onlithiumgrease,J.Tribol.137(1)(2014)011801.

[39]C.Xiang,etal.,Experimentalandstatisticalanalysisofsurfacecharge:

aggregationandadsorptionbehaviorsofsurface-functionalizedtitanium dioxidenanoparticlesinaquaticsystem,J.Nanopart.Res.15(1)(2012) 1293–1304.

[40]M.Avila,etal.,Surfacefunctionalizednanofibersfortheremovalof chromium(VI)fromaqueoussolutions,Chem.Eng.J.245(2014)201–209.

[41]L.Zhang,etal.,Antimicrobialnano-fibrousmembranesdevelopedfrom electrospunpolyacrylonitrilenanofibers,J.Membr.Sci.369(1–2)(2011) 499–505.

[42]S.H.Park,etal.,Effectsofironcatalystontheformationofcrystallinedomain duringcarbonizationofelectrospunacrylicnanofiber,Synth.Met.150(3) (2005)265–270.

[43]L.Wang,X.Jiang,Unusualcatalyticeffectsofironsaltsonphenoldegradation byglowdischargeplasmainaqueoussolution,J.Hazard.Mater.161(2–3) (2009)926–932.

[44]C.M.Ling,A.R.Mohamed,S.Bhatia,Performanceofphotocatalyticreactors usingimmobilizedTiO2filmforthedegradationofphenolandmethylene bluedyepresentinwaterstream,Chemosphere57(7)(2004)547–554.

[45]D.P.Das,K.Parida,B.R.De,Photocatalyticreductionofhexavalentchromium inaqueoussolutionovertitaniapillaredzirconiumphosphateandtitanium phosphateundersolarradiation,J.Mol.Catal.A:Chem.245(1–2)(2006) 217–224.

[46]M.-C.Lu,etal.,Factorsaffectingthephotocatalyticdegradationofdichlorvos overtitaniumdioxidesupportedonglass,J.Photochem.Photobiol.A:Chem.

76(1–2)(1993)103–110.

[47]T.Karthikeyan,S.Rajgopal,L.R.Miranda,Chromium(VI)adsorptionfrom aqueoussolutionbyHeveaBrasilinesissawdustactivatedcarbon,J.Hazard.

Mater.124(1–3)(2005)192–199.

[48]N.Wang,etal.,Synergisticeffectsofcupricandfluorideionson

photocatalyticdegradationofphenol,J.Photochem.Photobiol.A:Chem.191 (2–3)(2007)193–200.

[49]R.Liang,etal.,NH2-mediatedindiummetal–organicframeworkasanovel visible-light-drivenphotocatalystforreductionoftheaqueousCr(VI),Appl.

Catal.B:Environ.162(2015)245–251.

[50]H.Chen,etal.,EffectivecatalyticreductionofCr(VI)overTiO2nanotube supportedPdcatalysts,Appl.Catal.B:Environ.105(3–4)(2011)255–262.

[51]H.Mekatel,etal.,PhotocatalyticreductionofCr(VI)onnanosizedFe2O3 supportedonnaturalAlgerianclay:characteristics,kineticand thermodynamicstudy,Chem.Eng.J.200–202(2012)611–618.

[52]M.Bhaumik,etal.,Removalofhexavalentchromiumfromaqueoussolution usingpolypyrrole-polyanilinenanofibers,Chem.Eng.J.181–182(2012) 323–333.

[53]J.J.Testa,M.A.Grela,M.I.Litter,Experimentalevidenceinfavorofaninitial one-Electron-Transferprocessintheheterogeneousphotocatalyticreduction ofChromium(VI)overTiO2,Langmuir17(12)(2001)3515–3517.

[54]S.G.Schrank,H.J.José,R.F.P.M.Moreira,SimultaneousphotocatalyticCr(VI) reductionanddyeoxidationinaTiO2slurryreactor,J.Photochem.Photobiol.

A:Chem.147(1)(2002)71–76.

[55]L.Huang,etal.,Thesimultaneousphotocatalyticdegradationofphenoland reductionofCr(VI)byTiO2/CNTs,J.Ind.Eng.Chem.18(1)(2012)574–580.

[56]A.D.Mani,etal.,FacilesynthesisofefficientvisibleactiveC-dopedTiO2 nanomaterialswithhighsurfaceareaforthesimultaneousremovalofphenol andCr(VI),Mater.Res.Bull.61(2015)391–399.

[57]A.Al-Hamdi,M.Sillanpää,J.Dutta,Intermediateformationduring photodegradationofphenolusinglanthanumdopedtindioxide nanoparticles,Res.Chem.Intermed.2015(2016)1–15.

Referenties

GERELATEERDE DOCUMENTEN

In dit onderzoek is geen duidelijk effect aange- toond van zwavelbemesting op een grasland- mengsel waarbij het aandeel rode klaver hoog was.Voor een mengsel met een hoger aandeel

Ik nodig u ook uit voor een discussie over de haalbaarheid van een duurzaam -veilige categorie-indeling binnen uw regionale wegennet aan de hand van de

systems. In the final chapter 6 we consider the classical problem of surface waves on a two-dimensional inviscid layer of fluid over a horizontal bottom under

a year injured in Dutch road traffic The Transport Research Centre of the Ministry of Transport com m issioned.. the SWay to participate in the second 'ACCidents I n

The lack of democratisation and decolonisation is regarded as a barrier to fostering an inclusive production of history and culture in Stellenbosch’s house museums, namely the

voor proactieve zorgplanning WIJZER OMGAAN MET DEMENTIE & LEVENSEINDE DAGELIJKS PLEZIER MEDISCHE BEHANDELING & BELEID DAGELIJKSE

Two surface water sampling sites were consistently impacted by relatively low level Cr(VI) pollution (annual mean values of 4.4 and 6.3 µg/ℓ, respectively), with no values in

Bij het begrip Profit komen in de varkenshouderij zaken aan de orde als productie, consumptie, internationale handel, inkomen, investeringen en innovatie, verbreding en