• No results found

University of Groningen Context Matters: Memories of Prior Times Maaß, Sarah

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Context Matters: Memories of Prior Times Maaß, Sarah"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Context Matters: Memories of Prior Times

Maaß, Sarah

DOI:

10.33612/diss.135934544

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Maaß, S. (2020). Context Matters: Memories of Prior Times. University of Groningen.

https://doi.org/10.33612/diss.135934544

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)
(3)

Aagten-Murphy, D., Cappagli, G., & Burr, D. (2014). Musical training generalises across modalities and reveals efficient and adaptive mechanisms for reproducing temporal intervals. Acta Psycho-logica, 147, 25-33.

Acerbi, L., Wolpert, D. M., Vijayakumar, S. (2012). Internal representations of temporal statistics and feedback calibrate motor-sensory interval timing. PloS Computational Biology, 8(11), e1002771.

Allman, M. J., & Meck, W. H. (2011). Pathophysiological distortions in time perception and timed performance. Brain, 135(3), 656-677.

Alzheimer's Association (2019, August) Mild Cognitive Impairment, retrieved June 12, 2020, from https://www.alz.org/media/documents/alzheimers-dementia-mild-cognitive-impairment-ts.pdf

Amano, K., Goda, N., Nishida, S. Y., Ejima, Y., Takeda, T., & Ohtani, Y. (2006). Estimation of the timing of human visual perception from magnetoencephalography. Journal of Neuroscience, 26(15). 3981-3991.

Anderson, N. D., Ebert, P. L., Jennings, J. M., Grady, C. L., Cabeza, R., & Graham, S. J. (2008). Recollection-and familiarity-based memory in healthy aging and amnestic mild cognitive im-pairment. Neuropsychology, 22(2), 177.

Anderson, B. L., Whitbread, M., & de Silva, C. (2014). Lightness, brightness, and anchoring. Journal of Vision, 14(9), 7-7.

Angrilli, A., Cherubini, P., Pavese, A., & Manfredini, S. (1997). The influence of affective factors on time perception. Perception & Psychophysics, 59(6), 972-982.

Balcı, F., & Simen, P. (2016). A decision model of timing. Current Opinion in Behavioral Sciences, 8, 94–101.

Bausenhart, K. M., Dyjas, O., & Ulrich, R. (2014). Temporal reproductions are influenced by an internal reference: Explaining the Vierordt effect. Acta Psychologica, 147, 60-67.

Bausenhart, K. M., Dyjas, O., & Ulrich, R. (2015). Effects of stimulus order on discrimination sensitivity for short and long durations. Attention, Perception, & Psychophysics, 77(4), 1033-1043. Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Effects Models using

lme4. Journal of Statistical Software, 67(1), 51.

Becsey, J. C., Berke, L., & Callan, J. R. (1968). Nonlinear least squares methods: A direct grid search approach. Journal of Chemical Education, 45(11), 728.

Bolbecker, A. R., Westfall, D. R., Howell, J. M., Lackner, R. J., Carroll, C. A., O'Donnell, B. F., & Hetrick, W. P. (2014). Increased timing variability in schizophrenia and bipolar disorder. PloS One, 9(5), e97964.

Bortoletto, M., & Cunnington, R. (2010). Motor timing and motor sequencing contribute differ-ently to the preparation for voluntary movement. Neuroimage, 49(4), 3338-3348.

Braak, H., & Del Tredici, K. (2015). The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain, 138(10), 2814-2833.

Brainard, D.H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433-436.

Brannon, E. M., Libertus, M. E., Meck, W. H., & Woldorff, M. G. (2008). Electrophysiological measures of time processing in infant and adult brains: Weber's Law holds. Journal of Cognitive Neuroscience, 20(2), 193-203.

Breitenstein, C., Van Lancker, D., Daum, I., & Waters, C. H. (2001). Impaired perception of vocal emotions in Parkinson's disease: influence of speech time processing and executive functioning. Brain and Cognition, 45(2), 277-314.

Burr, D., Banks, M. S., & Morrone, M. C. (2009). Auditory dominance over vision in the percep-tion of interval durapercep-tion. Experimental Brain Research, 198, 49–57.

Carrasco, M. C., Guillem, M. J., & Redolat, R. (2000). Estimation of short temporal intervals in Alzheimer's disease. Experimental Aging Research, 26(2), 139-151.

(4)

Carroll, C. A., O’donnell, B. F., Shekhar, A., & Hetrick, W. P. (2009). Timing dysfunctions in schizophrenia as measured by a repetitive finger tapping task. Brain and Cognition, 71(3), 345-353.

Caselli, L., Iaboli, L., & Nichelli, P. (2009). Time estimation in mild Alzheimer's disease patients. Behavioral and Brain Functions, 5(1), 32.

Church, R. M., & Meck, W. H. (2003). A concise introduction to scalar timing theory. In Func-tional and Neural Mechanisms of Interval Timing (pp. 3-22). CRC Press.

Christodoulou, A., Van Rijn, H., & Maaß, S. C. (2019). The Effect of Dynamic Emotional Con-text on Perceived Duration. Proceedings of the 17th NVP Winter Conference on Brain and Cognition. Egmond aan Zee, Netherlands.

Cicchini, G. M., Arrighi, R., Cecchetti, L., Giusti, M., & Burr, D. C. (2012). Optimal encoding of interval timing in expert percussionists. Journal of Neuroscience, 32(3), 1056-1060.

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bul-letin, 52(4), 281.

Damsma, A., Schlichting, N., Van Rijn, H., & Roseboom, W. (2019). Estimating Time: Compar-ing the Accuracy of Estimation Methods for Interval TimCompar-ing. PsyArXiv.

Das, S. R., Mancuso, L., Olson, I. R., Arnold, S. E., & Wolk, D. A. (2015). Short-term memory depends on dissociable medial temporal lobe regions in amnestic mild cognitive impair-ment. Cerebral Cortex, 26(5), 2006-2017.

Da Silva, F. N., Irani, F., Richard, J., Brensinger, C. M., Bilker, W. B., Gur, R. E., & Gur, R. C. (2012). More than just tapping: index finger-tapping measures procedural learning in schizo-phrenia. Schizophrenia Research, 137(1-3), 234-240.

Dikmen, S. S., Heaton, R. K., Grant, I., & Temkin, N. R. (1999). Test–retest reliability and practice effects of Expanded Halstead–Reitan Neuropsychological Test Battery. Journal of the International Neuropsychological Society, 5(4), 346–356.

Di Luca, M., & Rhodes, D. (2016). Optimal Perceived Timing: Integrating Sensory Information with Dynamically Updated Expectations. Scientific Reports, 6, 28563.

Droit‐Volet, S., Brunot, S., & Niedenthal, P. (2004). Perception of the duration of emotional events. Cognition and Emotion, 18(6), 849-858.

Droit-Volet, S., Fayolle, S. L., & Gil, S. (2011). Emotion and time perception: effects of film-induced mood. Frontiers in Integrative Neuroscience, 5, 33.

Droit-Volet, S., & Meck, W. H. (2007). How emotions colour our perception of time. Trends in Cognitive Sciences, 11(12), 504-513.

Dyjas, O., Bausenhart, K. M., & Ulrich, R. (2012). Trial-by-trial updating of an internal reference in discrimination tasks: Evidence from effects of stimulus order and trial sequence. Attention, Perception, & Psychophysics, 74(8), 1819–1841.

Dyjas, O., Bausenhart, K. M., & Ulrich, R. (2014). Effects of stimulus order on duration discrim-ination sensitivity are under attentional control. Journal of Experimental Psychology: Human Per-ception and Performance, 40(1), 292.

Effron, D. A., Niedenthal, P. M., Gil, S., & Droit-Volet, S. (2006). Embodied temporal perception of emotion. Emotion, 6(1), 1.

Elias, M. F., Dore, G. A., & Davey, A. (2013). Kidney disease and cognitive function. In Brain, Stroke and Kidney (Vol. 179, pp. 42-57). Karger Publishers.

Faisal, A. A., Selen, L. P. J., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4), 293-303.

Fillenbaum, G. G., Van Belle, G., Morris, J. C., Mohs, R. C., Mirra, S. S., Davis, P. C., ... & Heyman, A. (2008). Consortium to Establish a Registry for Alzheimer’s Disease (CERAD): the first twenty years. Alzheimer's & Dementia, 4(2), 96-109.

(5)

Freeman, J. S., Cody, F. W. J., O'Boyle, D. J., Craufurd, D., Neary, D., & Snowden, J. S. (1996). Abnormalities of motor timing in Huntington's disease. Parkinsonism & Related Disorders, 2(2), 81-93.

Gibbon, J., & Church, R. M. (1981). Time left: Linear versus logarithmic subjective time. Journal of Experimental Psychology: Animal Behavior Processes, 7(2), 87–108.

Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Annals of the New York Academy of Sciences, 423(1), 52-77.

Gooch, C. M., Stern, Y., & Rakitin, B. C. (2009). Evidence for age-related changes to temporal attention and memory from the choice time production task. Aging, Neuropsychology, and Cog-nition, 16(3), 285-310.

Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception, & Psychophysics,72, 561–582. Gu, B. M., Jurkowski, A.J., Lake, J.I., Malapani, C., & Meck, W.H. (2015). Bayesian Models of

Interval Timing and Distortions in Temporal Memory as a Function of Parkinson’s Disease and Dopamine-Related Error Processing. In Vatakis, A., & Allman, M.J. (Eds.), Time Distortions in Mind: Temporal Processing in Clinical Populations (pp. 281-327). Brill Academic Publishers: Bos-ton, MA.

Gu, B. M., & Meck, W. H. (2011). New perspectives on Vierordt’s law: memory-mixing in ordinal temporal comparison tasks. In Multidisciplinary aspects of time and time perception (pp. 67-78). Springer, Berlin.

Halbertsma, H. N., & Van Rijn, H. (2016). An evaluation of the effect of auditory emotional stimuli on interval timing. Timing & Time Perception, 4(1), 48-62.

Hallez, Q., Damsma, A., Rhodes, D., Van Rijn, H., & Droit-Volet, S. (2019). The dynamic effect of context on interval timing in children and adults. Acta Psychologica, 192, 87-93.

Hankee, L. D., Preis, S. R., Piers, R. J., Beiser, A. S., Devine, S. A., Liu, Y., … Au, R.(2016).Pop-ulation normative data for the CERAD Word List and Victoria Stroop Test in younger- and middle-aged adults: Cross-sectional analyses from the Framingham Heart Study. Experimental Aging Research, 42(4), 315–328.

Harrington, D. L., Haaland, K. Y., & Hermanowitz, N. (1998). Temporal processing in the basal ganglia. Neuropsychology, 12(1), 3.

Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory. Current Opinion in Neurobiology, 16(6), 710-715.

Hilbert, S., Bühner, M., Sarubin, N., Koschutnig, K., Weiss, E., Papousek, I., ... & Fink, A. (2015). The influence of cognitive styles and strategies in the digit span backwards task: Effects on performance and neuronal activity. Personality and Individual Differences, 87, 242-247. Hinne, M., Gronau, Q. F., Van den Bergh, D., & Wagenmakers, E. J. (2020). A conceptual

intro-duction to Bayesian model averaging. Advances in Methods and Practices in Psychological Science, 3(2), 200–215.

Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: a tutorial. Statistical Science, 382-401.

Hollingworth, H. L. (1910). The central tendency of judgment. The Journal of Philosophy, Psychology and Scientific Methods, 7(17), 461-469.

Gibbon, J., Church, R. M., & Meck, W. H. (1984). Scalar timing in memory. Annals of the New York Academy of Sciences, 423(1), 52-77.

Jankovic, J. (2008). Parkinson’s disease: clinical features and diagnosis. Journal of Neurology, Neuro-surgery & Psychiatry, 79(4), 368-376.

Jazayeri, M., Shadlen, M.N. (2010). Temporal context calibrates interval timing. Nature Neurosci-ence, 13(8), 1020-1026.

(6)

Jones, L. A., & Wearden, J. H. (2003). More is not necessarily better: Examining the nature of the temporal reference memory component in timing. The Quarterly Journal of Experimental Psychol-ogy B: Comparative and Physiological PsycholPsychol-ogy, 56B(4), 321–343.

Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: individual differences in working memory. Psychological Review, 99(1), 122.

Karaminis, T., Cicchini, G. M., Neil, L., Cappagli, G., Aagten-Murphy, D., Burr, D., & Pellicano, E. (2016). Central tendency effects in time interval reproduction in autism. Scientific Reports, 6, 28570.

Karmarkar, U. R., & Buonomano, D. V. (2007). Timing in the absence of clocks: encoding time in neural network states. Neuron, 53(3), 427-438.

Kerns, K. A., McInerney, R. J., & Wilde, N. J. (2001). Time reproduction, working memory, and behavioral inhibition in children with ADHD. Child Neuropsychology, 7(1), 21-31.

Kinsbourne, M., & Hicks, R. E. (1990). The extended present: Evidence from time estimation by amnesics and normals. In G. Vallar & T. Shallice (Eds.), Neuropsychological impairments of short-term memory (pp-281-237). Cambridge University Press.

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3. Perception, 36(14), 1.

Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244.

Kowal, S. (2009). Communicating with one another: Toward a psychology of spontaneous spoken discourse. Springer Science & Business Media.

Kuznetsova, A., Brockhoff, P.B., & Christensen, R.H.B. (2017). lmerTest package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13), 1–26.

Lake, J. I., LaBar, K. S., & Meck, W. H. (2016). Emotional modulation of interval timing and time perception. Neuroscience & Biobehavioral Reviews, 64, 403-420.

Lam, B., Middleton, L. E., Masellis, M., Stuss, D. T., Harry, R. D., Kiss, A., & Black, S. E. (2013). Criterion and convergent validity of the Montreal Cognitive Assessment with screening and standardized neuropsychological testing. Journal of the American Geriatrics Society, 61(12), 2181– 2185.

Lapid, E., Ulrich, R., & Rammsayer, T. (2008). On estimating the difference limen in duration discrimination tasks: A comparison of the 2AFC and the reminder task. Perception & Psychophys-ics, 70(2), 291-305.

Leak, T. M., & Gibbon, J. (1995). Simultaneous timing of multiple intervals: Implications of the scalar property. Journal of Experimental Psychology: Animal Behavior Processes, 21(1), 3.

Lee, M. D., & Wagenmakers, E. J. (2014). Bayesian cognitive modeling: A practical course. Cambridge University Press.

Lejeune, H., & Wearden, J. H. (2009). Vierordt's The Experimental Study of the Time Sense (1868) and its legacy. European Journal of Cognitive Psychology, 21(6), 941-960.

Lemoine, L., Torre, K., & Delignières, D. (2006). Testing for the presence of 1/f noise in contin-uation tapping data. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 60(4), 247.

Lerman, P. M. (1980). Fitting segmented regression models by grid search. Journal of the Royal Statistical Society: Series C (Applied Statistics), 29(1), 77-84.

Lui, M. A., Penney, T. B., & Schirmer, A. (2011). Emotion effects on timing: attention versus pacemaker accounts. PloS One, 6(7).

Ly, A., Verhagen, A. J. & Wagenmakers, E. J. (2015). Harold Jeffreys's Default Bayes Factor Hy-pothesis Tests: Explanation, Extension, and Application in Psychology. Journal of Mathematical Psychology,72, 19-32.

Maaß, S. C., & Van Rijn, H. (2018) 1-Second productions: A validation of an efficient measure of clock variability. Frontiers in Human Neuroscience, 12(519).

(7)

Maaß, S. C., Riemer, M., Wolbers, T., & Van Rijn, H. (2019a). Timing deficiencies in amnestic Mild Cognitive Impairment: Disentangling clock and memory processes. Behavioural Brain Re-search, 373, 112110.

Maaß, S. C., Schlichting, N., & Van Rijn, H. (2019b). Eliciting Contextual Temporal Calibration: The Effect of Bottom-up and Top-down Information in Reproduction Tasks. Acta Psychologica 199, 102898.

Maaß, S. C., Van Maanen, L., & Van Rijn, H. (2020, April 15). Conceptually Plausible Bayesian Inference in Interval Timing. Retrieved from osf.io/kqjxf.

Malapani, C., Rakitin, B., Levy, R., Meck, W. H., Deweer, B., Dubois, B., & Gibbon, J. (1998). Coupled temporal memories in Parkinson's disease: a dopamine-related dysfunction. Journal of Cognitive Neuroscience, 10(3), 316-331.

Mamassian, P., & Landy, M. S. (2010). It's that time again. Nature Neuroscience, 13(8), 914-916. Matthews, W. J., & Meck, W. H. (2014). Time perception: The bad news and the good. Wiley

Interdisciplinary Reviews: Cognitive Science, 5(4), 429–446.

Matthews, W. J., & Meck, W. H. (2016). Temporal cognition: Connecting subjective time to perception, attention, and memory. Psychological Bulletin, 142(8), 865.

Mauk, M. D., & Buonomano, D. V. (2004). The neural basis of temporal processing. Annual Review of Neuroscience, 27, 307-340.

Martin, B., Wiener, M., & Van Wassenhove, V. (2017). A Bayesian perspective on accumulation in the magnitude system. Scientific Reports, 7(1), 630.

Mestdagh, M., Verdonck, S., Meers, K., Loossens, T., & Tuerlinckx, F. (2019). Prepaid parameter estimation without likelihoods. PLoS Computational Biology, 15(9), e1007181.

Mimura, M., Kinsbourne, M., & O'Conner, M. (2000). Time estimation by patients with frontal lesions and by Korsakoff amnesics. Journal of the International Neuropsychological Society, 6(5), 517-528.

Mioni, G., Capizzi, M., & Stablum, F. (2020). Age-related changes in time production and repro-duction tasks: Involvement of attention and working memory processes. Aging, Neuropsychology, and Cognition, 27(3), 412-429.

Mioni, G., Capizzi, M., Vallesi, A., Correa, Á., Di Giacopo, R., & Stablum, F. (2018). Dissociating explicit and implicit timing in Parkinson’s disease patients: Evidence from bisection and fore-period tasks. Frontiers in Human Neuroscience, 12, 17.

Mioni, G., Grondin, S., Meligrana, L., Perini, F., Bartolomei, L., & Stablum, F. (2018). Effects of happy and sad facial expressions on the perception of time in Parkinson’s disease patients with mild cognitive impairment. Journal of Clinical and Experimental Neuropsychology, 40(2), 123-138. Mioni, G., Stablum, F., McClintock, S. M., & Grondin, S. (2014). Different methods for

repro-ducing time, different results. Attention, Perception, & Psychophysics, 76(3), 675-681.

Mioni, G., Stablum, F., Prunetti, E., & Grondin, S. (2016). Time perception in anxious and de-pressed patients: A comparison between time reproduction and time production tasks. Journal of Affective Disorders, 196, 154-163.

Moran, R. J., Campo, P., Symmonds, M., Stephan, K. E., Dolan, R. J., & Friston, K. J. (2013). Free energy, precision and learning: the role of cholinergic neuromodulation. Journal of Neuro-science, 33(19), 8227-8236.

Moran, R. J., Symmonds, M., Dolan, R. J., & Friston, K. J. (2014). The brain ages optimally to model its environment: evidence from sensory learning over the adult lifespan. PLoS Computa-tional Biology, 10(1), e1003422.

Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Reason, 4(2), 61-64.

Morey, R.D., & Rouder, J.N. (2018). BayesFactor: Computation of Bayes Factors for Common Designs. R package version 0.9.12-4.2.

(8)

Morris, J. C., Heyman, A., Mohs, R. C., Hughes, J. P., Van Belle, G., Fillenbaum, G. D. M. E., ... & Clark, C. (1989). The consortium to establish a registry for Alzheimer's disease (CERAD): I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology, 39, 1159-1165. Morrone, M. C., Ross, J., & Burr, D. (2005). Saccadic eye movements cause compression of time

as well as space. Nature Neuroscience, 8(7), 950-954.

Murai, Y., & Yotsumoto, Y. (2018). Optimal multisensory integration leads to optimal time esti-mation. Scientific Reports, 8(1), 13068.

Myung, I. J. (2000). The importance of complexity in model selection. Journal of Mathematical Psy-chology, 44(1), 190-204.

Narain, D., Remington, E. D., De Zeeuw, C. I., & Jazayeri, M. (2018). A cerebellar mechanism for learning prior distributions of time intervals. Nature Communications, 9(1), 1-12.

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., ... & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695-699.

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308-313.

Nichelli, P., Venneri, A., Molinari, M., Tavani, F., & Grafman, J. (1993). Precision and accuracy of subjective time estimation in different memory disorders. Cognitive Brain Research, 1(2), 87-93.

Nijboer, M., Borst, J., Van Rijn, H., & Taatgen, N. (2016). Contrasting single and multi-compo-nent working-memory systems in dual tasking. Cognitive psychology, 86, 1-26.

Noreika, V., Falter, C. M., & Rubia, K. (2013). Timing deficits in attention-deficit/hyperactivity disorder (ADHD): evidence from neurocognitive and neuroimaging studies. Neuropsychologia, 51(2), 235-266.

O'Boyle, D. J., Freeman, J. S., & Cody, F. W. (1996). The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson's disease. Brain, 119(1), 51-70. Oprisan, S. A., & Buhusi, C. V. (2014). What is all the noise about in interval timing?. Philosophical

Transactions of the Royal Society B: Biological Sciences, 369(1637), 20120459.

Papagno, C., Allegra, A., & Cardaci, M. (2004). Time estimation in Alzheimer’s disease and the role of the central executive. Brain and Cognition, 54(1), 18-23.

Paraskevoudi, N., Balcı, F., & Vatakis, A. (2018). “Walking” through the sensory, cognitive, and temporal degradations of healthy aging. Annals of the New York Academy of Sciences, 1426(1), 72-92.

Pashler, H. E. (1999). The psychology of attention. MIT press.

Pastor, M. A., Artieda, J., Jahanshahi, M., & Obeso, J. A. (1992). Time estimation and reproduction is abnormal in Parkinson's disease. Brain, 115(1), 211-225.

Pelli, D.G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437-442.

Penney, T. B., Gibbon, J., & Meck, W. H. (2000). Differential effects of auditory and visual signals on clock speed and temporal memory. Journal of Experimental Psychology: Human Perception and Performance, 26(6), 1770.

Penton-Voak, I. S., Edwards, H., Percival, A., & Wearden, J. H. (1996). Speeding up an internal clock in humans? Effects of click trains on subjective duration. Journal of Experimental Psychology: Animal Behavior Processes, 22(3), 307.

Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., ... & Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985-1992.

Petersen, R. C., Lopez, O., Armstrong, M. J., Getchius, T. S., Ganguli, M., Gloss, D., ... & Sager, M. (2018). Practice guideline update summary: Mild cognitive impairment: Report of the

(9)

Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology, 90(3), 126-135.

Petzschner, F. H., & Glasauer, S. (2011). Iterative Bayesian estimation as an explanation for range and regression effects: a study on human path integration. Journal of Neuroscience, 31(47), 17220-17229.

Petzschner, F. H., Glasauer, S., & Stephan, K. E. (2015). A Bayesian perspective on magnitude estimation. Trends in Cognitive Sciences, 19(5), 285-293.

Petzschner, F.H., Maier, P., & Glasauer, S. (2012). Combining symbolic cues with sensory input and prior experience in an iterative Bayesian framework. Frontiers in Integrative Neuroscience, 6, 58.

Petzschner, F.H., Glasauer, S., & Stephan, K.E. (2015). A Bayesian perspective on magnitude esti-mation. Trends in Cognitive Sciences, 19(5), 285-293.

Pitt, M. A., & Myung, I. J. (2002). When a good fit can be bad. Trends in Cognitive Sciences, 6(10), 421-425.

Polyn, S. M., Norman, K. A., & Kahana, M. J. (2009). A context maintenance and retrieval model of organizational processes in free recall. Psychological Review, 116(1), 129.

Pomares, F. B., Creac’h, C., Faillenot, I., Convers, P., & Peyron, R. (2011). How a clock can change your pain? The illusion of duration and pain perception. PAIN®, 152(1), 230-234. R Core Team (2016). R: A language and environment for statistical computing. R Foundation for

Statistical Computing, Vienna, Austria.

Rammsayer, T. H. (2001). Ageing and temporal processing of durations within the psychological present. European Journal of Cognitive Psychology, 13(4), 549-565.

Rammsayer, T., & Altenmueller, E. (2006). Temporal information processing in musicians and nonmusicians. Music Perception, 24, 37–47.

Ramscar, M., Hendrix, P., Shaoul, C., Milin, P., & Baayen, H. (2014). The myth of cognitive decline: Non‐linear dynamics of lifelong learning. Topics in Cognitive Science, 6(1), 5-42. Rattat, A. C., & Droit-Volet, S. (2012). What is the best and easiest method of preventing counting

in different temporal tasks?. Behavior Research Methods, 44(1), 67-80.

Rey, A. E., Michael, G. A., Dondas, C., Thar, M., Garcia-Larrea, L., & Mazza, S. (2017). Pain dilates time perception. Scientific Reports, 7(1), 1-6.

Rhodes, D., Seth, A., Roseboom, W. (2018). Multiple duration priors within and across the senses. bioRxiv.

Roach, N. W., McGraw, P. V., Whitaker, D. J., Heron, J. (2017). Generalization of prior infor-mation for rapid Bayesian time estiinfor-mation. Proceedings of the National Academy of Sciences, 114(2), 412-417.

Rueda, A. D., & Schmitter-Edgecombe, M. (2009). Time estimation abilities in mild cognitive impairment and Alzheimer's disease. Neuropsychology, 23(2), 178.

Sabri, O., Kendziorra, K., Wolf, H., Gertz, H. J., & Brust, P. (2008). Acetylcholine receptors in dementia and mild cognitive impairment. European Journal of Nuclear Medicine and Molecular Im-aging, 35(1), 30-45.

Schauer, M., & Elbert, T. (2015). Dissociation following traumatic stress. Zeitschrift für Psycholo-gie/Journal of Psychology.

Schlichting, N., Damsma, A., Aksoy, E. E., Wächter, M., Asfour, T., & Van Rijn, H. (2018). Temporal Context Influences the Perceived Duration of Everyday Actions: Assessing the Eco-logical Validity of Lab-Based Timing Phenomena. Journal of Cognition, 1(1).

Schmitter-Edgecombe, M., & Rueda, A. D. (2008). Time estimation and episodic memory fol-lowing traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 30(2), 212-223.

(10)

Seidler, G. H., & Wagner, F. E. (2006). Comparing the efficacy of EMDR and trauma-focused cognitive-behavioral therapy in the treatment of PTSD: a meta-analytic study. Psychological Med-icine, 36(11), 1515-1522.

Sense, F., Behrens, F., Meijer, R. R., & Van Rijn, H. (2016). An individual's rate of forgetting is stable over time but differs across materials. Topics in Cognitive Science, 8(1), 305-321. Shi, Z., & Burr, D. (2016). Predictive coding of multisensory timing. Current Opinion in Behavioral

Sciences, 8, 200-206.

Shi, Z., Church, R.M., & Meck, W.H. (2013). Bayesian optimization of time perception. Trends in Cognitive Science, 17(11), 556-564.

Simen, P., Balcı, F., Desouza, L., Cohen, J. D., & Holmes, P. (2011). Interval timing by long-range temporal integration. Frontiers in Integrative Neuroscience, 5, 28.

Small, S. A. (2001). Age-related memory decline: current concepts and future directions. Archives of Neurology, 58(3), 360-364.

Sohn, H., Narain, D., Meirhaeghe, N., & Jazayeri, M. (2019). Bayesian computation through cor-tical latent dynamics. Neuron, 103(5), 934-947.

Taatgen, N. A., & Anderson, J. R. (2008). Constraints in cognitive architectures. Cambridge Hand-book of Computational Psychology, 170-185.

Taatgen, N., & Van Rijn, H. (2011). Traces of times past: Representations of temporal intervals in memory. Memory and Cognition, 39(8), 1546-60.

Taatgen, N. A., Van Rijn, H., & Anderson, J. (2007). An integrated theory of prospective time interval estimation: The role of cognition, attention, and learning. Psychological Review, 114(3), 577.

Thönes, S., & Hecht, H. (2017). Counting does not improve the accuracy of long time produc-tions. Attention, Perception, & Psychophysics, 79(8), 2576-2589.

Thönes, S., & Oberfeld, D. (2015). Time perception in depression: A meta-analysis. Journal of Af-fective Disorders, 175, 359-372.

Thönes, S., & Oberfeld, D. (2017). Meta-analysis of time perception and temporal processing in schizophrenia: Differential effects on precision and accuracy. Clinical Psychology Review, 54, 44-64.

Treisman, M. (1963). Temporal discrimination and the indifference interval: Implications for a model of the" internal clock". Psychological Monographs: General and Applied, 77(13), 1. Turgeon, M., Lustig, C., & Meck, W. H. (2016). Cognitive aging and time perception: roles of

Bayesian optimization and degeneracy. Frontiers in Aging Neuroscience, 8, 102.

Turgeon, M., & Wing, A. M. (2012). Late onset of age-related difference in unpaced tapping with no age-related difference in phase-shift error detection and correction. Psychology and Aging, 27(4), 1152.

Unsworth, N., & Spillers, G. J. (2010). Variation in working memory capacity and episodic recall: The contributions of strategic encoding and contextual retrieval. Psychonomic Bulletin & Review, 17(2), 200-205.

Van Doorn, J., Van den Bergh, D., Bohm, U., Dablander, F., Derks, K., Draws, T., ... & Ly, A. (2019). The JASP guidelines for conducting and reporting a Bayesian analysis. PsyArXiv. Van Maanen, L., Van der Mijn, R., Van Beurden, M. H., Roijendijk, L. M., Kingma, B. R.,

Miletić, S., & Van Rijn, H. (2019). Core body temperature speeds up temporal processing and choice behavior under deadlines. Scientific reports, 9(1), 1-12.

Van Rijn, H. (2014). It’s time to take the psychology of biological time into account: Speed of driving affects a trip’s subjective duration. Frontiers in Psychology, 5.

Van Rijn, H. (2016). Accounting for memory mechanisms in interval timing: A review. Current Opinion in Behavioral Sciences, 8, 245-249.

Van Rijn, H. (2018). Towards ecologically valid interval timing. Trends in Cognitive Sciences, 22(10), 850-852.

(11)

Van Rijn, H., Borst, J., Taatgen, N., & Van Maanen, L. (2016). On the necessity of integrating multiple levels of abstraction in a single computational framework. Current Opinion in Behavioral Sciences, 11, 116-120.

Van Rijn, H., Gu, B-M., & Meck, W.H. (2014) Dedicated clock/timing-circuit theories of interval timing and timed behavior. Advances in Experimental Medicine and Biology 829, 75-99. Van Rijn, H., & Taatgen, N. A. (2008). Timing of multiple overlapping intervals: How many

clocks do we have? Acta Psychologica, 129(3), 365-75.

Van Rijn, H., Van Maanen, L., & Van Woudenberg, M. (2009). Passing the test: Improving learn-ing gains by balanclearn-ing spaclearn-ing and testlearn-ing effects. In Proceedlearn-ings of the 9th International Conference of Cognitive Modeling (Vol. 2, No. 1, pp. 7-6).

Vicario, C. M., & Felmingham, K. L. (2018). Slower Time estimation in Post-Traumatic Stress Disorder. Scientific Reports, 8(1), 392.

Vierordt, K. (1868). Der Zeitsinn nach versuchen. H. Laupp.

Wagenmakers, E. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14(5), 779–804.

Wagenmakers, E. J., Farrell, S., & Ratcliff, R. (2004). Estimation and interpretation of 1/f α noise in human cognition. Psychonomic Bulletin & Review, 11(4), 579-615.

Wang, M., Gamo, N. J., Yang, Y., Jin, L. E., Wang, X. J., Laubach, M., ... & Arnsten, A. F. (2011). Neuronal basis of age-related working memory decline. Nature, 476(7359), 210-213. Waits, F. N., & Sharrock, R. (1984). Fear and time estimation. Perceptual and Motor Skills, 59(2),

597-598.

Wearden, J. H. (1991). Do humans possess an internal clock with scalar timing properties? Learning and Motivation, 22(1-2), 59-83.

Wearden, J. H. (2016). The psychology of time perception. Springer.

Wearden, J. H., Philpott, K., & Win, T. (1999). Speeding up and (… relatively…) slowing down an internal clock in humans. Behavioural Processes, 46(1), 63-73.

Wearden, J. H., Smith-Spark, J. H., Cousins, R., Edelstyn, N. M., Cody, F. W., & O'Boyle, D. J. (2009). Short Article: Effect of Click Trains on Duration Estimates by People with Parkinson's Disease. Quarterly Journal of Experimental Psychology, 62(1), 33-40.

Wearden, J. H., Wearden, A. J., & Rabbitt, P. M. (1997). Age and IQ effects on stimulus and response timing. Journal of Experimental Psychology: Human Perception and Performance, 23(4), 962. Wearden, J. H., Williams, E. A., & Jones, L. A. (2017). What speeds up the internal clock? Effects of clicks and flicker on duration judgements and reaction time. The Quarterly Journal of Experi-mental Psychology, 70(3), 488-503.

Wiener, M., Michaelis, K., & Thompson, J. C. (2016). Functional correlates of likelihood and prior representations in a virtual distance task. Human Brain Mapping, 37(9), 3172-3187.

Wiener, M., & Thompson, J. C. (2015). Repetition enhancement and memory effects for duration. Neuroimage, 113, 268-278.

Wild-Wall, N., Willemssen, R., & Falkenstein, M. (2009). Feedback-related processes during a time-production task in young and older adults. Clinical Neurophysiology, 120(2), 407-413. Wild-Wall, N., Willemssen, R., Falkenstein, M., & Beste, C. (2008). Time estimation in healthy

ageing and neurodegenerative basal ganglia disorders. Neuroscience Letters, 442(1), 34-38. Wilquin, H., Delevoye-Turrell, Y., Dione, M., & Giersch, A. (2018). Motor synchronization in

patients with schizophrenia: preserved time representation with abnormalities in predictive tim-ing. Frontiers in Human Neuroscience, 12.

Xu, R., & Church, R. M. (2017). Age-related changes in human and nonhuman timing. Timing & Time Perception, 5(3-4), 261-279.

Zakay, D. (2000). Gating or switching? Gating is a better model of prospective timing (a response to ‘switching or gating?’ by Lejeune). Behavioural Processes, 52(2-3), 63-69.

(12)

Referenties

GERELATEERDE DOCUMENTEN

Epigenetic Editing has the potential to develop into clinically relevant one-and-done approaches, where patients are treated once, after which the modified epigenetic

We show now that a number of known component efficient Γ -values for games with communication structures given by undirected and directed graphs of different types can be

Maaß Context Matters: Memories of Prior Times Dissertation University of Groningen.?. Layout & Cover Design:

Bayesian observer models assume that the noisiness of a perceived duration determines how strong earlier experiences in- fluence the internal estimate of the presented duration:

In Experiment 1B we tested the effect of more or less abstract top-down categorization instructions on the temporal context effect, either by means of explicit information or by

Three clock variability measures were calculated for each participant [standard deviation, root mean squared residuals (RMSRs) from an estimated linear slope, and RMSR scaled by

To conclude, we have presented a method to disentangle the influence of noise in temporal resolution from memory functioning in timing behaviors by assessing clock variance

I will therefore first focus on how the role of memory in interval timing can be utilized to provide an indirect measure of memory performance and decline, and second discuss how