• No results found

University of Groningen Variants of the block GMRES method for solving multi-shifted linear systems with multiple right-hand sides simultaneously Sun, Donglin

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Variants of the block GMRES method for solving multi-shifted linear systems with multiple right-hand sides simultaneously Sun, Donglin"

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Variants of the block GMRES method for solving multi-shifted linear systems with multiple

right-hand sides simultaneously

Sun, Donglin

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Sun, D. (2019). Variants of the block GMRES method for solving multi-shifted linear systems with multiple right-hand sides simultaneously. University of Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

[1] E. Agullo, L. Giraud, and Y.-F. Jing. Block GMRES method with inexact breakdowns and deflated restarting. SIAM Journal on Matrix Analysis and Applications, 35(4):1625–1651, 2014.

[2] M. I. Ahmad, D. B. Szyld, and M. B. van Gijzen. Preconditioned multishift BiCG for H2-optimal model reduction. SIAM Journal on

Matrix Analysis and Applications, 38(2):401–424, 2017.

[3] G. All´eon, S. Amram, N. Durante, P. Homsi, D. Pogarieloff, and C. Farhat. Massively parallel processing boosts the solution of industrial electromagnetic problems: High performance out-of-core solution of complex dense systems. In M. Heath, V. Torczon, G. Astfalk, P. E. Bjrstad, A. H. Karp, C. H. Koebel, V. Kumar, R. F. Lucas, L. T. Watson, and Editors D. E. Womble, editors, Proceedings of the Eighth SIAM Conference on Parallel Computing. SIAM, 1997. Conference held in Minneapolis, Minnesota, USA.

[4] J. Baglama, D. Calvetti, G. H. Golub, and L. Reichel. Adaptively preconditioned GMRES algorithms. SIAM Journal on Scientific Computing, 20(1):243–269, 1998.

[5] T. Bakhos, P. Kitanidis, S. Ladenheim, A. K. Saibaba, and D. Szyld. Multipreconditioned GMRES for shifted systems. SIAM Journal on Scientific Computing, 39(5):S222–S247, 2017.

[6] M. Baumann and M. B. van Gijzen. Nested Krylov methods for shifted linear systems. SIAM Journal on Scientific Computing, 37(5):S90– S112, 2015.

[7] M. Baumann and M. B. van Gijzen. An efficient two-level preconditioner for multi-frequency wave propagation problems. DIAM Technical Report, 17-03:1–17, 2017.

(3)

[8] M. Benzi and D. Bertaccini. Approximate inverse preconditioning for shifted linear systems. BIT Numerical Mathematics, 43(2):231–244, 2003.

[9] L. Bergamaschi, E. Facca, ´A. Mart´ınez, and M. Putti. Spectral preconditioners for the efficient numerical solution of a continuous branched transport model. Journal of Computational and Applied Mathematics, 2018. Published online on Jan 31, 2018.

[10] W. E. Boyse and A. A. Seidl. A block QMR method for computing multiple simultaneous solutions to complex symmetric systems. SIAM Journal on Scientific Computing, 17(1):263–274, 1996.

[11] H. Calandra, S. Gratton, R. Lago, X. Vasseur, and L. M. Carvalho. A modified block flexible GMRES method with deflation at each iteration for the solution of non-Hermitian linear systems with multiple right-hand sides. SIAM Journal on Scientific Computing, 35(5):S345– S367, 2013.

[12] H. Calandra, S. Gratton, J. Langou, X. Pinel, and X. Vasseur. Flexible variants of block restarted GMRES methods with application to geophysics. SIAM Journal on Scientific Computing, 34(2):A714– A736, 2012.

[13] C. Le Calvez and B. Molina. Implicitly restarted and deflated GMRES. Numerical Algorithms, 21:261–285, 1999.

[14] B. Carpentieri. A matrix-free two-grid preconditioner for boundary integral equations in electromagnetism. Computing, 77(3):275–296, 2006.

[15] B. Carpentieri, I. S. Duff, and L. Giraud. Sparse pattern selection strategies for robust Frobenius-norm minimization preconditioners in electromagnetism. Numerical Linear Algebra with Applications, 7(7-8):667–685, 2000.

[16] B. Carpentieri, I. S. Duff, and L. Giraud. A class of spectral two-level preconditioners. SIAM Journal on Scientific Computing, 25(2):749– 765, 2003.

(4)

[17] B. Carpentieri, I. S. Duff, L. Giraud, and G. Sylvand. Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations. SIAM Journal on Scientific Computing, 27(3):774–792, 2005.

[18] B. Carpentieri, L. Giraud, and S. Gratton. Additive and multiplicative two-level spectral preconditioning for general linear systems. SIAM J. Scientific Computing, 29(4):1593–1612, 2007.

[19] L. M. Carvalho, S. Gratton, R. Lago, and X. Vasseur. A flexible generalized conjugate residual method with inner orthogonalization and deflated restarting. SIAM Journal on Matrix Analysis and Applications, 32(4):1212–1235, 2011.

[20] T. F. Chan and W. L. Wan. Analysis of projection methods for solving linear systems with multiple right-hand sides. SIAM Journal on Scientific Computing, 18(6):1698–1721, 1997.

[21] W. C. Chew and Y. M. Wang. A recursive T-matrix approach for the solution of electromagnetic scattering by many spheres. IEEE Transactions on Antennas and Propagation, 41(12):1633–1639, 1993. [22] P. G. Constantine and D. F. Gleich. Random alpha pagerank. Internet

Mathematics, 6:189–236, 2009.

[23] D. Darnell, R. B. Morgan, and W. Wilcox. Deflated GMRES for systems with multiple shifts and multiple right-hand sides. Linear Algebra and its Applications, 429(10):2415–2434, 2008.

[24] B. N. Datta and Y.Saad. Sylvester-like observer matrix equations, and an associated algorithm for partial spectrum assignment. Linear Algebra with Applications, pages 154–156, 1991.

[25] T. A. Davis and Y. Hu. The university of Florida sparse matrix collection. ACM Transactions on Mathematical Software, 38(1):1–25, 2011.

[26] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst. Numerical Linear Algebra for High-Performance Computers. SIAM, Philadelphia, PA, 1998.

(5)

[27] J. J. Dongarra and F. Sullivan. Guest editors’ introduction to the top 10 algorithms. Computing in Science and Engineering, 2(1):22–23, 2000.

[28] L. Du, T. Sogabe, and S.-L. Zhang. IDR(s) for solving shifted nonsymmetric linear systems. Journal of Computational and Applied Mathematics, 274:35–43, 2015.

[29] I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for Sparse Matrices. Clarendon Press, Oxford, 2nd edition, 1986.

[30] I. S. Duff and J. A. Scott. A parallel direct solver for large sparse highly unsymmetric linear systems. ACM Transactions on Mathematical Software, 30(2):95–117, 2004.

[31] J. Erhel, K. Burrage, and B. Pohl. Restarted GMRES preconditioned by deflation. Journal of Computational and Applied Mathematics, 69(2):303–318, 1996.

[32] R. Fletcher. Conjugate gradient methods for indefinite systems. In Lecture Notes in Mathematics, volume 506, pages 73–89. Springer, New York, 1976.

[33] L. Fournier and S. Lanteri. Multiplicative and additive parallel multigrid algorithms for the acceleration of compressible flow computations on unstructured meshes. Applied Numerical Mathematics, 36:401–426, 2001.

[34] R. Freund. Solution of shifted linear systems by quasi-minimal residual iterations. Numerical Linear Algebra, pages 101–121, 1993.

[35] R. W. Freund. On conjugate gradient type methods and polynomial preconditioners for a class of complex non-Hermitian matrices. Numerische Mathematik, 57:285–312, 1990.

[36] R. W. Freund. Krylov-subspace methods for reduced-order modeling in circuit simulation. Journal of Computational and Applied Mathematics, 123(1):395–421, 2000.

[37] R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for non-hermitian linear systems. Numerische Mathematik, 60(1):315–339, 1991.

(6)

[38] A. Frommer. BiCGStab(l) for families of shifted linear systems. Computing, 70(2):87–109, 2003.

[39] A. Frommer and U. Gl¨assner. Restarted GMRES for shifted linear systems. SIAM Journal on Scientific Computing, 19(1):15–26, 1998. [40] A. Frommer, K. Lund, and D. B. Szyld. Block Krylov subspace

methods for functions of matrices. Electronic Transactions on Numerical Analysis, 47:100–126, 2017.

[41] A. Frommer, B. N¨ockel, S. G¨usken, T. Lippert, and K. Schilling. Many masses on one stroke: Economic computation of quark propagators. International Journal of Modern Physics C, 06(05):627–638, 1995. [42] L. Giraud, S. Gratton, X. Pinel, and X. Vasseur. Flexible GMRES

with deflated restarting. SIAM Journal on Scientific Computing, 32(4):1858–1878, 2010.

[43] L. Giraud, J. Langou, and G. Sylvand. On the parallel solution of large industrial wave propagation problems. Journal of Computational Acoustics, 14(01):83–111, 2006.

[44] D. F. Gleich. Pagerank beyond the web. SIAM Rev., 57:321–363, 2015.

[45] A. Greenbaum. Iterative methods for solving linear systems. Frontiers in Applied Mathematics, No. 17. SIAM, Philadelphia, 1997.

[46] A. Greenbaum, V. Pt´ak, and Z. Strako˘ek. Any nonincreasing convergence curve is possible for GMRES. SIAM Journal on Matrix Analysis and Applications, 17:465–469, 1996.

[47] G.-D. Gu, X.-L. Zhou, and L. Lin. A flexible preconditioned Arnoldi method for shifted linear systems. Journal of Computational Mathematics, 25(5):522–530, 2007.

[48] M. H. Gutknecht. Block Krylov space methods for linear systems with multiple right-hand sides: An introduction. In A. H. Siddiqi, I. S. Duff, and O. Christensen, editors, in Modern Mathematical Models, Methods and Algorithms for Real World Systems, pages 420–447. Anamaya Publishers, New Delhi, 2007.

(7)

[49] W. Hackbusch. Multigrid Methods and Applications. Springer-Verlag, Berlin, 1985.

[50] T. H. Haveliwala. Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search. IEEE Transactions on Knowledge and Data Engineering, 15(4):784–796, 2003.

[51] M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49:409–436, 1952.

[52] I. C. F. Ipsen and C. D. Meyer. The idea behind krylov methods. The American Mathematical Monthly, 105:889–899, 1998.

[53] B. Jegerlehner. Krylov space solvers for shifted linear systems. arXiv preprint hep-lat/9612014, 1996.

[54] Y.-F. Jing and T.-Z. Huang. Restarted weighted full orthogonalization method for shifted linear systems. Computers Mathematics with Applications, 57(9):1583–1591, 2009.

[55] Y.-F. Jing, T.-Z. Huang, Y. Zhang, L. Li, G.-H. Cheng, Z.-G. Ren, Y. Duan, T. Sogabe, and B. Carpentieri. Lanczos-type variants of the COCR method for complex nonsymmetric linear systems. Journal of Computational Physics, 228(17):6376–6394, 2009.

[56] Y.-F. Jing, P. Yuan, and T.-Z. Huang. A simpler GMRES and its adaptive variant for shifted linear systems. Numerical Linear Algebra with Applications, 24(1): doi:10.1002/nla.2076, 2017.

[57] S. A. Kharchenko and A. Y. Yeremin. Eigenvalue translation based preconditioners for the GMRES(k) method. Numerical Linear Algebra with Applications, 2(1):51–77, 1995.

[58] M. E. Kilmer and E. de Sturler. Recycling subspace information for diffuse optical tomography. SIAM Journal on Scientific Computing, 27(6):2140–2166, 2006.

[59] R. Ferreira Lago. A study on block flexible iterative solvers with applications to Earth imaging problem in geophysics. PhD thesis, CERFACS, Toulouse, France, 2013.

(8)

[60] J. Langou. Solving large linear systems with multiple right-hand sides. PhD thesis, Department of Mathematics, CERFACS, Toulouse, France, 2003.

[61] A. N. Langville and C. D. Meyer. Deeper inside pagerank. Internet Mathematics, 1:335–380, 2005.

[62] A. N. Langville and C. D. Meyer. A reordering for the pagerank problem. SIAM Journal on Scientific Computing, 27:2112–2120, 2006. [63] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK User’s guide: Solution of large-scale problem with implicitly restarted Arnoldi methods. SIAM, Philadelphia, 1998.

[64] K. Meerbergen. The solution of parametrized symmetric linear systems. SIAM Journal on Matrix Analysis and Applications, 24(4):1038–1059, 2003.

[65] K. Meerbergen and Z. Bai. The Lanczos method for parameterized symmetric linear systems with multiple right-hand sides. SIAM Journal on Matrix Analysis and Applications, 31(4):1642–1662, 2010. [66] R. B. Morgan. A restarted GMRES method augmented with eigenvectors. SIAM Journal on Matrix Analysis and Applications, 16(4):1154–1171, 1995.

[67] R. B. Morgan. Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of equations. SIAM Journal on Matrix Analysis and Applications, 21(4):1112–1135, 2000.

[68] R. B. Morgan. GMRES with deflated restarting. SIAM Journal on Scientific Computing, 24(1):20–37, 2002.

[69] R. B. Morgan. Restarted block-GMRES with deflation of eigenvalues. Applied Numerical Mathematics, 54(2):222–236, 2005.

[70] R. B. Morgan and M. Zeng. Harmonic projection methods for large non-symmetric eigenvalue problems. Numerical Linear Algebra with Applications, 5:33–55, 1998.

[71] C. C. Paige, B. N. Parlett, and H. A. van der Vorst. Approximate solutions and eigenvalue bounds from Krylov subspaces. Numerical Linear Algebra with Applications, 2(2):115–133, 1995.

(9)

[72] C. C. Paige and M. Saunders. Solution of sparse indefinite systems of linear equations. SIAM Journal on Numerical Analysis, 12(4):617– 629, 1975.

[73] X. Pinel. A perturbed two-level preconditioner for the solution of three-dimensional heterogeneous Helmholtz problems with applications to geophysics. PhD thesis, Department of Mathematics, CERFACS, Toulouse, France, 2010.

[74] B.-Y. Pu, T.-Z. Huang, and C. Wen. A preconditioned and extrapolation-accelerated GMRES method for pagerank. Applied Mathematics Letters, 37:95–100, 2014.

[75] S. M. Rao, D. R. Wilton, and A. W. Glisson. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Transactions on Antennas Propagation, AP-30(3):409–418, 1982.

[76] M. Robb´e and M. Sadkane. Exact and inexact breakdowns in the block GMRES method. Linear Algebra and its Applications, 419(1):265–285, 2006.

[77] Y. Saad. Analysis of augmented Krylov subspace techniques. SIAM Journal on Scientific Computing, 14:461–469, 1993.

[78] Y. Saad. Iterative methods for sparse linear systems. SIAM, Philadelphia, 2nd edition, 2003.

[79] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM Journal on scientific and statistical computing, 7(3):856–869, 1986.

[80] A. K. Saibaba, T. Bakhos, and P. K. Kitanidis. A flexible Krylov solver for shifted systems with application to oscillatory hydraulic tomography. SIAM Journal on Scientific Computing, 35(6):A3001– A3023, 2013.

[81] T. Sakurai, H. Tadano, and Y. Kuramashi. Application of block Krylov subspace algorithms to the Wilson-Dirac equation with multiple right-hand sides in lattice QCD. Computer Physics Communications, 181(1):113–117, 2010.

(10)

[82] R. Schlundt, F.-J. Schm¨uckle, and W. Heinrich. Shifted linear systems in electromagnetics. Part II: Systems with multiple right-hand sides. Weierstrass Institute Preprint No. 1646, 2011.

[83] V. Simoncini. Restarted full orthogonalization method for shifted linear systems. BIT Numerical Mathematics, 43(2):459–466, 2003. [84] V. Simoncini and E. Gallopoulos. An iterative method for

nonsymmetric systems with multiple right-hand sides. SIAM Journal on Scientific Computing, 16(4):917–933, 1995.

[85] V. Simoncini and D. B. Szyld. Recent computational developments in Krylov subspace methods for linear systems. Numerical Linear Algebra with Applications, 14(1):1–59, 2007.

[86] C. F. Smith. The performance of preconditioned iterative methods in computational electromagnetics. PhD thesis, University of Illinois at Urbana-Champaign, Illinois, 1987.

[87] C. F. Smith, A. F. Peterson, and R. Mittra. A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields. IEEE Transactions on Antennas and Propagation, 37:1490– 1493, 1989.

[88] P. Sonneveld. CGS, a fast lanczos-type solver for nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 10(1):36–52, 1989.

[89] K. M. Soodhalter. Block Krylov subspace recycling for shifted systems with unrelated right-hand sides. SIAM Journal on Scientific Computing, 38(1):A302–A324, 2016.

[90] K. M. Soodhalter. Two recursive GMRES-type methods for shifted linear systems with general preconditioning. Electronic Transactions on Numerical Analysis, 45:499–523, 2016.

[91] K. M. Soodhalter, D. B. Szyld, and F. Xue. Krylov subspace recycling for sequences of shifted linear systems. Applied Numerical Mathematics, 81:105–118, 2014.

(11)

[92] D.-L. Sun, B. Carpentieri, T.-Z. Huang, and Y.-F. Jing. A spectrally preconditioned and initially deflated variant of the restarted block GMRES method for solving multiple right-hand sides linear systems. International Journal of Mechanical Sciences, 144:775–787, 2018. [93] D.-L. Sun, T.-Z. Huang, B. Carpentieri, and Y.-F. Jing. A new

shifted block GMRES method with inexact breakdowns for solving multi-shifted and multiple right-hand sides linear systems. Journal of Scientific Computing, https://doi.org/10.1007/s10915-018-0787-6, 2018.

[94] D.-L. Sun, T.-Z. Huang, B. Carpentieri, and Y.-F. Jing. Flexible and deflated variants of the block shifted GMRES method. Journal of Computational and Applied Mathematics, 345:168–183, 2019.

[95] D.-L. Sun, T.-Z. Huang, Y.-F. Jing, and B. Carpentieri. A block GMRES method with deflated restarting for solving linear systems with multiple shifts and multiple right-hand sides. Numerical Linear Algebra with Applications, 25(5), https://doi.org/10.1002/nla.2148, 2018.

[96] D.-L. Sun, Y.-F. Jing, T.-Z. Huang, and B. Carpentieri. A quasi-minimal residual variant of the BiCORSTAB method for nonsymmetric linear systems. Computers Mathematics with Applications, 67(10):1743–1755, 2014.

[97] R. Sweet. A parallel and vector variant of the cyclic reduction algorithm. SIAM Journal on Scientific and Statistical Computing, 9(4):761–765, 1988.

[98] D. B. Szyld and J. A. Vogel. FQMR: A flexible quasi-minimal residual method with inexact preconditioning. SIAM Journal on Scientific Computing, 23(2):363–380, 2001.

[99] A. Toselli and O. B. Widlund. Domain decomposition methods: algorithms and theory, volume 34. Springer, 2005.

[100] R. S. Tuminaro. A highly parallel multigrid-like method for the solution of the Euler equations. SIAM Journal on Scientific and Statistical Computing, 13:88–100, 1992.

(12)

[101] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13(2):631–644, 1992.

[102] H. A. van der Vorst and C. Vuik. The superlinear convergence behaviour of GMRES. Journal of Computational and Applied Mathematics, 48:327–341, 1993.

[103] G. Wu, Y.-C. Wang, and X.-Q. Jin. A preconditioned and shifted GMRES algorithm for the pagerank problem with multiple damping factors. SIAM Journal on Scientific Computing, 34(5):A2558–A2575, 2012.

(13)

Referenties

GERELATEERDE DOCUMENTEN

2.2.7 Sensitivity to the accuracy of the spectral approximation 47 3 Flexible and deflated variants of the shifted BGMRES method 51 3.1 DBGMRES-Sh, a deflated variant of the

Due to the very large block orthogonalization costs (see, e.g., [73], in particular Table 2.4 for some figures of complexity), the block Arnoldi procedure is often

In this section we compare its convergence performance against both the standard block GMRES method (BGMRES [78]) for solving L = 4 linear systems with multiple right-hand sides

We illustrate the benefits of using variable preconditioning with the DB- GMRES-Sh method by comparing, on the same set of matrix problems listed in Table 3.1, the convergence of

Numerical experiments are reported on a suite of sparse matrix problems to show the potential of the new proposed method to solve general multi-shifted and multiple right-hand

The spectrally preconditioned BGMRES method with eigenspace recycling presented in the previous section is combined with an initial deflation strategy to overcome convergence

In Table 6.1, we summarize the overall computational cost of one cycle of the BGMRES-Sh, BGMRES-DR-Sh, DBGMRES-Sh and SAD-BGMRES methods for solving a sequence of L shifted

This thesis concerns with the development of efficient Krylov subspace methods for solving sequences of large and sparse linear systems with multiple shifts and multiple