• No results found

The impact of increased atmospheric carbon dioxide on microbial community dynamics in the rhizosphere

N/A
N/A
Protected

Academic year: 2021

Share "The impact of increased atmospheric carbon dioxide on microbial community dynamics in the rhizosphere"

Copied!
3
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The impact of increased atmospheric carbon dioxide on microbial community dynamics in the rhizosphere

Drigo, B.

Citation

Drigo, B. (2009, January 21). The impact of increased atmospheric carbon dioxide on

microbial community dynamics in the rhizosphere. Netherlands Institute of Ecology, Faculty of Science, Leiden University. Retrieved from https://hdl.handle.net/1887/13419

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13419

Note: To cite this publication please use the final published version (if applicable).

(2)

Contents

Chapter 1 General Introduction 1

Chapter 2 Climate change goes underground: effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere 8 Chapter 3 Impact of elevated CO2 on the rhizosphere communities of Carex arenaria and Festuca rubra 22

Chapter 4 Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO2 40

Chapter 5 Tracking microbial responses in the rhizopshere of plants subjected to elevated CO2 58

Chapter 6 Distinct root-associated communities are selected by elevated atmospheric CO2 72

Intermezzo Climate change modulates carbon flow trough soil food webs 90

Chapter 7 Three year exposure to CO2 enrichment modifies microbially-mediated carbon flow...106

Chapter 8 General discussion...122

Reference ...130

Summary ...148

Samenvatting ...150

Acknoledgments...152

Curriculum Vitae...162

Pubblications ...164

(3)

Referenties

GERELATEERDE DOCUMENTEN

Many studies agree that there is little or no direct effect on the microbial community of the bulk soil and that the mycorrhizal, bacterial and fungal communities in the close

We determined the effects of increased atmospheric CO 2 -levels on microbial communities in the rhizosphere of Carex arenaria (a non-mycorrhizal plant species) and Festuca rubra

Table 3: Main PCR-DGGE distance-based redundancy analyses results for plant species (C. rubra), soil origin (Middelduinen, Kwade Hoek and Bergharen) and ambient and elevated CO 2

To assess the effects of elevated atmospheric CO 2 on microbial communities that respond to plant-derived C substrates in the rhizosphere, a 13 C-CO 2 pulse-chase

Sequence recovery in the elevated CO 2 ‘light’ clone library (Lef) showed 70% as affiliated with Ascomycota, 26% Glomeromycota and the remaining 4% to Basidiomycota.Within

In order to track the fate of plant-assimilated C to belowground microbial communities in response to elevated atmospheric CO 2 , we conducted a 13 CO 2 pulse-chase

To assess the effects of increased atmospheric CO 2 on bacterial, general fungal and arbuscular mycorrhizal fungal (AMF) communities in the rhizosphere, Carex arenaria

To gain more detailed insight into the specific impacts of elevated CO 2 on soil-borne communities, I examined the dynamics of specific bacterial groups, such as phloroglucinol,