• No results found

problems Continuum-kinematics-inspired peridynamics. Mechanical Journal of the Mechanics and Physics of Solids

N/A
N/A
Protected

Academic year: 2022

Share "problems Continuum-kinematics-inspired peridynamics. Mechanical Journal of the Mechanics and Physics of Solids"

Copied!
22
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Journal of the Mechanics and Physics of Solids

journalhomepage:www.elsevier.com/locate/jmps

Continuum-kinematics-inspired peridynamics. Mechanical problems

A. Javili

a,

, A.T. McBride

c

, P. Steinmann

b,c

a Department of Mechanical Engineering, Bilkent University, Ankara, 06800, Turkey

b Chair of Applied Mechanics, University of Erlangen-Nuremberg, Egerland Str. 5, Erlangen,91058, Germany

c Glasgow Computational Engineering Centre, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, United Kingdom

a r t i c l e i n f o

Article history:

Received 15 January 2019 Revised 12 May 2019 Accepted 26 June 2019 Available online 2 July 2019 Keywords:

Peridynamics Continuum kinematics Thermodynamic consistency

a b s t r a c t

The main objective of this contribution is to develop a novel continuum-kinematics- inspiredapproachforperidynamics(PD),andtorevisitPD’sthermodynamicfoundations.

Wedistinguish betweenthreetypesofinteractions, namely,one-neighbourinteractions, two-neighbourinteractionsandthree-neighbourinteractions. Whileone-neighbourinter- actionsareequivalenttothebond-basedinteractionsoftheoriginalPDformalism,two- andthree-neighbourinteractionsarefundamentallydifferenttostate-basedinteractionsin thatthe basicelements ofcontinuum kinematicsarepreserved exactly.Inaddition, we proposethatan externallyprescribed tractiononthe boundaryofthe continuum body emergesnaturallyand need not vanish.Thisis incontrast to, butdoes not necessarily violate, standard PD. We investigate the consequencesof the angular momentum bal- anceandprovideasetofappropriateargumentsfortheinteractionsaccordingly.Further- more,weelaborateonthermodynamicrestrictionsontheinteractionenergiesandderive thermodynamically-consistentconstitutivelawsthroughaColeman–Noll-likeprocedure.

© 2019TheAuthors.PublishedbyElsevierLtd.

ThisisanopenaccessarticleundertheCCBYlicense.

(http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Peridynamics(PD)isan alternativeapproach toformulatecontinuum mechanics(Silling,2000)the rootsofwhichcan be tracedback to the pioneeringworks ofPiola (dell’Isola etal., 2015; 2016; 2017) which prepared the foundationsfor nonlocalcontinuum mechanicsand peridynamics.PD hasexperienced prolific growthasan area of research,with asig- nificantnumberofcontributions inmultipledisciplines. PD isa non-localcontinuum mechanics formulation.However, it isfundamentally differentfromcommonnon-localelasticity (e.g.Eringen,2002) inthat the conceptsof stressandstrain arenotpresent.Asanon-localtheory,thebehaviourofeachmaterialpointinPDisdictatedbyitsinteractionswithother materialpointsinitsvicinity.Furthermore,incontrasttoclassicalcontinuummechanics,thegoverningequationsofPDare integro-differentialequationsappropriateforproblemsinvolvingdiscontinuitiessuchascracksandinterfaces.

Whilethe discretized format ofPD bearsa similarity todiscrete mechanics formulations such asmolecular dynamics (MD), it is still a continuum formulation and only takes advantage of basic MDconcepts such as the cutoff radius and

Corresponding author.

E-mail address: ajavili@bilkent.edu.tr (A. Javili).

https://doi.org/10.1016/j.jmps.2019.06.016

0022-5096/© 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license.

( http://creativecommons.org/licenses/by/4.0/ )

(2)

Table 1

Major applications and selected key contributions of PD.

PD application Important contributions

Quasi-static problems Dayal and Bhattacharya (2006) , Mikata (2012) , Breitenfeld et al. (2014) , Huang et al. (2015) , and Madenci and Oterkus (2016)

Coupled problems Gerstle et al. (2008) , Bobaru and Duangpanya (2010) , Oterkus et al. (2014a, 2014b, 2017)

Multiscale modeling Bobaru et al. (2009) , Shelke et al. (2011) , Rahman and Foster (2014) , Talebi et al. (2014) , Ebrahimi et al. (2015) , Tong and Li (2016) , and Xu et al. (2016)

Structural mechanics Silling and Bobaru (2005) , Diyaroglu et al. (2016) , O’Grady and Foster (2014) , Taylor and Steigmann (2015) , Chowdhury et al. (2016) , and Li et al. (2016)

Constitutive models Aguiar and Fosdick (2014) , Sun and Sundararaghavan (2014) , Tupek and Radovitzky (2014) , Silhavý (2017) , and Madenci and Oterkus (2017)

Material failure Kilic and Madenci (2009) , Foster et al. (2011) , Silling et al. (2010) , Agwai et al. (2011) , Dipasquale et al. (2014) , Chen and Bobaru (2015) , Han et al. (2016) , Emmrich and Puhst (2016) , De Meo et al. (2016) , Sun and Huang (2016) , and Diyaroglu et al. (2016)

Biomechanics Taylor et al. (2016) , Lejeune and Linder (2017a, 2017b, 2018a, 2018b)

Wave dispersion Zingales (2011) , Vogler et al. (2012) , Wildman and Gazonas (2014) , Bazant et al. (2016) , Nishawala et al. (2016) , Silling (2016) , and Butt et al. (2017)

Fig. 1. Schematic illustration and comparison between the standard PD formulation (left) and the proposed continuum-kinematics-inspired alternative (right). One-neighbour interactions in our framework are identical to bond-based interactions in the PD formulation of Silling (20 0 0) . Two and three- neighbour interactions corresponding to Eq. (4) and Eq. (5) , respectively, are alternatives to state-based interactions. The difference between the bond- based, ordinary state-based, and non-ordinary state-based PD formulations lies in the magnitude and direction of the interaction forces (green arrows) between the materials points. In our approach, the difference between the one-, two- and three-neighbour interactions lies in their kinematic descriptions.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

point-wiseinteractions.ForfurtherconnectionsanddifferencesbetweenPDtheory,continuummechanicsandparticlesys- temsseethefundamentalcontributionsbyFried(2010),Murdoch(2012),Fosdick(2013),andPodio-Guidugli(2017),among others.PDinherentlyaccountsforgeometricaldiscontinuities,henceitisreadilyemployedinfracturemechanicsandrelated problems.However, theapplicationsofPD extendfarbeyondfracture anddamage.Foran extensivestudyofthebalance laws,applications,andimplementations,seeMadenciandOterkus(2014),andforabriefdescriptionofPDtogetherwitha review ofitsapplicationsandrelatedstudiesindifferentfieldsto date,seeJavilietal.(2018).Table1categorisesvarious PDapplicationsandtheassociatedkeycontributionsintheliterature.Itisclearthat therangeofPDapplicationsisbroad andnotlimitedtofracturemechanics.

Theoriginal PDtheoryofSilling(2000) wasrestrictedtobond-basedinteractions.Thislimiteditsapplicabilityforma- terialmodelling,includingtheinabilitytoaccountforPoisson’sratiootherthan1/4forisotropicmaterials.Thisshortcom- ing wasaddressedinvarious contributions andfinally rectifiedby Silling etal.(2007)via theintroduction ofthenotion of state andcategorisingthe interactions asbond-based, ordinary state-based andnon-ordinary state-based asschemati- cally illustratedinFig.1(left).DespitethelargeamountofresearchonPD,itsthermodynamic foundationshavenotbeen fullyinvestigated.FundamentalworksonPDarelimitedinnumberbutincludethoseofSillingandLehoucq(2010),Ostoja- Starzewskietal.(2013),andOterkusetal.(2014a).ThestartingpointofthesecontributionsisthePDtheoryandconstitutive formulationofSillingetal.(2007).Thegoalhereistoadoptacontinuum-kinematics-inspiredapproachandtherebybridge the gapbetweenclassical continuum thermodynamicsandPD.More precisely, wepropose an alternative PDformulation whose underlyingconcepts are reminiscentofclassical continuum mechanics.In particular,we firstly propose todecom- posetheinteraction potentialsintothreepartscorresponding toone-neighbour interactions,two-neighbour interactionsand

(3)

three-neighbourinteractionswithinthehorizon,asillustratedinFig.1(right).Note,one-neighbourinteractionsareidentical to bond-basedinteractions in the PD formulationof Piola(dell’Isola etal., 2015) andSilling (2000).Secondly, we derive the balance of linear and angular momentum corresponding to our interaction potentials and identify the fundamental propertiesofthesepotentialssuchthatangularmomentumbalanceisapriorifulfilled.Finally,wederivethedissipationin- equalityandproposethermodynamically-consistentconstitutivelaws.Crucially,wepostulatethevirtualpowerequivalence asthekeyrequirementofourapproachandbuildourentireframeworksolelyonthisvariationalassumption.

Remark. Before proceeding,we revisit thenotions ofa “localizationprocedure” and a “point-wise equation” since inthe currentcontext they serve a broader purposethan they usually do inclassical continuum mechanics. Localization refers to the process of deriving a point-wiserelation from an integral form over a domain. The resulting point-wise relation itselfmayormaynotbe anintegralform.Applying thelocalizationprocedureonglobalformsinCCMrenderspoint-wise relationsateachXthatarenotintegralsandthusarelocal.Onthecontrary,point-wiseequationsateachXinCPDinclude integralsoverthehorizonandarehencenon-local.Itispossibletoapplyalocalizationprocedureonthesenon-localforms toderive neighbour-wise equationsthat are point-wiseforms ateach neighbouring particle’slocation X|.Henceforth,we usetheterm“localform” exclusivelytoindicatethepoint-wisequantitiesandequationsofCCM.Theterm“non-localform”

ontheotherhandreferstopoint-wiseintegralformsassociatedwithCPD.Finally,theterm“neighbour-wiseform” refersto non-integralquantitiesandrelationsinCPDobtainedvialocalizationoftheirnon-localforms. 

Themanuscriptisorganizedasfollows.Section2introduces thenotation,elaboratesonthekinematicsoftheproblem andpresentsthegeometricalaspectsoftheproposedframework.Herethenoveltyistointroducetwo-andthree-neighbour interactionsinspiredbybasicelementsofclassicalcontinuumkinematics.Firstly,asamotivation,wederivethegoverning equationsusingtheDirichletprincipleinSection3viaminimizingthetotalenergyfunctional,forthespecialcaseofaquasi- static,conservativeproblem.Next,forthegeneralcase,thermodynamicbalancelawsarediscussedinSection4.Inparticular, we detail the kinetic energy,energy and entropy balance equations. Afterwards,through a Coleman–Noll-likeprocedure basedon the dissipation inequality, we providethermodynamically-consistent constitutive laws.Section 5 concludes this work.

2. Kinematics

Consider acontinuum body that occupiesthe materialconfiguration B0∈R3 attime t=0andthat is mappedto the spatialconfigurationBt∈R3 viathenonlineardeformationmapyas

x=y

(

X,t

)

: B0× R+BtBt=y

(

B0

)

inwhichXandxidentifythepointsinthematerialandspatialconfigurations,respectivelyillustratedinFig.2.Centralto thePDtheory,andincontrasttostandardlocalcontinuum mechanics,isthenon-localityassumptionthat anypoint Xin thematerialconfigurationcaninteractwithpointswithinitsfiniteneighbourhoodH0(X).TheneighbourhoodH0isreferred toasthehorizoninthematerialconfiguration.Themeasureofthehorizoninthematerialconfigurationisdenoted

δ

0and isgenerallytheradiusofasphericalneighbourhood atX.ThespatialhorizonHt istheimage ofthematerialhorizonH0

underthedeformationmapyanditsmeasureisdenoted

δ

t,thatis

Ht=y

(

H0,t

)

with

δ

0:=meas

(

H0

)

and

δ

t:=meas

(

Ht

)

=y

( δ

0

)

.

NotethatthehorizonH0coincideswiththepointXinthelimitofaninfinitesimalneighbourhoodandtherefore δlim00H0X and lim

δ00Htx

recoveringthekinematicsofthelocalcontinuummechanicsformalism.

TobemorepreciseandtobetterdistinguishthePDformalismfromconventionalcontinuummechanics,weidentifythe points(neighbours)within thehorizonbyasuperscript.ForinstancethepointX|H0(X)denotesaneighbourofpointX

Fig. 2. Motion of a continuum body. Illustration of classical continuum mechanics formalism (left) and the peridynamics formulation (right). The continuum body that occupies the material configuration B 0 ∈ R 3 at time t = 0 is mapped to the spatial configuration B t ∈ R 3 via the nonlinear deformation map y .

(4)

inthematerialconfiguration.Thepointx|withinthehorizonofxisthespatialcounterpartofthepointX|definedthrough thenonlineardeformationmapyas

x|:=y

(

X|,t

)

. (1)

Forourproposedframework,weidentifytheneighboursetofpointXas



X|,X||,X|||



X|H0

(

X

)

, X||H0

(

X

)

, X|||H0

(

X

)

.

These neighbours ofX denoted X|, X||, X||| are mapped onto x|, x||, x|||,respectively. The relative positions, i.e. the finite lineelements,inthematerialandspatialconfigurationsaredenotedas{}and

ξ

{},respectively,wherethesuperscript{•} identifiestheneighbour,thatis



|:=X|− X and

ξ

|:=x|− x where

ξ

|=

ξ (

X|; X

)

=y

(

X|

)

− y

(

X

)

,



||:=X||− X and

ξ

||:=x||− x where

ξ

||=

ξ (

X||; X

)

=y

(

X||

)

− y

(

X

)

,



|||:=X|||− X and

ξ

|||:=x|||− x where

ξ

|||=

ξ (

X|||; X

)

=y

(

X|||

)

− y

(

X

)

.

(2)

Inaddition,wedefinetheconventionalinfinitesimallineelements,byalimitoperation,as dX|:=lim

δo0



|, dx|:=lim

δo0

ξ

|, dX||:=lim

δo0



||, dx||:= lim

δo0

ξ

||, dX|||:=lim

δo0



|||, dx|||:= lim

δo0

ξ

|||.

Inordertoovercomethe bond-basedrestrictionsofearlyPD formulations,andinthe spiritofclassicalconstitutivemod- elling, we first recallthe three local kinematicmeasures ofrelative deformation, namely the deformation gradient F, its cofactorKanditsdeterminantJ,where

F:=Grady and K:=CofF and J:=DetF. (3)

We nowintroducethree non-localPDkinematic measuresofrelative deformationchosen to resemblethe localmeasures (3).

(i) The first relative deformation measure

ξ

| mimics the linear map F from the infinitesimalline element dX| inthe material configuration to its spatial counterpart dx|. The infinitesimalspatial line element dx| is related to its material counterpartdX|viaaTaylorexpansionatXas

dx| = lim δ00[x|− x]

= lim δ00

ξ

|

= lim δ00



F



X·



|+12G



X:





|



|



+...



≈ F· dX|,

whereGisthesecondgradientofthedeformationmapy.InviewofourproposedPDformalism,therelativedeformation measurex|− xisthemainingredienttodescribeone-neighbourinteractions,seeFig.3.

(ii) Similar to finite line elements, we introduce finite area elements constructed from two finite line elements. For instance,thevectorialareaelementA|/||inthematerialconfigurationcorrespondstothevectorproductofthelineelements

|and||asA|/||:=|×|| withitscounterpartinthespatialconfigurationdenotedasa|/||:=

ξ

|×

ξ

||,i.e.

A|/||:=



|×



|| and a|/||:=

ξ

|×

ξ

|| where a|/||=a

(

X|,X||; X

)

. (4)

Fig. 3. Illustration of finite line elements within the horizon in the material and spatial configurations corresponding to one-neighbour interactions. The finite line elements are the relative positions between points.

(5)

Fig. 4. Illustration of finite area elements within the horizon in the material and spatial configurations corresponding to two-neighbour interactions.

Thesecondrelative deformationmeasurea|/||mimics thelinearmapfromtheinfinitesimal(vectorial)areaelementdA|/||

inthematerialconfigurationtoitsspatialcounterpartda|/||.Aninfinitesimalareaelementisconstructedfromthreepoints withinthehorizoninthelimitofinfinitesimalhorizonmeasureas

da|/|| = lim

δ00a|/||=lim δ00



[x|− x]× [x||− x]



= lim δ00

 ξ

|×

ξ

||



=



F· dX|



×



F· dX||



=K· dA|/||.

ThisisessentiallytheNanson’sformulafrequentlyusedinconventionalcontinuumkinematics.Inourproposedframework, the relative area measure [x|− x]× [x||− x] is the main ingredient to describe two-neighbour interactions,see Fig. 4.(iii) Inasimilarfashiontofinitelineelementsandareaelements,wedefinefinitevolumeelementsformedbythreefiniteline elements.LetV|/||/|||denotethefinitevolumeelementinthematerialconfigurationwithitsspatialcounterpartbeing

v

|/||/|||. ThevolumeelementsV|/||/|||and

v

|/||/|||areobtainedbyascalartripleproduct,alsoreferredtoasamixedproduct,oftheir edgesas

V|/||/|||:=





|×



||



·



||| and

v

|/||/||:=

 ξ

|×

ξ

||



·

ξ

||| where

v

|/||/||=

v (

X|,X||,X|||; X

)

. (5)

Thethirdandlastdeformation measure

v

|/||/||| mimicsthelinearmap Jfromtheinfinitesimalvolume elementdV|/||/||| in thematerial configuration to its spatialcounterpart d

v

|/||/|||. However unlike Jthat must be strictly positive, the volume elements

v

|/||/||| andV|/||/||| canbe positiveornegativeaslongasthey areconsistent inthesense that

v

|/||/|||/V|/||/|||>0 musthold.Theinfinitesimalvolumeelementsare formedfromfourpointswithinthehorizoninthelimit ofinfinitesimal horizonmeasureas

d

v

|/||/||| = lim

δ00

v

|/||/|||=lim δ00

 

[x|− x]× [x||− x]



· [x|||− x]



= lim δ00

  ξ

|×

ξ

||



·

ξ

|||



=

 

F· dX|



×



F· dX||



·



F· dX|||



=JdV|/||/|||.

The relative volume measure [[x|− x]× [x||− x]· [x|||− x]]is the main ingredient todescribe three-neighbour interactions, seeFig.5.

3. Dirichletprinciplesetting

Togain insightintothethermodynamicbalance lawsbefore investigatingthe generalcaseinSection4,we beginwith the specialcase of a quasi-staticconservative problem. Thus, in order to set the stage andto motivate the structure of thegoverningequationsfortheimportantproblemofaconservativesystemthatisequippedwithatotalpotentialenergy functional,weconsider theDirichletprinciple. Moreprecisely,we obtain thegoverningequationsby minimizing thecor- respondingtotal potential energyfunctionalvia settingits first variation tozero.The total potential energyfunctional

(6)

Fig. 5. Illustration of finite volume elements within the horizon in the material and spatial configurations corresponding to three-neighbour interactions.

consistsofinternalandexternalcontributions,denotedasint andext,respectively,andisgivenby



=



int+



ext. (6)

The internalandexternal contributionsare detailedin Sections3.1and3.2,respectively. InSections3.3thegoverning equationsare derivedandtheir connectiontoclassical(local)Cauchy continuum mechanicsishighlighted.The discussion on the variational setting in thissection is entirelyrestricted to non-dissipative processes. As outlined by dell’Isola and Placidi (2011), however, this variational setting can be extended to more generic dissipative cases using the Hamilton–

Rayleighvariationalprinciple,aswillbeexploredinaseparatecontribution.

3.1. Internalpotentialenergy

Theinternal potential energyofthe systemint isassumedwithoutloss ofgenerality tobe separable,i.e.tobe com- posedoftheinternalpotentialenergyduetoone-neighbourinteractionsint1 ,two-neighbourinteractions2int andthree- neighbourinteractions3int,thatis



int=



1

int+



int2 +



3int,

wherethenumberinthesubscriptindicatesthetypeofinteraction.Thesecontributionstotheinternalpotentialenergyare nowexplored.

3.1.1. One-neighbourinteractions

Toproceed, wedefine the one-neighbourinteractionenergy densityper volume squaredinthe materialconfiguration w1|asafunctionoftherelativeposition

ξ

|betweentwopoints,thatis

w1|:=w1

( ξ

|

)

=w1

( ξ (

X|; X

))

≡ w1

( ξ

|;



|,X

)

with [w1]=N.m/m6

wherethesemi-colondelineatesargumentsofafunctionfromitsparametrisation.Furthermore,wedefinethemorefamiliar energydensitypervolumeashalfoftheintegralofw1 overthehorizonH0,thatis

W1:=1 2

H0

w1dV| with [W1]=N.m/m3

whereinthefactorone-halfisintroduced toprevent doublecountingsincewevisit eachpoint twiceduetotheresulting double-integrationinthe nextstep. Consequently,theinternal potential energyduetoone-neighbourinteractions 1int is definedby



1 int:=

B0

W1dV = 1 2

B0

H0

w1

( ξ

|

)

dV|dV with





1 int



=N.m

≡ 1 2

B0

B0

w1

( ξ

|

)

dV|dV.

ThelaststepholdssinceatanypointXone-neighbourinteractionswithpointsoutsidethehorizonvanish.Next,thevaria- tionof1

int canbeexpressedas

δ 

1 int =

B0

B0

w1

ξ

| ·

δξ

|dV|dV

=

B0

H0

w1

ξ

| ·

δξ

|dV|dV (7)

(7)

inwhichthepreviouslyintroducedfactorone-halfdisappearsduetothevariationrulesonmultipleintegrals.Motivatedby thestructureofEq.(7),wedefinetheforcedensitypervolumesquaredduetoone-neighbourinteractionsby

p1|:=

w1

ξ

| with



p1|



=N/m6 (8)

andthereforethevariationof1

int,using

δξ

|=

δ

y|

δ

yfromEqs.(1)and(2),reads

δ 

1

int=

B0

H0

p1|·

δξ

|dV|dV

=

B0

H0

p1|·

δ

y|dV|

H0

p1|dV|·

δ

y

dV

=

B0

B0

p1|·

δ

y|dV|dV

B0

H0

p1|dV|·

δ

ydV. (9)

Weidentifytheinternalforcedensitypervolumeinthematerialconfigurationduetoone-neighbourinteractions bint01as bint01:=

H0

p1|dV| with



bint01



=N/m3. (10)

Note,we recognize the right-hand side of Eq.(10) as an internal force density since it is the virtual power conjugated quantityto

δ

y accordingtoEq.(9).Finally,thevariationoftheinternalpotentialenergyduetoone-neighbourinteractions

1int reads

δ 

1

int=

B0

B0

p1|·

δ

y|dV|dV

B0

bint01·

δ

ydV.

3.1.2. Two-neighbourinteractions

Next,wedefinethetwo-neighbourinteractionenergydensitypervolumecubedinthematerialconfigurationw2|/||asa functionoftheareaelementa|/|| betweenthreepoints,thatis

w2|/||=w2

(

a|/||

)

=w2

ξ (

Xı; X

)

×

ξ (

X||; X

)

≡ w2

(

a|/||; A|/||,X

)

with [w2]=N.m/m9.

Furthermore,we define the morefamiliar energydensityper volume asone third ofthe doubleintegral ofw2 over the horizonH0,thatis

W2:=1 3

H0

H0

w2dV||dV| with [W2]=N.m/m3.

Thefactorone-thirdisintroducedtopreventtriplecountingduetotheresultingtriple-integralsthatcomenext.Notethat thesequence of integrationmaybe exchanged.The internal potential energy dueto two-neighbourinteractions denoted

2int isdefinedby



int2 :=

B0

W2dV = 1 3

B0

H0

H0

w2

(

a|/||

)

dV||dV|dV with [



2int]=N.m

≡ 1 3

B0

B0

B0

w2

(

a|/||

)

dV||dV|dV.

Again,thelaststepholdssinceatanypointXtwo-neighbourinteractionswithpointsoutsidethehorizonvanish.Next,the variationof2int canbewrittenas

δ 

int2 =

B0

B0

B0

w2

a|/||·

δ

a|/||dV||dV|dV=: 1 2

B0

B0

B0

m|/||·

δ

a|/||dV||dV|dV,

inwhichthepreviously introducedfactorone-third disappearsandthefactorone-halfis introducedforconvenience.The doubleforcedensitypervolumecubedisdefinedbym|/|| where

m|/||≡ m

ξ

|×

ξ

||

:=2

w2

a|/|| with



m|/||



=N/m10.

Importantly,1misassumedtobehomogeneousofdegreeoneina|/|| sothat m||/|=m

ξ

||×

ξ

|

=m

ξ

|×

ξ

||

=−m

ξ

|×

ξ

||

=−m|/||. (11)

1 This is not only a model assumption but also requirement to satisfy sufficiently the balance of angular momentum, as will be shown in the discussion after Eq. (35) .

(8)

Usingtherelation

δ

a|/||=

δξ

|×

ξ

||+

ξ

|×

δξ

||fromEq.(4),thevariationof2int reads

δ 

2int= 1 2

B0

B0

B0

 ξ

||× m|/||



·

δξ

|+



m|/||×

ξ

|



·

δξ

||

dV||dV|dV

= 1 2

B0

B0

B0

 ξ

||× m|/||



·

δξ

|



ξ

|× m|/||



·

δξ

||

dV||dV|dV.

Toproceed,wechangetheorderofintegrationforthesecondtermandrelabelthequantities,whichyields

δ 

2int= 1 2

B0

B0

B0

 ξ

||× m|/||



·

δξ

|



ξ

||× m||/|



·

δξ

|

dV||dV|dV

= 1 2

B0

B0

B0

 ξ

||× m|/||



·

δξ

|+



ξ

||× m|/||



·

δξ

|

dV||dV|dV

=

B0

B0

B0

 ξ

||× m|/||



·

δξ

|dV||dV|dV

=

B0

H0

H0

 ξ

||× m|/||



·

δξ

|dV||dV|dV. (12)

Motivatedbythestructure ofEq.(12),wedefine theforcedensitypervolumesquaredduetotwo-neighbourinteractions by

p2|:=

H0

ξ

||× m|/||dV|| with



p2|



=N/m6. (13)

This result should be compared with the force density per volume squared due to one-neighbour interactions (8). The variationof2int with

δξ

ı=

δ

yı

δ

yreads

δ 

2int=

B0

H0

p2

δξ

|dV|dV

=

B0

H0

p2

δ

y|dV|

H0

p2|dV|·

δ

y

dV

=

B0

B0

p2

δ

y|dV|dV

B0

H0

p2|dV|·

δ

ydV, (14)

wherewe identify theinternal force densityper volume inthe materialconfiguration duetotwo-neighbour interactions bint02 as

bint02:=

H0

p2|dV| with



bint02



=N/m3. (15)

Again, we recognize the right-hand side of Eq.(15) asan internal force densitysince it is thevirtual powerconjugated quantityto

δ

yaccordingtoEq.(14).Finally,thevariationoftheinternalpotentialenergyduetotwo-neighbourinteractions

2intreads

δ 

2int=

B0

B0

p2

δ

y|dV|dV

B0

bint02·

δ

ydV.

3.1.3. Three-neighbourinteractions

Thethree-neighbourinteractionenergydensitypervolumetothefourthpowerinthematerialconfigurationw3|/||/|||is afunctionofthevolumeelement

v

|/||/|||betweenfourpointsandreads

w3|/||/|||=w3

( v

|/||/|||

)

=w3

 ξ (

Xı; X

)

×

ξ (

X||; X

) 

·

ξ (

X|||; X

)

≡ w3

( v

|/||/|||;V|/||/|||,X

)

with



w3|/||/|||



=N.m/m12.

Wedefinethemorefamiliarenergydensitypervolumeasonequarterofthetripleintegralofw3overthehorizonH0by W3:=1

4

H0

H0

H0

w3dV|||dV||dV| with [W3]=N.m/m3

(9)

withthefactorone-fourthpreventingquadruplecountingduetothefollowingquadrupleinterchangeableintegrals.Conse- quentlytheinternalpotentialenergyduetothree-neighbourinteractionsdenoted3int reads



int3 :=

B0

W3dV = 1 4

B0

H0

H0

H0

w3

( v

|/||/|||

)

dV|||dV||dV|dV with





3int



=N.m

≡ 1 4

B0

B0

B0

B0

w3

( v

|/||/|||

)

dV|||dV||dV|dV.

Next,thevariationof3intcanbewrittenas

δ 

int3 =

B0

B0

B0

B0

w3

∂v

|/||/|||

δv

|/||/|||dV|||dV||dV|dV=: 13

B0

B0

B0

B0

p|/||/|||

δv

|/||/|||dV|||dV||dV|dV

whereinthe previously introduced factorone-fourth disappears due to the variation rules on multiple integralsand the factorone-third on thelast termis introduced forconvenience. Thetriple force densityper volume tothe fourthpower p|/||/|||isdefinedby

p|/||/|||≡ p

 ξ

|×

ξ

||



·

ξ

|||

:=3

w3

∂v

|/||/||| with



p|/||/|||



=N/m14.

Wenotethatpisinvariantwithrespecttoevenpermutationsin

ξ

|,

ξ

||and

ξ

|||since

 ξ

|×

ξ

||



·

ξ

|||=



ξ

||×

ξ

|||



·

ξ

|=

 ξ

|||×

ξ

|



·

ξ

||

v

|/||/|||=

v

||/|||/|=

v

|||/|/||p|/||/|||=p||/|||/|=p|||/|/||. (16)

Weemphasizethatm wasassumedto behomogeneous of degreeonesuch thatthe propertym|/||=−m||/| holds.However, pisinvariant withrespect toeven permutationsbydefinition.Using therelation

δv

|/||/|||=[

ξ

||×

ξ

|||]·

δξ

|+[

ξ

|||×

ξ

|]·

δξ

||+ [

ξ

|×

ξ

||]·

δξ

|||fromEq.(5),thevariationof3int reads

δ 

int3 = 1 3

B0

B0

B0

B0

p|/||/|||



[

ξ

||×

ξ

|||]·

δξ

|+[

ξ

|||×

ξ

ı]·

δξ

||+[

ξ

|×

ξ

||]·

δξ

|||



dV|||dV||dV|dV

=

B0

B0

B0

B0

p|/||/|||



[

ξ

||×

ξ

|||]·

δξ

|



dV|||dV||dV|dV

=

B0

H0

H0

H0

p|/||/|||



[

ξ

||×

ξ

|||]·

δξ

|



dV|||dV||dV|dV, (17)

inwhichinthesecond stepwechangedtheorderofintegrationandrelabelledthequantities.Motivatedby thestructure ofEq.(17),wedefinetheforcedensitypervolumesquaredduetothree-neighbourinteractionsas

p3|:=

H0

H0

p|/||/|||[

ξ

||×

ξ

|||]dV|||dV|| with



p3|



=N/m6.

Thisshouldbe compared withthe force densityper volume squaredduetoone-neighbourinteractions (8)andtheforce densitypervolumesquaredduetotwo-neighbourinteractions(13).Thevariationof3int with

δξ

|=

δ

y|

δ

yreads

δ 

int3 =

B0

H0

p3

δξ

|dV|dV

=

B0

H0

p3

δ

y|dV|

H0

p3|dV|·

δ

y

dV

=

B0

B0

p3

δ

y|dV|dV

B0

H0

p3|dV|·

δ

ydV (18)

inwhichweidentifytheinternalforcedensitypervolumeinthematerialconfigurationduetothree-neighbourinteractions b03int as

bint03 :=

H0

p3|dV| with



bint03



=N/m3. (19)

The right-hand side ofEq.(19) is againan internal force densitysince it is thevirtual power conjugated quantity to

δ

y

accordingtoEq.(18).Finally,thevariationoftheinternalpotentialenergyduetothree-neighbourinteractions3intreads

δ 

int3 =

B0

B0

p3|·

δ

y|dV|dV

B0

bint0

3·

δ

ydV.

Referenties

GERELATEERDE DOCUMENTEN

Strategie: aandacht voor gezinsverpakkingen, ruimere afzet, prijs per kilo niet te hoog, vlees makkelijk verkrijgbaar, al het vlees van het konijn gebruiken (resten verwerken

Specifically, we ask whether age, cardinal knowledge, (ir)regular morphology, and the place in the ordinal count list predict children ’s comprehension of given ordinals and how

je kunt niet alles voor iedereen zijn, maar ik geloof wel dat een verhaal dat gaat over iemand anders dan je zelf met een product of een boodschap die niet voor jouw is maar wel

population the next year, probably because more foxes move in to contest the vacant area than were there in the first place. 19 , culling won't target individual foxes that

Tissue specific expression was observed in transgenic sugarcane where expression of the reporter gene was regulated by the UDP-glucose dehydrogenase promoter and first

Turning to the competition laws of the other subject jurisdictions, it will be seen that they share with the EU the elements of (a) a rule aimed at preventing arrangements

Het prospectiegebied werd door middel van zes noord-zuid georiënteerde proefsleuven op de aanwezigheid van archeologische sporen onderzocht. De afstand tussen de sleuven bedroeg