• No results found

Exercise 1 (7 pt) Prove that a triangle with vertices a, b, c ∈ C taken in the counter-clockwise order is equilateral if and only if a+ ωb + ω2c= 0, where ω = ei2π3

N/A
N/A
Protected

Academic year: 2021

Share "Exercise 1 (7 pt) Prove that a triangle with vertices a, b, c ∈ C taken in the counter-clockwise order is equilateral if and only if a+ ωb + ω2c= 0, where ω = ei2π3 "

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

MIDTERM COMPLEX FUNCTIONS APRIL 17 2013, 9:00-12:00

• Put your name and studentnummer on every sheet you hand in.

• When you use a theorem, show that the conditions are met.

Exercise 1 (7 pt) Prove that a triangle with vertices a, b, c ∈ C taken in the counter-clockwise order is equilateral if and only if

a+ ωb + ω2c= 0, where ω = ei3 .

Exercise 2 (10 pt) Is there an analytic function f : U → C defined on some open subset U ⊂ C such that

a. Re f (z) = |z|2 ? b. Re f (z) = log(|z|2) ? Exercise 3 (10 pt) Let

P(z) = zn+ an−1zn−1+ · · · + a1z+ a0

be a polynomial of degree n ≥ 1 with coeffcients aj ∈ C for j = 0, 1, . . . , n−1.

Prove that

max|z|≤1|P (z)| ≥ 1

with equality attained only for P (z) = zn. Hint: Apply the Maximun Mo- dulus Principle for the polynomial Q(w) = wnP w1.

Exercise 4 (8 pt) Compute Z

γ

 z2+ 1 z2− 1

3 dz,

where γ is the circle |z − 1| = 1 oriented counter-clockwise and traced once.

Turn the page!

1

(2)

Exercise 5 (10 pt) Is there an analytic function f on the open unit disc such that

f in n



= − 1 n2 for all n ≥ 2 ?

Bonus Exercise (10 pt) A convex hull of a finite number of points z1, z2, . . . , zn∈ Cis the minimal convex subset of C containing all these points.

00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000 00000000000000000000

11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111 11111111111111111111

Let

P(z) = zn+ an−1zn−1+ · · · + a1z+ a0=

n

Y

k=1

(z − zk)

be a polynomial of degree n ≥ 2 with coeffcients aj ∈ C for j = 0, 1, . . . , n−1.

Prove that roots of P(z) lie in the convex hull of the roots z1, z2, . . . , zn of P(z) in C.

Hint: A point z ∈ C is in the convex hull of the points z1, z2, . . . , zn if and only if

z=

n

X

k=1

λkzk

for some λk≥ 0 with

n

X

k=1

λk= 1.

2

Referenties

GERELATEERDE DOCUMENTEN

Prove that this transformation has a straight line composed of fixed points if and only if.. −a¯b

Try to be clear and concise and if you want part of the submitted solution sheets to be ignored by the graders, then clearly indicate so.. Maps and manifolds are assumed to be of

At the end of the last payment the saver collects some good (car, house, lump sum of money) for the total value P n of all the payments at the final time. How many more years you

Hertentamen Inleiding Kansrekening en Statistiek 20 april 2017, 13.30-16.30.. • Laat duidelijk zien hoe je aan je antwoorden

Universiteit Utrecht Mathematisch Instituut 3584 CD Utrecht. Measure and Integration:

(b) (0.6 pts.) If initially the process starts with no client present, determine the expected time needed to have three clients present. (c) Determine the fraction of time

Consider an exponential queuing system with 2 servers available: Arrival and service times are independent exponential random variables. Customers arrive independently at rate λ

• Het gebruik van een computer, rekenmachine, dictaat of boeken is niet