• No results found

1 Week The sample space is: and the event H is The sample space is: a) We have: b) No. c) We have: d) We have: e) Yes.

N/A
N/A
Protected

Academic year: 2022

Share "1 Week The sample space is: and the event H is The sample space is: a) We have: b) No. c) We have: d) We have: e) Yes."

Copied!
13
0
0

Hele tekst

(1)

De oplossingen van de opgaven zijn natuurlijk onder voorbehoud. Er kunnen altijd fouten in staan. Het melden van deze fouten wordt zeer op prijs gesteld.

1 Week 1

1.2.3 The sample space is:

{2♣, 3♣, . . . , K ♣, A♣, 2♦, 3♦, . . . , K ♦, A♦, 2♥, 3♥, . . . , K ♥, A♥,

2♠, 3♠, . . . , K ♠, A♠}

and the event H is

{2♥, 3♥, . . . , K ♥, A♥}.

1.3.2 The sample space is:

S = {H F, H W, M F, MW}

a) P[W ] = 0.5, b) P[M F ] = 0.3, c) P[H ] = 0.6.

1.5.2 a) P[R3|G1] = 1

5, b) P[R6|G3] = 1

3, c) P[G3|E ] = 23, d) P[E |G3] = 2

3. 1.6.4 a) We have:

P[ A ∩ B] =0, P[B] = 14, P[A ∩ Bc] = 3

8, P[A ∪ Bc] = 3

4. b) No.

c) We have:

P[D] = 23, P[C ∩ Dc] = 1

6, P[Cc∩Dc] = 1

6, P[C|D] = 12. d) We have:

P[C ∪ D] = 56, P[C ∪ Dc] = 2

3. e) Yes.

1.7.7 We have

P[H1H 2] = 6 32

and H1and H2are not independent.

1.8.2 We have 64 three-letter words. We have 24 four-letter words if each letter appears only once.

(2)

1.10.1 We get:

W

6

W

5

W

4

W

1

W W

3

2

We have:

P[W ] = [1 − q(1 − (1 − q)3)][1 − q2].

2 Week 2

2.2.3 a) c = 301,

b) P[V ∈ {u2|u =1, 2, 3, . . .}] = 1730, c) P[V even] = 23,

d) P[V > 2] = 56. 2.3.2 a) We have

PK(k) = ( n

k pk(1 − p)n−k k =0, 1, . . . , n

0 otherwise

b) The minimal value for n equals 2.

2.3.5 a) We have:

PN(n) =((1 − p)n−1p n =1, 2, . . .

0 otherwise

b) The minimal value for p equals 1 − 3

√ 0.05.

2.4.3 We get:

−5 0 5 10

−0.2 0 0.2 0.4 0.6 0.8 1

x FX(x)

(3)

and

PX(x) =









0.4 x = −3 0.4 x = 5 0.2 x = 7 0 otherwise 2.5.1 a) Xmod = {1, 2, . . . , 100}.

b) Xmed= {x |50< x < 51}.

2.5.5 E [X ] = 2.2.

2.6.5 a) We have:

Px(x) =

(qx −1(1 − q) x = 1, 2, . . .

0 otherwise

b) We have:

PT(t) = PX

 t + 1 2



=

(q(t−1)/2(1 − q) t = 1, 3, 5, . . .

0 otherwise

2.8.1 a) E [N ] = 0.9, b) E [N2] =1.1, c) Var[N ] = 0.29, d) σN =

√0.29.

2.8.6 a) σX =

5 2 ,

b) P[µX−σX ≤ X ≤µXX] = 5

8. 2.9.3 We have:

E [X |B] = 17 3 , Var[X |B] = 8

9.

3 Week 3

2.9.7 a) P[M> 0] = 1 − q and PM(m) =

(

q(1 − q)m m =0, 1, 2, . . .

0 otherwise

b) r =(1 − q)26 c) We get:

PJ( j) = ( 365

j rj(1 − r)365− j j =0, 1, . . . , 365

0 otherwise

(4)

d) We get

PK | A(k) =((1 − q)kq k =0, 1, 2, . . .

0 otherwise

3.1.2 a) c = 1441

b) P[V > 4] = 14463 c) P[−3< V ≤ 0] = 14421 d) a = 4

√ 3 − 5 3.2.1 a) c = 12

b) P[0 ≤ X ≤ 1] = 14 c) P[−12 ≤ X ≤12] = 1

16

d) We get:

FX(x) =





0 x < 0

x2

4 0 ≤ x ≤ 2 1 x > 2 3.3.2 a) E [X ] = 5 and Var[X ] = 163

b) h(E[X]) = 15, E [h(X)] = 12 c) E [Y ] = 12. Var[Y ] = ln 981

4

3.4.7 a) P[1 ≤ X ≤ 2] = e−1/2−e−1 b) We get:

FX(x) =

(0 x < 0 1 − e−x/2 x ≥0 c) E [X ] = 2

d) Var[X ] = 4 3.5.5 We get:

P[T > 32] = 8(−2215) ≈ 0.071 P[T < 0] = 8(−23) ≈ 0.252 P[T > 60] = 8(−103) ≈ 0.000434 3.6.1 We get:

(5)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−0.2 0 0.2 0.4 0.6 0.8 1

x FX(x)

a) P[X < −1] = 0, P[X ≤ −1] = 0 b) P[X < 0] = 13, P[X ≤ 0] = 23

c) P[0< X ≤ 1] = 13, P[0 ≤ X ≤ 1] = 23 3.7.4 a) We get:

FY(y) =





0 y < 0

1

3 0 ≤ y < 100 1 y ≥100 b) fY(y) = 13δ(y) +23δ(y − 100) c) E [Y ] = 2003

3.8.4 a) We get:

fW |C(w) =

(ew2/32 2

2π w > 0 0 otherwise b) E [W |C] = 8

2π

c) Var[W |C] = 16 −32π

4 Week 4

4.1.4 Yes. It is easy to verify the conditions from Theorem 4.1 but that is not sufficient. To verify the results we need additionally that we will get that P[x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2] ≥0 when x2≥ x1and y2≥ y1.

4.2.2 We get:

a) c = 141

b) P[Y < X] = 12 c) P[Y > X] = 12

(6)

d) P[Y = X ] = 0 e) P[X < 1] = 148 4.2.8 We get

PK,X(k, x) =

( n−x −1

k−1  pn−k(1 − p)k x + k ≤ n, x ≥ 0, k ≥ 0

0 otherwise

4.3.2 We get:

a) We obtain:

PX(x) =





6

14 x = −2, 2

2

14 x =0 0 otherwise

PY(y) =





5

14 y = −1, 1

4

14 y =0 0 otherwise b) E [X ] = 0 and E [Y ] = 0.

c) σX =√

24/7 and σY =√ 5/7.

4.4.2 We get a) c = 6

b) P[X > Y ] = 25 and P[Y < X2] = 1

4. c) P[min(X, Y ) ≤ 12] = 11

32

d) P[max(X, Y ) ≤ 34] = 3

4

5

4.5.3 We get

a) We obtain:

fX(x) = (2

r2−x2

πr2 −r ≤ x ≤ r

0 otherwise

b) We obtain:

fY(y) = (2

r2−y2

πr2 −r ≤ y ≤ r

0 otherwise

4.6.2 We get

a) We obtain

PW(w) =













3

14 W = −4

3

14 W = −2

1

7 W =0

3

14 W =2

3

14 W =4

(7)

b) E [W ] = 0.

c) P[W > 0] = 37. 4.7.2 We get

a) E [W ] = 6128. b) E [X Y ] = 47. c) Cov[X, Y ] = 47. d) ρX,Y = 2

30. e) Var[X + Y ] = 377 4.8.6 We get:

a) P[ A] = 125 b) We obtain:

fX,Y |A(x, y) = (8

5(2x + y) 0 ≤ x ≤ 1, 0 ≤ y ≤ 12

0 otherwise

fX | A(x) = (1

5(8x + 1) 0 ≤ x ≤ 1

0 otherwise

fY | A(y) = (1

5(8y + 8) 0 ≤ y ≤ 12

0 otherwise

5 Week 5

5.1.1 We get:

a) This yields:

PN1,N2,N3,N4(n1, n2, n3, n4) =

 4

n1, n2, n3, n4



pn11p2n2p3n3pn44

b) The probability equals 168756272. c) The probability equals 168758656. 5.2.2 We get c = 2

Pn i =1ai. 5.4.4 Yes

5.5.4 We get

a) The probability equals 1 − [8(2)]10 ≈0.2056.

b) The probability equals 1 − [8(3)]10 ≈0.0134.

c) The probability equals 1 − [8(7)]10 ≈1.28 × 10−11. Unfortunately the latter approx- imation cannot be found in the table of the book.

(8)

5.6.6 We have:

E [K ] = 1p

 1 2 3

,

CK = 1− p

p2

1 1 1 1 2 2 1 2 3

,

RK = 1

p2

2 − p 3 − p 4 − p 3 − p 6 − 2 p 8 − 2 p 4 − p 8 − 2 p 12 − 3 p

.

5.7.1 We get:

a) We have:

RX=

20 30 25 30 68 46 25 46 40

.

b) We have:

fX1,X2(x1, x2) = 1 4π√

3e(x21+x1x2−16x1−20x2+x22+112)/6. c) We get 1 −8(2) ≈ 0.0228.

5.7.6 We get

a) We have Cov[Y1, Y2] =(σ12−σ22) sin θ cos θ.

b) Forθ = kπ2 where k is any integer.

6 Week 6

6.1.3 We get

a) We have:

PN1(n) = ( 3

4

n−1 1

4 n =1, 2, . . .

0 otherwise

b) E [N1] =4.

c) We have:

PN4(n4) = ( n−1

3

 3

4

n−4 1 4

4

n =1, 2, . . .

0 otherwise

d) E [N4] =16.

(9)

6.2.3 We have forλ 6= µ:

fW(w) = ( λµ

λ−µ eµw−eλw

w ≥ 0

0 otherwise

while forλ = µ we have:

fW(w) =(λ2weλw w ≥ 0

0 otherwise

6.4.3 We have:

a) φK(s) = 1 − p + pes. b) φM(s) = 1 − p + pesn

.

c) E [M] = np, Var[M] = np(1 − p).

6.5.3 We have:

PY(y) =

(1 y =100 0 otherwise 6.6.2 We have:

a) E [K100] =20.

b) σK100 =4.

c) P[K100≥18] ≈ 0.6915.

d) P[16 ≤ K100 ≤24] ≈ 0.6826.

6.7.1 We get:

P[Wn=n] n =1 n =4 n =25 n =64 exact 0.3679 0.1954 0.0795 0.0498 approxmate 0.3829 0.1974 0.0796 0.0498 6.8.1 We get:

c =1 c =2 c =3 c =4 c=5

Chernoff bound 0.606 0.135 0.011 3.35 × 10−4 3.73 × 10−6 Q(c) 0.1587 0.0228 0.0013 3.17 × 10−5 2.87 × 10−7

7 Week 7

10.2.2 The sample space is S = {s0, s1, s2, s3}. The ensemble of sample functions is { x(t, si) | i =0, 1, 2, 3 } where

x(t, si) = cos(2π f0t + π4 +iπ2)

for i = 0, 1, 2, 3. The ensemble is shown below:

(10)

0 0.2T 0.4T 0.6T 0.8T T

−1

−0.5 0 0.5 1

x(t,s0)

0 0.2T 0.4T 0.6T 0.8T T

−1

−0.5 0 0.5 1

x(t,s1)

0 0.2T 0.4T 0.6T 0.8T T

−1

−0.5 0 0.5 1

x(t,s2)

0 0.2T 0.4T 0.6T 0.8T T

−1

−0.5 0 0.5 1

x(t,s3)

t

10.3.1 We get:

FX(t)(x) = (

e(t−x) x < t

1 x ≥ t

10.3.2 We have:

a) p = 0.05.

b) E [T1] = 1

p.

c) PT1(20) = (0.95)19(0.05).

d) E [T5] = 5

p. 10.4.2 No.

10.5.3 We get:

PN(t)(n) =

((2t)ne−2t

n! n =0, 1, 2, . . . 0 anders.

10.6.1 We have:

PN(n) = (

100n e−100n! n =0, 1, 2, . . .

0 otherwise

10.7.1 We haveα = 321. 10.8.2 We have:

a) µX(t) = t − 1, b) CX(t, τ) = 1.

10.8.4 We get:

a) E [Cm] =0 and Var[Cm] = 1

4m +64

3



1 − 14m

(11)

b) We have:

CC[m, k] = 1

22m+k + 64 2|k|3



1 − 14min(m,m+k) c) No, the mean is zero.

d) This model is quite reasonable given variance and mean.

10.9.1 Yes.

8 Week 8

10.9.5 Yes.

10.10.4 We have:

a) E [X2(t)] = 1,

b) E [cos(2π fct +2)] = 0, c) E [Y(t)] = 0,

d) E [Y2(t)] = 12. 10.11.3 a) RY(t, τ) = RX(τ),

b) RX Y(t, τ) = RX(τ − t0), c) Yes,

d) Yes.

10.12.1 We have E[Y(t)] = 0 and:

RY(t, τ) =





















α(t + τ) t > 0, τ > 0 αt t > 0, −t < τ < 0 0 t > 0, τ < −t

−α(t + τ) t < 0, τ < 0

−αt t < 0, 0 < τ < −t 0 t < 0, τ > −t 11.1.2 E [Y(t)] = −2 × 10−3volts.

11.2.2 πk20 sin(π2k) + sin(π4k)

11.2.3 a) µW =2,

b) RW[n] =













0.5 n = −3, 3 3 n = −2, 2 7.5 n = −1, 1 10 n =0 0 otherwise

,

c) Var[Wn] =6, d) gn =





1/2 n = 0, 2 1 n =1 0 otherwise

(12)

9 Week 9

11.3.1 We get:

fX(x) = 4 6π√

2π exp



−2x12 3 −5x22

6 −2x32

3 + 2x1x2

3 + 2x2x3

3



11.3.3 We get:

fY(y) = 16 30π√

6π exp 12y32+11y42+12y52+4y3y4−8y3y5+4y4y5

30



11.4.2 We have

h ≈ 0.6950 − 0.01930 11.5.2 We have:

RY(t, τ) = RX(ατ)

and Y(t) is wide sense stationary. Finally:

SY( f ) = |1α|SX

 f

|α|



11.6.1 We get:

SX(φ) = 2 − 0.2 cos(2πφ) 1.01 − 0.2 cos(2πφ). 11.8.2 We get:

a) RW(τ) = δ(τ), b) SY( f ) =

(1 |f | ≤ B/2 0 otherwise c) E [Y2(t)] = B,

d) E [Y(t)] = 0.

11.8.4 We get:

a) E [X2(t)] = 1, b) SY( f ) =

(1

2eπ f2/4 |f | ≤2

0 anders

c) E [Y2(t)] = 28(√

2π) − 1 ≈ 0.9876.

11.8.5 We get:

a) E [X2(t)] = 0.02, b) SX Y( f ) =

( 10−4

100π+ j2π f |f | ≤100

0 anders

(13)

c) SY X( f ) =

( 10−4

100π− j2π f |f | ≤100

0 anders

d) SY( f ) =

( 10−4

104π2+(2π f )2 |f | ≤100

0 anders

e) E [Y2(t)] = arctan 2

106π2 ≈1.12 × 10−7,

Referenties

GERELATEERDE DOCUMENTEN

In the paper, we draw inspiration from Blommaert (2010) and Blommaert and Omoniyi (2006) and their analyses of fraudulent scam emails, texts that show high levels of competence

Assuming this is not a case of association, but of a grave of younger date (Iron Age) discovered next to some flint implements from the Michelsberg Culture, the flint could be

Voor interventies is het belangrijk dat er niet wordt gefocust op één van deze waarden, maar dat de biosferische en altruïstische waarden gecombineerd worden met de hedonistische

Their study showed that teams with higher levels of general mental ability, conscientiousness, agreeableness, extraversion, and emotional stability earned higher team

In beide jaarrekeningen 2017 is echter de volgende tekst opgenomen: “Er is echter sprake van condities die duiden op het bestaan van een onze- kerheid van materieel belang op

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC-BY-NC-ND 4.0), which permits unrestricted use, distribution,

Beslissing Ondersteunend Systeem (BOS) NemaDecide 2 heeft betere economische informatie nodig voor een goede kosten- batenanalyse en schadeberekening, en een GIS-tool (Geographic

De lijn die wordt gevolgd is dat de wijze waarop de sector in de keten staat in hoge mate bepalend is voor de verantwoordelijkheid die onder- nemers in de diervoedersector

We doen een beroep op u, als lid van de gemeente, de 3 vragen te beantwoorden en met elkaar en voor elkaar een missie, visie en beleid op te stellen voor de komende vijf jaar waar

I envisioned the wizened members of an austere Academy twice putting forward my name, twice extolling my virtues, twice casting their votes, and twice electing me with

Rest-frame SEDs of Herschel-SWIRE 500 µm sources with extreme starburst luminosities, labelled by redshift, whose optical through near- infrared SEDs are best-fitted by a

zitten in een kring en de leerkracht zet een glas met water en een flesje met olie op een tafeltje in het midden van de kring. Samen met de leerlingen gaat zij onderzoeken wat

H5: The more motivated a firm’s management is, the more likely a firm will analyse the internal and external business environment for business opportunities.. 5.3 Capability

Zet alle gerechten van ronde 3 (de bakjes met nummer 7, 8 en 9), met deksel en al, in de oven voor 10 minuten. Uiteraard ook bij deze ronde de bijgerechten buiten de oven laten.

We will design a starting questionnaire that will be taken by all students at the beginning of the course. We will introduce the students to the Stages of Tuckman’s Team

The Leveraging Agriculture for Nutrition in South Asia (LANSA) research consortium (2012–2018) set out to improve understanding about how agriculture and related food policies

Using South Sudan and the Central African Republic as examples of some of the worst protection contexts in the world, this research asks if global protection norms make a difference

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Note 3: 47 patients in drug-free remission at year 10 achieved this (i.e. achieved and maintained remission allowing to taper to drug-free) on the following treatment

As a research group we will determine the pro’s and cons of floating structures and come with a design tool with recommendations for design, construction and maintenance.

• Fixxx / leantraject voor doorgeleiding schuldhulp naar kredietbank. • Early warnings ontsluiten (stadsbank, nhas’s,

Exploring and describing the experience of poverty-stricken people living with HIV in the informal settlements in the Potchefstroom district and exploring and describing

PAH/PSS and PDADMAC/PSS are the better performing membranes in terms of permeance and retention, while PAH/PAA forms the densest separation layer in terms of MWCO.. It