De oplossingen van de opgaven zijn natuurlijk onder voorbehoud. Er kunnen altijd fouten in staan. Het melden van deze fouten wordt zeer op prijs gesteld.
1 Week 1
1.2.3 The sample space is:
{2♣, 3♣, . . . , K ♣, A♣, 2♦, 3♦, . . . , K ♦, A♦, 2♥, 3♥, . . . , K ♥, A♥,
2♠, 3♠, . . . , K ♠, A♠}
and the event H is
{2♥, 3♥, . . . , K ♥, A♥}.
1.3.2 The sample space is:
S = {H F, H W, M F, MW}
a) P[W ] = 0.5, b) P[M F ] = 0.3, c) P[H ] = 0.6.
1.5.2 a) P[R3|G1] = 1
5, b) P[R6|G3] = 1
3, c) P[G3|E ] = 23, d) P[E |G3] = 2
3. 1.6.4 a) We have:
P[ A ∩ B] =0, P[B] = 14, P[A ∩ Bc] = 3
8, P[A ∪ Bc] = 3
4. b) No.
c) We have:
P[D] = 23, P[C ∩ Dc] = 1
6, P[Cc∩Dc] = 1
6, P[C|D] = 12. d) We have:
P[C ∪ D] = 56, P[C ∪ Dc] = 2
3. e) Yes.
1.7.7 We have
P[H1H 2] = 6 32
and H1and H2are not independent.
1.8.2 We have 64 three-letter words. We have 24 four-letter words if each letter appears only once.
1.10.1 We get:
W
6W
5W
4W
1W W
32
We have:
P[W ] = [1 − q(1 − (1 − q)3)][1 − q2].
2 Week 2
2.2.3 a) c = 301,
b) P[V ∈ {u2|u =1, 2, 3, . . .}] = 1730, c) P[V even] = 23,
d) P[V > 2] = 56. 2.3.2 a) We have
PK(k) = ( n
k pk(1 − p)n−k k =0, 1, . . . , n
0 otherwise
b) The minimal value for n equals 2.
2.3.5 a) We have:
PN(n) =((1 − p)n−1p n =1, 2, . . .
0 otherwise
b) The minimal value for p equals 1 − 3
√ 0.05.
2.4.3 We get:
−5 0 5 10
−0.2 0 0.2 0.4 0.6 0.8 1
x FX(x)
and
PX(x) =
0.4 x = −3 0.4 x = 5 0.2 x = 7 0 otherwise 2.5.1 a) Xmod = {1, 2, . . . , 100}.
b) Xmed= {x |50< x < 51}.
2.5.5 E [X ] = 2.2.
2.6.5 a) We have:
Px(x) =
(qx −1(1 − q) x = 1, 2, . . .
0 otherwise
b) We have:
PT(t) = PX
t + 1 2
=
(q(t−1)/2(1 − q) t = 1, 3, 5, . . .
0 otherwise
2.8.1 a) E [N ] = 0.9, b) E [N2] =1.1, c) Var[N ] = 0.29, d) σN =
√0.29.
2.8.6 a) σX =
√ 5 2 ,
b) P[µX−σX ≤ X ≤µX +σX] = 5
8. 2.9.3 We have:
E [X |B] = 17 3 , Var[X |B] = 8
9.
3 Week 3
2.9.7 a) P[M> 0] = 1 − q and PM(m) =
(
q(1 − q)m m =0, 1, 2, . . .
0 otherwise
b) r =(1 − q)26 c) We get:
PJ( j) = ( 365
j rj(1 − r)365− j j =0, 1, . . . , 365
0 otherwise
d) We get
PK | A(k) =((1 − q)kq k =0, 1, 2, . . .
0 otherwise
3.1.2 a) c = 1441
b) P[V > 4] = 14463 c) P[−3< V ≤ 0] = 14421 d) a = 4
√ 3 − 5 3.2.1 a) c = 12
b) P[0 ≤ X ≤ 1] = 14 c) P[−12 ≤ X ≤12] = 1
16
d) We get:
FX(x) =
0 x < 0
x2
4 0 ≤ x ≤ 2 1 x > 2 3.3.2 a) E [X ] = 5 and Var[X ] = 163
b) h(E[X]) = √15, E [h(X)] = 12 c) E [Y ] = 12. Var[Y ] = ln 98 −1
4
3.4.7 a) P[1 ≤ X ≤ 2] = e−1/2−e−1 b) We get:
FX(x) =
(0 x < 0 1 − e−x/2 x ≥0 c) E [X ] = 2
d) Var[X ] = 4 3.5.5 We get:
P[T > 32] = 8(−2215) ≈ 0.071 P[T < 0] = 8(−23) ≈ 0.252 P[T > 60] = 8(−103) ≈ 0.000434 3.6.1 We get:
−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.2 0 0.2 0.4 0.6 0.8 1
x FX(x)
a) P[X < −1] = 0, P[X ≤ −1] = 0 b) P[X < 0] = 13, P[X ≤ 0] = 23
c) P[0< X ≤ 1] = 13, P[0 ≤ X ≤ 1] = 23 3.7.4 a) We get:
FY(y) =
0 y < 0
1
3 0 ≤ y < 100 1 y ≥100 b) fY(y) = 13δ(y) +23δ(y − 100) c) E [Y ] = 2003
3.8.4 a) We get:
fW |C(w) =
(e−w2/32 2√
2π w > 0 0 otherwise b) E [W |C] = √8
2π
c) Var[W |C] = 16 −32π
4 Week 4
4.1.4 Yes. It is easy to verify the conditions from Theorem 4.1 but that is not sufficient. To verify the results we need additionally that we will get that P[x1 ≤ X ≤ x2, y1 ≤ Y ≤ y2] ≥0 when x2≥ x1and y2≥ y1.
4.2.2 We get:
a) c = 141
b) P[Y < X] = 12 c) P[Y > X] = 12
d) P[Y = X ] = 0 e) P[X < 1] = 148 4.2.8 We get
PK,X(k, x) =
( n−x −1
k−1 pn−k(1 − p)k x + k ≤ n, x ≥ 0, k ≥ 0
0 otherwise
4.3.2 We get:
a) We obtain:
PX(x) =
6
14 x = −2, 2
2
14 x =0 0 otherwise
PY(y) =
5
14 y = −1, 1
4
14 y =0 0 otherwise b) E [X ] = 0 and E [Y ] = 0.
c) σX =√
24/7 and σY =√ 5/7.
4.4.2 We get a) c = 6
b) P[X > Y ] = 25 and P[Y < X2] = 1
4. c) P[min(X, Y ) ≤ 12] = 11
32
d) P[max(X, Y ) ≤ 34] = 3
4
5
4.5.3 We get
a) We obtain:
fX(x) = (2
√
r2−x2
πr2 −r ≤ x ≤ r
0 otherwise
b) We obtain:
fY(y) = (2
√
r2−y2
πr2 −r ≤ y ≤ r
0 otherwise
4.6.2 We get
a) We obtain
PW(w) =
3
14 W = −4
3
14 W = −2
1
7 W =0
3
14 W =2
3
14 W =4
b) E [W ] = 0.
c) P[W > 0] = 37. 4.7.2 We get
a) E [W ] = 6128. b) E [X Y ] = 47. c) Cov[X, Y ] = 47. d) ρX,Y = √2
30. e) Var[X + Y ] = 377 4.8.6 We get:
a) P[ A] = 125 b) We obtain:
fX,Y |A(x, y) = (8
5(2x + y) 0 ≤ x ≤ 1, 0 ≤ y ≤ 12
0 otherwise
fX | A(x) = (1
5(8x + 1) 0 ≤ x ≤ 1
0 otherwise
fY | A(y) = (1
5(8y + 8) 0 ≤ y ≤ 12
0 otherwise
5 Week 5
5.1.1 We get:
a) This yields:
PN1,N2,N3,N4(n1, n2, n3, n4) =
4
n1, n2, n3, n4
pn11p2n2p3n3pn44
b) The probability equals 168756272. c) The probability equals 168758656. 5.2.2 We get c = 2
Pn i =1ai. 5.4.4 Yes
5.5.4 We get
a) The probability equals 1 − [8(2)]10 ≈0.2056.
b) The probability equals 1 − [8(3)]10 ≈0.0134.
c) The probability equals 1 − [8(7)]10 ≈1.28 × 10−11. Unfortunately the latter approx- imation cannot be found in the table of the book.
5.6.6 We have:
E [K ] = 1p
1 2 3
,
CK = 1− p
p2
1 1 1 1 2 2 1 2 3
,
RK = 1
p2
2 − p 3 − p 4 − p 3 − p 6 − 2 p 8 − 2 p 4 − p 8 − 2 p 12 − 3 p
.
5.7.1 We get:
a) We have:
RX=
20 30 25 30 68 46 25 46 40
.
b) We have:
fX1,X2(x1, x2) = 1 4π√
3e−(x21+x1x2−16x1−20x2+x22+112)/6. c) We get 1 −8(2) ≈ 0.0228.
5.7.6 We get
a) We have Cov[Y1, Y2] =(σ12−σ22) sin θ cos θ.
b) Forθ = kπ2 where k is any integer.
6 Week 6
6.1.3 We get
a) We have:
PN1(n) = ( 3
4
n−1 1
4 n =1, 2, . . .
0 otherwise
b) E [N1] =4.
c) We have:
PN4(n4) = ( n−1
3
3
4
n−4 1 4
4
n =1, 2, . . .
0 otherwise
d) E [N4] =16.
6.2.3 We have forλ 6= µ:
fW(w) = ( λµ
λ−µ e−µw−e−λw
w ≥ 0
0 otherwise
while forλ = µ we have:
fW(w) =(λ2we−λw w ≥ 0
0 otherwise
6.4.3 We have:
a) φK(s) = 1 − p + pes. b) φM(s) = 1 − p + pesn
.
c) E [M] = np, Var[M] = np(1 − p).
6.5.3 We have:
PY(y) =
(1 y =100 0 otherwise 6.6.2 We have:
a) E [K100] =20.
b) σK100 =4.
c) P[K100≥18] ≈ 0.6915.
d) P[16 ≤ K100 ≤24] ≈ 0.6826.
6.7.1 We get:
P[Wn=n] n =1 n =4 n =25 n =64 exact 0.3679 0.1954 0.0795 0.0498 approxmate 0.3829 0.1974 0.0796 0.0498 6.8.1 We get:
c =1 c =2 c =3 c =4 c=5
Chernoff bound 0.606 0.135 0.011 3.35 × 10−4 3.73 × 10−6 Q(c) 0.1587 0.0228 0.0013 3.17 × 10−5 2.87 × 10−7
7 Week 7
10.2.2 The sample space is S = {s0, s1, s2, s3}. The ensemble of sample functions is { x(t, si) | i =0, 1, 2, 3 } where
x(t, si) = cos(2π f0t + π4 +iπ2)
for i = 0, 1, 2, 3. The ensemble is shown below:
0 0.2T 0.4T 0.6T 0.8T T
−1
−0.5 0 0.5 1
x(t,s0)
0 0.2T 0.4T 0.6T 0.8T T
−1
−0.5 0 0.5 1
x(t,s1)
0 0.2T 0.4T 0.6T 0.8T T
−1
−0.5 0 0.5 1
x(t,s2)
0 0.2T 0.4T 0.6T 0.8T T
−1
−0.5 0 0.5 1
x(t,s3)
t
10.3.1 We get:
FX(t)(x) = (
e−(t−x) x < t
1 x ≥ t
10.3.2 We have:
a) p = 0.05.
b) E [T1] = 1
p.
c) PT1(20) = (0.95)19(0.05).
d) E [T5] = 5
p. 10.4.2 No.
10.5.3 We get:
PN(t)(n) =
((2t)ne−2t
n! n =0, 1, 2, . . . 0 anders.
10.6.1 We have:
PN(n) = (
100n e−100n! n =0, 1, 2, . . .
0 otherwise
10.7.1 We haveα = 321. 10.8.2 We have:
a) µX(t) = t − 1, b) CX(t, τ) = 1.
10.8.4 We get:
a) E [Cm] =0 and Var[Cm] = 1
4m +64
3
1 − 14m
b) We have:
CC[m, k] = 1
22m+k + 64 2|k|3
1 − 14min(m,m+k) c) No, the mean is zero.
d) This model is quite reasonable given variance and mean.
10.9.1 Yes.
8 Week 8
10.9.5 Yes.
10.10.4 We have:
a) E [X2(t)] = 1,
b) E [cos(2π fct +2)] = 0, c) E [Y(t)] = 0,
d) E [Y2(t)] = 12. 10.11.3 a) RY(t, τ) = RX(τ),
b) RX Y(t, τ) = RX(τ − t0), c) Yes,
d) Yes.
10.12.1 We have E[Y(t)] = 0 and:
RY(t, τ) =
α(t + τ) t > 0, τ > 0 αt t > 0, −t < τ < 0 0 t > 0, τ < −t
−α(t + τ) t < 0, τ < 0
−αt t < 0, 0 < τ < −t 0 t < 0, τ > −t 11.1.2 E [Y(t)] = −2 × 10−3volts.
11.2.2 πk20 sin(π2k) + sin(π4k)
11.2.3 a) µW =2,
b) RW[n] =
0.5 n = −3, 3 3 n = −2, 2 7.5 n = −1, 1 10 n =0 0 otherwise
,
c) Var[Wn] =6, d) gn =
1/2 n = 0, 2 1 n =1 0 otherwise
9 Week 9
11.3.1 We get:
fX(x) = 4 6π√
2π exp
−2x12 3 −5x22
6 −2x32
3 + 2x1x2
3 + 2x2x3
3
11.3.3 We get:
fY(y) = 16 30π√
6π exp 12y32+11y42+12y52+4y3y4−8y3y5+4y4y5
30
11.4.2 We have
h ≈ 0.6950 − 0.01930 11.5.2 We have:
RY(t, τ) = RX(ατ)
and Y(t) is wide sense stationary. Finally:
SY( f ) = |1α|SX
f
|α|
11.6.1 We get:
SX(φ) = 2 − 0.2 cos(2πφ) 1.01 − 0.2 cos(2πφ). 11.8.2 We get:
a) RW(τ) = δ(τ), b) SY( f ) =
(1 |f | ≤ B/2 0 otherwise c) E [Y2(t)] = B,
d) E [Y(t)] = 0.
11.8.4 We get:
a) E [X2(t)] = 1, b) SY( f ) =
(1
2e−π f2/4 |f | ≤2
0 anders
c) E [Y2(t)] = 28(√
2π) − 1 ≈ 0.9876.
11.8.5 We get:
a) E [X2(t)] = 0.02, b) SX Y( f ) =
( 10−4
100π+ j2π f |f | ≤100
0 anders
c) SY X( f ) =
( 10−4
100π− j2π f |f | ≤100
0 anders
d) SY( f ) =
( 10−4
104π2+(2π f )2 |f | ≤100
0 anders
e) E [Y2(t)] = arctan 2
106π2 ≈1.12 × 10−7,