• No results found

Influence of cellulose fiber addition on self-healing and water permeability of concrete

N/A
N/A
Protected

Academic year: 2021

Share "Influence of cellulose fiber addition on self-healing and water permeability of concrete"

Copied!
16
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation for this paper:

Singh, H. & Gupta, R. (2020). Influence of cellulose fiber addition on self-healing

and water permeability of concrete. Case Studies in Construction Materials, 12,

e00324.

https://doi.org/10.1016/j.cscm.2019.e00324

UVicSPACE: Research & Learning Repository

_____________________________________________________________

Faculty of Engineering

Faculty Publications

_____________________________________________________________

Influence of cellulose fiber addition on self-healing and water permeability of

concrete

Harshbab Singh, Rishi Gupta

June 2020

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under

the CC BY-NC-ND license (

https://creativecommons.org/licenses/by-nc-nd/4.0/

).

This article was originally published at:

(2)

Case

study

In

fluence

of

cellulose

fiber

addition

on

self-healing

and

water

permeability

of

concrete

Harshbab

Singh

a,

*

,

Rishi

Gupta

b

aDepartmentofCivilEngineering,UniversityofVictoria,3800FinnertyRoad,Victoria,B.C,V8P5C2,Canada

bEngineeringandComputerScience(ECS),314,DepartmentofCivilEngineering,UniversityofVictoria,3800FinnertyRoad,Victoria,B.C,

V8P5C2,Canada

ARTICLE INFO

Articlehistory:

Received3September2019

Receivedinrevisedform27November2019 Accepted5December2019

Keywords: Self-healing Cellulosefibers Ultrasonicpulsevelocity Waterpermeability Cracks

ABSTRACT

Crackformationundertensileforcesisamajorweaknessofconcrete.Cracksmakeconcrete vulnerabletoextremeenvironmentduetoingressofwaterandharmfulcompoundsfrom surroundingenvironment.Eventhoughconcreteissusceptibletocrackingithasabilityto sealitscracksbyitselftosomeextentduetoautogenousself-healing.Sofaronlyfew studieshavebeendoneonautogenoushealingoffiberreinforcedconcrete.So,thisstudy aims toevaluate the self-healing potential and water permeability of cellulose fiber reinforced concrete(CeFRC).Thetwotypesofcomposites; controlandcellulose fiber reinforcedconcretehavebeeninvestigated.Compressivestrengthandflexuraltestswere performedtomeasurethemechanicalpropertiesofthecomposites,waterpermeability testwasusedtoevaluatethecoefficientofpermeabilityandtheself-healingperformance wasinvestigatedbyusingultrasonicpulsevelocity(UPV)andapatentedself-healingtest. Theresultsindicatethatthewaterpermeabilitycoefficientdecreasedby42%whereasthe healingratioincreasedatahigherratefortheinitialdaysofhealingwhencellulosefibers wereaddedinthemix.CeFRCalsoresultsina7.8%increaseintheflexuralstrengthand demonstrateahigherself-healingratiobasedontheUPVtest.

©2019TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.Introduction

Concreteisstilloneofthewidelyusedmaterialsintheconstructionindustry.Traditionalconcretehasadrawback,it tendstocrackwhensubjectedtotensilestresses.Thereareseveralmethodsusedtodecreasethecrackinginconcretesuchas providingenoughsteelreinforcementorfiberreinforcement.However,stillsomecracksareexpectedandtheyleadtoan increaseinpermeability,decreaseindurabilityandstrengthoftheconcretestructure.Duetotheincreaseinpermeability, thewatereasilypassesthroughtheconcretematrixandcomesinthecontactwiththereinforcementleadingtocorrosion initiation.Duetothis,thestrengthoftheconcretestructurefurtherdecreases,necessitatingmonitor,control,andrepairof cracks.Repairingofconcretecracksisnotalwaysarealistictaskascracksarenotalwaysvisibleoreasilyaccessible.Itis estimatedthatinEurope,costrelatedtorepairworksishalfoftheannualconstructionbudget[1].TheUShasaverageannual maintenancecostforexistingbridgesthroughtheyearisestimatedto$5.2billion[2].Additionally,indirectcostduetotraffic jamsandinconveniencearealsoassociatedwiththeconcretecrackrepairworks.Eventhoughconcretemaybevulnerableto cracking,ithasaninherentabilitytohealingthecracksbyitselftosomeextent.Thisphenomenonisknownasautogenous

*Correspondingauthor.

E-mailaddresses:harshbabsingh@uvic.ca(H.Singh),guptar@uvic.ca(R.Gupta).

https://doi.org/10.1016/j.cscm.2019.e00324

2214-5095/©2019TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/ licenses/by-nc-nd/4.0/).

ContentslistsavailableatScienceDirect

Case

Studies

in

Construction

Materials

(3)

self-healingofconcrete.Mainmechanismsofautogenousself-healingareduetofurtherhydrationofunhydratedcement; recrystallizationofportanditeleachedfromthebulkpasteandformationofcalcite[3].Besidesnaturalautogenous self-healinginconcrete,therearevariousapproachestoimprovetheself-healingofconcreteincludingtheuseofbacteria[4]or chemicaladmixtures[5]intheconcretematrix.

Theconceptofusingfiberstoreinforceconcretehasbeenusedforhundredsofyears.However,onlyafewstudieshave beenperformedtoinvestigate the self-healing efficiency of fiberreinforcedconcrete [6–8]. Commonlyused fibers in concretearesteel,glass,synthetic(polypropylene,polyethylene,nylon,and polyester)and naturalsfibers(wood,fruit, cellulose),etc.Steelfibersimprovetheductility,flexuralstrengthandfracturetoughnessofconcreteduetohighermodulus ofelasticityofsteel.Kimetal.foundintheirstudythatsteelfibercanhelptocompletelyrecovertheflexuralperformanceof concrete exposure to cryogenic temperature [9] and concrete with micro steel fibers exhibited higher resistance to microcrackformationundercryogenicconditions[10].However,theyaresubjectedtocorrosionwhencomestocontactwith waterthroughcracksandtheirdurabilityreduces.LiandYangfoundintheirstudythatengineeredcementcompositeswith PVAfibersareabletoreducethecrackwidthdownto50

m

m[7], whichcanfurtherhelptoimprovetheself-healing propertiesofconcrete.Althoughglassfiberenhancesthetensileandimpactstrengthofconcrete,theybecamefragilewith timeduetothealkalinityofconcrete[11].Naturalfibersusedinconcreteareeco-friendly,recyclableandwidelyavailable throughouttheworldatamuchcheaperratecomparedtootherfibertypes.SinghandGuptausedcellulosefiberasacarrier forbacteriainself-healingmortartoimprovetheself-healingefficiencyofbacterialmortar[12].

Onephenomenonincementitiousmatricesthatpromotesself-healingincludesusingmaterialsthatrestrictthecrack widthandimprovetheautogenousself-healing.Literaturereportsuseofpolyethylene(PE)fibers[13],polyvinylalcohol (PVA)fibers[8]andpolypropylene(PP)fibers[14,15]etc.toimprovetheautogenoushealingofconcrete.However,limited workhasbeenreportedwherecellulosefibershavebeenusedtoimprovetheautogenoushealingofconcrete.Inthisstudy, cellulosefibersareusedasreinforcementandtheirimpactontheautogenousself-healingofconcreteisinvestigated.

VanTittelboomandBelie[16]explainedintheirstudythatself-healinginconcreteismoreeffectivewhenthecrackwidth isrestricted(Fig.1A),waterisavailableinthecracks(Fig.1B),andcrystallizationofhydrationproductstakesplace(Fig.1C). Authorshypothesizethatcellulosefibercanassistinimprovingallthreemechanismsnotedabove(A,B,C).ForA,cellulose fiberscanlimitcrackwidthintheplasticshrinkagephase[17]andcanreducethecrackingby85%morethannormal concrete[18,19].Cellulosefibershaveahigh-waterabsorptionof85%[20],thusimprovinginternalcuringandassistingin mechanismB.Finallysincecellulosefibershavehighalkaliresistance[21]andcanworkasawaterreservoirwhichleadsto thecrystallizationof cementhydrationproducts due tocontinuoushydration.Inaddition, cellulosefibersin concrete increasethefreeze-thawdurability[22]andprovideanicefinishedsurface[23].Moreover,theyaresuitableforready-mix plantswhichmakesthemeasytouseinthesmalltolargescaleconcreteconstruction.

Thepurposeofthispaperistoexperimentallyinvestigatetheself-healing,durabilityandstrengthpropertiesofcellulose fiber-basedandnormalconcretecomposites.Theself-healingperformanceofcompositeswasevaluatedbyself-healingtest andultrasonicpulsevelocitytest(UPV).Waterpermeabilitytestwasusedtofigureoutthecoefficientofpermeability. Compressionandflexuraltestswerealsoperformedtoanalyzethemechanicalpropertiesofconcrete.Thispaperformsa partofalargerprojectwhereself-healingandself-sealingtechniques(suchascrystallinewaterproofingadmixtures[5,24] arebeingimplementedinaparkingstructureundergoingrepairinVictoria,Canada.Thispaperpresentspartofthework beingundertakeninthelaboratoryofthiscasestudy.

2.Experimentalprogram

2.1.Materialproperties

2.1.1.Cement

GeneraluseTypeGUOrdinaryPortlandCement(OPC),whichalsomeetstherequirementsoftype-Iandtype-IIcementas perASTMC150[25]specifications,wasusedinthemakingofconcretesamples.

(4)

2.1.2.Aggregates

AggregatesusedforthepreparationofconcretewereobtainedfromtheSecheltpitinB.C.Coarseandfineaggregateshad arelativedrydensityof2.695and2.651respectively,relatedabsorptionratioof0.69%and0.79%.

2.1.3.Cellulosefiber

FibersusedinthisstudywereobtainedfromSolomoncolours,INC.Thesefibersareaspecialtypeofnaturalcellulose fiberscalledUltraFiber500madefromSlashpinesandLoblollyinNorthAmerica.Asperthemanufacturer’sdeclaration, UltraFiber500isanalkaliresistantcellulosebasedmicrofibersusedforsecondaryreinforcement,providecrackcontroland havebetterhydrationandbondingproperties[26].Aclose-upviewofcellulosefibersisshowninFig.2.

Useofthesefibersinconcretealsosupportsthepurposeofsustainability astheycomefromnaturalrenewableresources.Apart fromthis,highsurfaceareaandclosespacingofcellulosefibersmakethemquiteeffectiveinthesuppressionandstabilizationof microcracksintheconcretematrix[27].PhysicalandmechanicalpropertiesofcellulosefibersarepresentedinTable1. 2.2.Concretemixdesign

Thecement/sandratioandwater/cementratiousedwas0.41and0.53respectivelyinalltypesofconcretemixes,which representsamixwithatargetstrengthof32MPa,normallyusedinthefield.Inthisstudy,0.5%volumefractionofcellulose fiberswasusedtoincreasethedispersionoffibersthroughoutthematrix.Moreover,Banthiaetal.alsousedthesame volumefractionofcellulosefibersintheirstudyonfiberreinforcedconcreteforflexuralanddirectsheartests[29].Two typesofmixeswereformulated:

1Cxx:Controlconcrete.

20.5Cxx:Cellulosefiberconcretewithfibervolumefractionequalto0.5%.

WhereCandxxrefertoconcreteandsamplenumberrespectively.Thedecimalfractionindicatesthevolumefractionof cellulosefibersusedintheconcrete.MixproportionusedforconcreteispresentedinTable2.

2.3.Mixingcuringandsettingprocedure

Foreachmixture,intotaltwelvecylindersofsize

F

100200mm,threebeamsofsize355101101mmandsix cylindersofsize

F

150175mmforwaterpermeabilitytestwerepreparedaspertherecommendationsofASTMC192[30].

Fig.2.Microcellulosefibers.(AdoptedfromSinghandGupta[46]).

Table1

GeneralPropertiesofUltraFiber500[28].

NameofFiber UltraFiber500

MaterialType HighAlkaliResistant,naturalcellulosefibers

AverageLength 2.1mm

AverageDenier 2.5g/9,000m

AverageDiameter 0.00063inch

Count,fiber/lb 720,000,000

Density 1.10g/cm3

SurfaceArea 25,000cm2

/g

TensileStrength 750N/mm2

AverageElasticModulus 8500N/mm2

(5)

Ingredientsforbothmixeswerebatchedoutasperthefinalvolumeofconcreterequiredbyusinganelectronicweighing balance.ForCeFRC,mixingprocedurewasstartedbyfirstsoakingcellulosefibersin20%oftotalmixwaterfor15min.This wasdonetoprepareaslurrypasteofcellulosefiberstoimprovetheuniformmixingoffiberswithotheringredients.Afterthe formationofaslurry,itwasmixedwithcoarseaggregatesfortwominutes,onceslurrywasthoroughlymixed,remaining ingredientswereaddedtothedrummixerandmixedforthreeminutesfollowedby2minrestandatwominutesfinal mixing.Oncetheuniformmixwasachieved,aslumptestwasperformedwithin15minasperASTMC143[31],afterward, theconcretewasplacedintodesiredmolds.

Toensuresufficientcompaction,removalofentrappedairandtoavoidhoneycombstructure,filledmoldswereplacedon avibratingtablefor30s.Aftercompaction,moldswerecoveredwithaplasticsheetandplacedatroomtemperatureforthe next24h.Demoldingwascarriedoutafter24handsampleswereplacedinacuringchambermaintainedat232.Table3

summarizesthespecimens’typeandquantityaswellascuringageusedfordifferenttestmethods. 2.4.Testingprocedure

Threetypesoftestswereconductedtoinvestigatetheself-healingandstrengthcharacteristicsofallmixes.TheUPVand self-healingtestswereperformedtoevaluatetheself-healingefficiencyofconcrete.Compressionandflexuraltestswere usedtodeterminethestrengthcharacteristicsoftheconcretemixes.

2.4.1.Compressiontest

After14and28daysofcuring,todeterminethecompressivestrengthofconcrete,threecylindersfromeachmixwere testedaspertheproceduredefinedinASTMC39[33].Uniaxialcompressiontestingmachinewasusedtotestthecylinders

Table2

Mixproportionsforconcrete.

Material Quantities Units

Cement 340 Kg/m3

Aggregates 1120

Sand 820

Water 181

CelluloseFibers0%and0.5% 0and5.5

Table3

Detailsofspecimensusedindifferenttestmethods.

Testmethod Numberofspecimen Typeofspecimen CuringAge Standard CompressiveStrength 3 Cylinder(F100200mm) 14 ASTMC39 CompressiveStrength 3 Cylinder(F100200mm) 28 ASTMC39 FlexuralStrength 3 Beam(355101101mm) 28 ASTMC293 WaterPermeability 6 Cylinder(F150175mm) 28 DIN1048 Self-healing 3 Cylinder(F100200mm) 2(DryCured) Patentedtest[32]

UPV 3 Cylinder(F100200mm) 28 C597

(6)

andthepeakloadwasrecordedatthetimeoffailure.Theloadingratewasusedwithintherangespecifiedbythestandard. 14and28daycuredsampleswereusedtoinvestigatethechangeincompressivestrengthwithcuringtime.

2.4.2.Flexuraltest

Prismaticbeamsofsize355101101mmweretestedat28daysbyusingcenterpointloadingtest asperASTM C293-16[34], todeterminetheflexuralstrengthofbothconcretemixes.A spanof304.8mm(12”)was usedoverthe supports.Theuniversaltestingmachinewasusedtotestthebeamsforflexuralandpeakloadwasrecordedatthepointof failure.Fig.3showsthearrangementfortheflexuraltestofconcreteusingcenterpointloadingmethod.Themodulusof rupturewascalculatedusingtheformulabelow:

R¼ 3PL

2bd2 ð1Þ

WhereR=modulusofrupture(MPa),P=maximumappliedloadindicatedbythetestingmachine(N),L=spanlength(mm), b=averagewidthofthespecimenatthefracture(mm),d=averagedepthofspecimenatthefracture(mm).Bysubstituting appropriatevalues,Eq.(1)reducestoR=0.000435P.

2.4.3.Waterpermeabilitytest

Fig.4showsthetestingarrangementusedforthepermeabilitytest.Thetestwasperformedforallmixesusing DIN-1048-Part5standard[35].Sixspecimensfromeachmixweresubjectedto0.5MPawaterpressureforthreedays(72h).Priorto testing,thesurfaceofthesamplesubjectedtowaterpressurewasroughenedbywirebrushingasrecommendedbythe standard.Thespecimensweremountedontherubbergasketwitha100mmdiametertoavoidanyleakageduringtesting. Afterthetestingwasfinished,thesamplesweresplitintotwohalvesfromthemiddle,perpendiculartothewaterinjected surface byusingthecompression testingmachine. Thewaterpenetration depthwas markedfor brokensamplesand measuredimmediately.

Assumingtheflowofwaterthroughconcreteporesislaminarandstationary,thecoefficientofpermeabilitycanbe calculatedusingDarcy’slaw[36]asfollows:

dx dt¼Kw

h

x  ð2Þ

Wherexisthedepthofwaterpenetrationinmeters,tisthetimeforthetestinsec,histhewaterpressureheadandKwisthe

waterpermeabilitycoefficient.TheKwcanbefiguredoutbyintegratingEq.(2)toyieldEq.(3):

Kw¼

x2 t

2ht ð3Þ

Wherextisthepenetrationdepthattimet.Sincethewaterflowisunsteadyandassociatedwiththesorptivity,itismore

reasonabletouseaveragedepthinsteadofmaximumpenetrationdepthtocalculateKw[5,36].Thexavgwascalculatedby

firstmeasuringthewetarea(Aw)andmaximumwidth(Wmax)ofthewettedregionbyusingimageJsoftwareasshownin

Fig.5.ThexavgwascalculatedasanaverageofAwdividedbywmaxforeachhalfofthetestedsample.

2.4.4.Ultrasonicpulsevelocity(UPV)test

TheUPVtestisaverysensitiveindicatorofthepresenceofdamage(cracks/flaws)inconcretewhenperformedunder laboratoryconditions[37].Ariffinetal.[38],Bahrinetal.[39]andSarkaretal.[40]alsousedtheUPVtesttoevaluatethe self-healingperformanceofmortars.UPVtestwasusedtodeterminetheinternalhealingofcracks.TheUPVtestwasperformed onsamplesasperC597-16[41].Thelongitudinalstresswaveispropagatedthroughtheconcretesamplesandtimerequired totravelthewaveacrossthediameterofthecylinderwasrecorded.Thetraveltimeofthewavevariesasafunctionofthe densityofthematerial,allowingtheestimationofthediscontinuitiesinthesamples.

(7)

Thespecimenspreparedtomonitorself-healingusingUPVwerepre-crackedafter28daysofcuring.Crackswereinduced inthecylindersbyusingastandardcrackinducingjig(SCIJ)[32]showninFig.6.ThisjigusestheVshapedcuttingedgesthat actasstressconcentrators.Thecylinderwasassembledinsidethejigandthecompressionmachinewasusedtosubject compressiveloadingtillvisiblecracksappearedonthesurfaceofthecylinder.Thepre-crackedspecimenswereallowedto cureinwatertoallowanyself-healing.

TheUPVtestwasperformedontheuncrackedandpre-crackedsamplesattheageof28days,followedby21daysof healing.Figs. 7and 8shows thesequenceand arrangementfor theUPV testrespectively. Thedeviceconsistsof two transducersonetotransmittheultrasonicwaveandtheothertoreceiveit.Bothtransducerswereconnectedwiththe surfaceofthecylinderandtimerequiredtotravelthesoundwaveperpendiculartothecrackdirection(acrossthecrack)as showninFig.7wasrecordedwithaprecisionofatleast0.1

m

s.Thecouplinggelwasappliedonthesurfacetogetabetter contactarea,requiredforaccurateresults.Thetestwasperformedatafrequencyof150kHz.Thevelocityoftheultrasonic wavewascalculatedusingtheEq.(4):

V=D/T (4)

D=diameterofthesample,100mm,T=Timerequiredtotravelthedistance,D.

2.4.5.Self-healingtest

Theself-healingtestwasperformedbyusingtheinnovativetechniquedevelopedbyGuptaetal.[32].Thecylindersof

F

100x200mmsizewerecrackedusingSCIJ[32].Pejmanetal.[5]alsousedthesamemethodtoevaluatetheself-healing efficiencyofconcretecylinders.Thecylinderswerecuredinambienttemperaturepriortocracking.Aftercracking,surface crackwidthofeachcylinderwasmeasuredontopandbottomofthesurfacesbyusingopticalcrack-detection-microscopeat sixequal distancepointsalong thecrack: threealongthetopfaceandthreealong thebottomface.Allreadingswere

Fig.5.Methodtocalculatetheaveragewidth(xavg)inthewettedregion.

(8)

averaged to calculatetheaverage width of thecrack for a cylinder. Thecracked cylinders wereinserted intospecial rubbersleevesandsealedusingsiliconsealantandepoxyresintomakesurewateronlypassesthroughthecrackduringthe self-healingtest.Theoneendofthecylinderwithrubbersleeveswasexposedtoaconstantwaterheadof1.7m.Theflowof waterthroughthecrackofthecylinderwascollectedinawatercontainerandmeasuredatfrequentintervals.Fig.9shows theself-healingtestarrangementforconcretecylinders.

3.Resultsanddiscussion

3.1.Slumpandcompressivestrength

Theslumpvaluesof75mmand35mmwereobservedfortheCxxand0.5Cxxmixrespectively.A53.3%decreaseinthe slumpwasobservedfor0.5CxxwhencomparedtoCxx.Thedecreaseintheslumpisduetofactthatcellulosefibersare hydrophilicandtheytendtosoakmostofthewaterduringmixing(about85%oftheirweight).

Fig.7. SequenceofUPVtesttoevaluateself-healingefficiencyofconcretecylinders.

(9)

Table4showstheaveragecompressivestrength(f’c)ofeachmixalongwithaveragesandstandarddeviationvaluesfor14 and28dayscuredsamples.

ThedatainTable4wasanalyzedforthe%changeincompressivestrengthofCeFRCfromcontrolconcrete.The%changein compressivestrengthfor14and28dayscuredmixesisshowninFig.10.Adecreaseincompressivestrengthof37.39%and 25.59%isnoticedwithadditionof0.5%fibersafter14and28daysofcuringrespectively.Thedecreaseincompressive strengthispossiblyattributedtolossofworkabilityofconcretewhen0.5%byvolumecellulosefibersareadded,which causeslowercompactionofconcretesamples.However,alowerreductionincompressivestrengthisobservedfor28days curedsamplesascomparedto14dayscuredsamplesbecauseatlongeragecellulosefibersactasawaterreservoirthathelps toimprovethehydrationofunreactedcementparticlesbymeansofinternalcuring.Thisinternalcuringinfiberconcrete somehowcompensatesforthelossoff’c.

Fig.9.Self-healingtestarrangementforconcretecylinders.

Table4

Compressivestrengthtestresultsforconcrete.

MixDesign 14daysCompressiveStrength(f’c)(MPa) 28daysCompressiveStrength(f’c)(MPa) Individual AverageSTDV Individual AverageSTDV

Cxx 47.62 48.112.16 48.71 48.520.9 50.97 49.52 45.74 47.34 0.5Cxx 30.96 30.120.63 37.53 36.210.99 29.97 35.96 29.43 35.15

(10)

3.2.Flexuralstrength

Table5showstheaverageflexuralstrengthandcorrespondingmaximumdeflectionforeachmixalongwithaveragesand standard deviationvalues for 28 days cured samples when tested in the formof beams under center point loading configuration.

ThedatainTable5wereanalyzedforthe%changeinflexuralstrengthofCeFRCfromnormalconcrete.Eventhoughthef’c ofthismixislowertheadditionofcellulosefibersresultsina7.84%increaseinflexuralstrengthofnormalconcrete.A considerableincreaseinthemaximumdeflectionatthetimeoffailureisalsoobserved,whichindicatescellulosefiberhasa goodbondstrengthwiththeconcretematrixandabletotransferloadundertensileforces.Additionally,cellulosefiberhasa significantlyhighertensilestrength(750MPa)ascomparedtonormalconcrete(5MPa),whichalsoleadstoanincreasein flexuralstrengthofconcretewiththefiberaddition.

3.3.Waterpermeabilitytest

ThepermeabilitytestwasconductedonthesamplesbasedonDIN1048.Thepenetrationdepthofsamplesthatdeviated morethan20%ofthemeanvalueofsixsampleswereremovedfromtheresults.Figs.11and12showsthemaximumand averagepenetrationdepthsrespectivelyforbothconcretemixes.

HedegaardandHansen[42]explainedintheirstudythatforallpracticalpurposesconcreteisconsideredaswatertight when themaximumpenetration depthisless than50mm(2inch).Bothmixes indicatedless than50mm maximum penetrationdepthswhich rangesfrom24.11mmto28.33mmforcontrolmixand 17.57mm–21.54mmforCeFRC. The additionoffiberssignificantlyreducedthemaximumandaveragewaterpenetrationdepthforconcrete.Figs.11and12

exhibitsthatadditionoffiberresultsina24%and23.4%reductioninmaximumandaveragewaterpenetrationdepth respectively.Also,whenresultsarecomparedformaximumandaveragevaluesofpenetrationdepths,itwasobservedthat standard deviationwas lowerfor theaverage penetrationdepths, demonstratingaverage depthis morereliable than maximumdepth.

CoefficientofpermeabilitywasalsocalculatedusingEq.(3)basedonDIN1048testresults.Figs.13and14showsthe permeability coefficient calculated based onmaximum and average penetration depths respectively. Again,it can be observedthattheadditionoffibersresultedinadecreaseinpermeabilitycoefficientby42%and41%calculatedbasedon maximumandaveragepenetrationdepthsrespectively.Considerabledecreaseinthepenetrationdepthsandcoefficientof permeabilityindicatestheeffectivenessofcellulosefibersforwaterproofingpurposesinconcrete.

Table5

Flexuralstrengthtestresultsforconcrete.

MixDesign 28daysFlexuralStrength(MPa) 28daysMaximumMid-SpanDeflection(mm) Individual AverageSTDV Individual AverageSTDV

Cxx 5.60 5.620.03 1.33 1.510.18 5.60 1.43 5.67 1.76 0.5Cxx 5.97 6.060.09 1.767 2.180.32 6.02 2.22 6.19 2.56

(11)

Theself-healingpotentialofbothconcretemixeswasinvestigatedbytheUPVtest.TheUPVtechniqueusedtoevaluate self-healingisthesameasusedbyAriffinetal.[38],Bahrinetal.[39]andSarkaretal.[40].TheUPVtimewasrecordedfor uncracked,pre-crackedand21dayshealedconcretecylindersacrossthecracktostudyanyinteriorhealingofthecracks.It shouldbenotedthatcrackcharacteristicssuchaswidthandlengthcanalsobemeasuredonthesurface,butthismaynot necessarilycapturethetortuosityofcracksinthe3rddimension(throughthedepth)ofthespecimen.Foreachsample,test wasperformedatthreelocationsofthecylinder;top,middleandbottom,andrepeatedatleastthreetimesforeachlocation. Datawerepresentedasaveragestandarddeviation.Table6showstheUPVresultsforallconcretemixesuncrackedand

Fig.12.AveragewaterpenetrationdepthbasedonDIN1048testresults.

Fig.13.CoefficientofpermeabilityusingmaximumdepthbasedonDIN1048testresults.

(12)

pre-crackedat28days.SameasdonebyZhongandYao[43],themicrostructurechangesinconcreteareinferredfromthe decreaseofUPVbyintroducingadamageddegreedefinedas:

D¼1Vp

V0 ð5Þ

WhereDisthedamagedegreeoftheconcrete,VpisUPVofthepre-crackedsample,andV0istheUPVofanuncrackedsample.

Aself-healingratioofconcrete,SH,thatincorporatesUPVafter21daysofself-healingandpre-crackedsamplecanbe introducedas:

SH¼ðV21VpÞ

Vp ð6Þ

WhereV21istheUPVafter21daysofself-healing,andVpistheUPVofpre-crackedsample.

Mixeswerecomparedbasedonthedamageddegreeinsteadofcrackwidthsbecauseinducedcrackshavevaryingwidths anddepthsasexplainedearlier.Basedontheavailabilityanddistributionofresults,thedatawereaveragedfordamaged degreebetween0.6–0.7 onlyfor bothmixes. Fig.15shows thecuringdaysvs UPV relationandSH for28 days aged pre-crackedsamplesforDbetween0.6–0.7forbothmixes.

ZhongandYao[43]explainedintheirstudythattheUPVofconcreteisacombinedeffectofthematrix,microcracks,and macrocracks,whichcouldberepresentedas:

Vc¼i 1 1 V1þ i2 V2þ i3 V3 ð7Þ Table6

UPVresultsforsamplespre-crackedat28days.

Mixdesign Samplename UPV(Km/s)STDV) Damageddegree, D=1-(Vp/V0)

Selfhealingratio SH=(V21-Vp)/Vp

28daysuncracked(V0) 28dayspre-cracked(Vp) 21dayshealed

Cxx C1Top 5.080 1.630.01 2.790.03 0.68 0.71 C1Middle 5.130.02 1.510 2.660.02 0.71 0.77 C1Bottom 5.180 1.870.16 2.910.01 0.64 0.55 C2Top 5.140.04 2.130.12 3.670.02 0.59 0.72 C2Middle 5.080.01 2.990.11 4.060.36 0.41 0.36 C2Bottom 5.130.03 1.410.06 2.850 0.72 1.02 C3Top 5.150 2.160.04 2.470 0.58 0.14 C3Middle 5.130.02 1.270.07 2.390.03 0.75 0.89 C3Bottom 5.130.03 2.150.02 2.850 0.58 0.32 0.5Cxx 0.5C1Top 4.960.01 0.610.13 4.640.01 0.88 6.64 0.5C1Middle 4.750.01 1.50.01 4.590.01 0.68 2.06 0.5C1Bottom 4.910.01 1.190.05 4.570.01 0.76 2.84 0.5C2Top 4.930 1.770.13 4.940.01 0.64 1.79 0.5C2Middle 4.840.03 1.750.08 3.030.08 0.64 0.73 0.5C2Bottom 4.850.02 1.460.07 2.50.02 0.70 0.72 0.5C3Top 4.930.01 0.790 4.770.08 0.84 5.08 0.5C3Middle 4.820.01 1.420 2.730.02 0.71 0.93 0.5C3Bottom 4.830 1.110.01 4.410.02 0.77 2.96 0.5C4Top 4.930.01 1.790.09 4.830 0.64 1.70 0.5C4Middle 4.780.01 1.990.06 4.390.25 0.58 1.21 0.5C4Bottom 4.830.02 1.830.02 3.790.09 0.62 1.07

(13)

WhereVcistheUPVofconcrete,i1,i2,i3and V1,V2,V3arethevolumefractionandUPVofthematrix,microcracks,and

macrocracksrespectively.V1is afunction ofelasticmodulus,Poisson’sratio,inner frictionangleandmaterial fraction

toughnessofthematrix.V2canbeexpressed asafunctionofmicrocracksparameterssuchashalflength,shaperatio

anddensityofmicrocracks.Whereas,V3formacrocracksisultrasonicwavevelocityintheair(340m/s).Increaseofelastic

modulusandmaterialfracturetoughnessresultsintheincreaseofV1,whiletheincreaseofdensityofmicrocracksleadsto

decreaseofV2.

UPVismostlyinfluencedbyV1foruncrackedsamplesanditisclosetotheintactconcretematrixduetolessvolumeof

microcracksintheuncrackedsample.Oncetheconcreteiscracked,theuncrackedmatrixvolumei1decreasesgreatly,while

i2andi3increaseconsistently.CrackingofconcreteresultsintheriseofmicrocracksdensitythatleadstoadecreaseofV2,

thusUPVofcrackedconcretedecreasesgreatly.Oncethecrackedsamplesarecuredinwaterforself-healing,re-hydration productsofunreactedcementparticlescrystallizedinsidethecracksthatresultinadecreaseofi2andi3.Thecrystallization

alsochangestheinnermicrocracksandporousstructurethatresultsinanincreaseofV2,thusUPVofself-healedconcreteis

expectedtoincrease.

FromFig.15,itappearsthatthepresenceoffibersdecreasestheUPVslightlyforuncrackedsamples.Thisisexpectedas UPVthroughcelluloseislowerthanconcrete.CrackingdecreasestheUPVforbothmixeswhichindicatesthediscontinuity duetocracking.ItcanbeobservedthatcuringtimeresultsinanincreaseinUPVforbothmixeswhichindicatesthe autogenoushealingprocessworkingwellinsidethecracks.CeFRCresultsin48.7%higherUPVthannormalconcreteafter 21daysofhealingthatindicatesanenhancementofautogenousself-healingduetotheadditionoffibersforDbetween 0.6–0.7.

ItcanalsobeobservedthatcontrolledandonlyfibermortarsamplesshowedaSHof0.62and1.46respectively.Thiscan beattributedduetocontinuedhydrationprocessofunhydratedcementparticlesandprecipitationofcalciumcarbonatedue tocarbonationofcalciumhydroxide,oneofthemajorhydrationproductsofcement.FiberconcreteresultsinmoreSHas comparedtocontrolconcreteindicatingthatcellulosefiberareeffectiveinimprovementofautogenoushealingofconcrete becausetheyhavethetendencytoabsorbwaterupto85%oftheirweightandactasawaterreservoirinsidetheconcrete matrixforimprovedinternalcuring.

Fig.16representstherelationbetweendamageddegreeandself-healingratioforsamplespre-crackedattheageof28 days.ItappearsthatSHisnearlydependentonthedamageddegree.ItcanbeobservedthatSHisincreasedasDincreasesfor bothmixes.CeFRCshowshigherSHthannormalmixforalldamageddegrees,indicatestheeffectivenessofcellulosefiber additionontheautogenoushealingofconcrete.However,asignificantlylargerSHathigherdamageddegreewasobservedin CeFRC than normal concrete.This is becausehigher Dresults inmore availability of waterthrough microcracks and availabilityofcellulosefibersinsidethecrackimprovesthebridgingofnewhydrationproductsacrossthecracks.However, thenewhydrationproductsinnormalconcretearenotabletobridgethecrackathigherdamageddegreethatresultsin lowerSHascomparedtoCeFRC.

3.4.Self-healingtestresults

Thesurfacecrackwidth,theoreticalcrackwidth,initialflowrateandhealingratioofthreecylindersforbothconcrete mixesarerepresentedinTable7.Theeffectofhealingwascalculatedbyintroducingahealingratio(HR)parameterasshown below[5,44]:

Healing Ratio¼1 Final flow Initial flow¼1

qF

q0>

0 ð8Þ

(14)

Whereq0istheinitialwaterflow(lit/min)andqFisthefinalwaterflowmeasuredafterahealingperiodof28days.Edvardsen

proposedamodeltodeterminetherelationbetweencrackwidthandthewaterflowpassingthroughthecrack[45].The modelisshowninEq.(9).

q0

litres hour  

¼740 ICW3avgKt ð9Þ

Whereq0istheinitialwaterleakagepermetervisiblecracklength(lit/h);Iisthehydraulicgradient,mofwaterhead/m;

CWavgistheaveragecrackwidthatthesurface(mm);ktisfactorcomprisingdifferentwatertemperature(kt=1forwaterat

20Cwithviscosityof1mm2/s).Thisexpressioncanbemodi

fiedtotheparametersofthisstudybychangingthecracklength (considered75mm,assomepartofcrackcoveredwithsealant)andotherunitsandcanbere-writtenasshowninEq.(10).

q0 litres min   ¼740 10:7 :2CW 3 avg10:075 1 60¼7:863CW 3 avg  CWavg¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi q0=7:863 3 q   ð10Þ

ThetheoreticalsurfacecrackwidthofallsampleswascalculatedfromEq.(10)byusingtheinitialflowrateofwater. SampleswithalmostsimilaractualandtheoreticalcrackwidthinTable7werecomparedforhealingratio.Table7showsthe initialflowrateincreaseswiththecrackwidthandsampleswithsmallercrackwidthexhibitsthehigherhealingratioas comparedtowidercracksforbothmixes.Thesmallercrackwidthsamplesdemonstrateahigherhealingratiobecause hydrationproductshavemoretendencytobridgethecrackwithasmallerwidthascomparedtowidercracks.SpecimenC6 withactualsurfacecrackwidthof0.865mmandtheoreticalcrackwidthof0.48mmwascomparedwithaveragedactualand theoreticalcrackwidthfor0.5C6and0.5C7,0.8625mmand0.49mmrespectively.ItcanbeobservedthatCeFRCexhibitsa slightlylessaveragehealingratioof0.609ascomparedto0.628ofnormalconcreteforcrackwidthof0.86mmafter28days ofthehealingperiod.

Fig.17showstherelationshipbetweenhealingratioandtimeforbothconcretemixes.Itcanbeobservedhealingratio increasedwithtimeofhealingforbothmixtures.However,cellulosefiberconcreteexhibitsahigherrateofhealinginthe initial8days,followedbyamoderatelyhigherhealingratefromday8–20ascomparedtocontrolconcrete.After20days, bothmixesdemonstratealmostsimilarhealingrate.

AuthorshypothesizethatrapidhealingrateofCeFRCintheinitialhealingperiodcanbeimprovedbyusingother self-healingingredientsinconcretelikecrystallizeadmixtures,bacterialandcapsule-basedingredients,etc.

4.Conclusions

10.5 % volumefraction of cellulose fibers results in a decrease in compressive strength of control concrete due to replacementofpartofconcretematrixwithcellulosefibersthatleadstolowerworkabilityandcompactionofconcrete.

Table7

Measuredcrackwidth,theoreticalcrackwidth,initialflowandhealingratioofconcretemixes. SampleID Surfacecrackwidth(mm) Theoreticalcrackwidth

fromequation(10)(mm)

Realinitialflow q0(lit/min)

Healingratio (HR) Top Bottom Average

Control C5 0.7 0.2 0.45 0.578 0.35 0.34 0.765 C6 0.43 1.3 0.865 0.48 0.86 0.628 C7 0.33 0.51 0.42 0.36 0.36 0.806 CeFRC 0.5C5 0.43 0.34 0.385 0.703 0.21 0.07 0.857 0.5C6 1.25 0.54 0.895 0.52 1.11 0.459 0.5C7 0.73 0.93 0.83 0.46 0.75 0.76

(15)

2 Cellulosefiberresultsinanincreaseinflexuralstrengthofnormalconcreteby7.84%andaconsiderableincreasein maximumdeflectionarealsoobserved.Thisindicatesgoodfiberbondandtheirsuitabilityforuseasareinforcementin concrete.

3 Concretewithcellulosefibershada 24%lowerwaterpenetrationdepth and42%lowercoefficientof permeability comparedtocontrolconcrete,indicatedtheimprovementinwatertightnessofconcrete.Averagewaterpenetration depthsseemedtobeabetteroptiontocalculatethecoefficientofpermeabilityascomparedtomaximumpenetration depths.

4 Cellulosefiberactasawaterreservoirandresultinbetterinternalcuringofconcrete.AhigherSHand48.7%higherUPV velocitywereobservedinCeFRCascomparedtonormalconcreteafter21daysofself-healingwithdamageddegree between0.6to0.7,indicatesimprovementofautogenoushealingofconcreteduetotheadditionofcellulosefiber. 5 Self-healingratioofCeFRCincreasessignificantlythannormalconcreteathigherdamageddegreebecausefibersinside

thecrackimprovethebridgingofnewhydrationproductsacrossthecracksathigherdamageddegree,whichisnot possibleinnormalconcrete.

6 CeFRChasarapidhealingrateintheinitialdaysascomparedtonormalconcreteandthispropertycanbeenhancedby usingwithotherself-healingconcreteingredientslikecrystallineadmixtures,bacteriaandcapsule-basedingredients,etc. toimprovetheself-healingefficiencyofconcrete.

Fundingbody

ThisresearchwasfundedbytheNationalSciencesandEngineeringResearchCouncilofCanada,NSERC-CRDgrant.

Ethicalstatement

Weconfirmthatneitherthemanuscriptnoranypartsofitscontentarecurrentlyunderconsiderationorpublishedin anotherjournal.

DeclarationofCompetingInterest

Theauthorsdeclarenoconflictofinterest. Acknowledgement

Thetechnicalexpertiseandin-kindsupportprovidedbyMarkRyanfromSolomonUltrafiberisgreatlyappreciated. References

[1]E.Cailleux,V.Pollet,InvestigationsontheDevelopmentofSelf-HealingPropertiesinProtectiveCoatingsforConcreteandRepairMortars,(2019). [2]M.Yunovich,N.Thompson,Corrosionofhighwaybridges:economicimpactandcontrolmethodologies,Concr.Int.25(1)(2003)52–57. [3]H.Huang,G.Ye,C.Qian,E.Schlangen,Self-healingincementitiousmaterials:materials,methodsandserviceconditions,Mater.Des.92(2016)

499–511152.

[4]H.M.Jonkers,A.Thijssen,G.Muyzer,O.Copuroglu,E.Schlangen,Applicationofbacteriaasself-healingagentforthedevelopmentofsustainable concrete,Ecol.Eng.36(2)(2010)230–235.

[5]P.Azarsa,R.Gupta,A.Biparva,Assessmentofself-healinganddurabilityparametersofconcretesincorporatingcrystallineadmixturesandPortland LimestoneCement,Cem.Concr.Compos.99(August2018)(2019)17–31.

[6]A.El-Newihy,P.Azarsa,R.Gupta,A.Biparva,Effectofpolypropylenefibersonself-healinganddynamicmodulusofelasticityrecoveryoffiber reinforcedconcrete,Fibers6(1)(2018)912.

[7]VictorC.Li,En-HuaYang,Selfhealinginconcretematerials,Self-HealingMater.(2007)161–193.

[8]Y.Yang,M.D.Lepech,E.H.Yang,V.C.Li,Autogenoushealingofengineeredcementitiouscompositesunderwet-drycycles,Cem.Concr.Res.39(5)(2009) 382–390.

[9]S.Kim,D.Y.Yoo,M.J.Kim,N.Banthia,Self-healingcapabilityofultra-high-performancefiber-reinforcedconcreteafterexposuretocryogenic temperature,Cem.Concr.Compos.104(2019)111.

[10]S.Kim,M.J.Kim,H.Yoon,D.Y.Yoo,Effectofcryogenictemperatureontheflexuralandcrackingbehaviorsofultra-high-performancefiber-reinforced concrete,Cryogenics93(2018)75–78517.

[11]J.P.Ferreira,F.A.Branco,Theuseofglassfiber-reinforcedconcreteasastructuralmaterial,Exp.Tech.31(3)(2007)64–735.

[12]H.Singh,R.Gupta,Strengthrecoveryandcrackhealingofself-healingcementmortarcontainingcellulosefibersandbacteria,1stInternational ConferenceonNewHorizonsinGreenCivilEngineering,Victoria,2018.

[13]V.C.Li,Y.M.Lim,Y.W.Chan,Feasibilitystudyofapassivesmartself-healingcementitiouscomposite,Compos.PartBEng.29(6)(1998)819–827. [14]D.Homma,H.Mihashi,T.Nishiwaki,Self-HealingCapabilityofFibreReinforcedCementitiousComposites,(2009).

[15]T.Nishiwaki,M.Koda,M.Yamada,H.Mihashi,T.Kikuta,Experimentalstudyonself-healingcapabilityofFRCCusingdifferenttypesofsyntheticfibers, J.Adv.Concr.Technol.10(6)(2012)195–2066.

[16]K.VanTittelboom,N.DeBelie,Self-HealinginCementitiousMaterials-AReview,vol.6(2013),pp.2182–2217.

[17]R.Gupta,N.Banthia,Correlatingplasticshrinkagecrackingpotentialoffiberreinforcedcementcompositeswithitsearly-ageconstitutiveresponsein tension,Mater.Struct.MateriauxConstruct.49(4)(2016)1499–1509.

[18]UltraFiber Technical Bulletin UFTB #1 Plastic Shrinkage Crack Reduction, Google, [Online]. Available: https://drive.google.com/file/d/ 0ByWupltkC24Lc2hvWTNMVWVoc3M/view.(Accessed14June2019).

[19]5ReasonstouseSolomonUltraFiber500,"Google,[Online].Available:https://drive.google.com/file/d/0ByWupltkC24LeUR2MWU1c2ZvOFk/view. (Accessed14June2019).

(16)

[20]UltraFiberTechnicalBulletinUFTB#4HydrationBenefit,Google,[Online].Available:https://drive.google.com/file/d/0ByWupltkC24LekF5T2drZF9feEE/ view.(Accessed14June2019).

[21]UltraFiberTechnicalBulletinUFTB#3AlkaliResistance,Google,[Online].Available:https://drive.google.com/file/d/0ByWupltkC24LY09VZkJNcm1icGs/ view.(Accessed14June2019).

[22]UltraFiberTechnicalBulletinUFTB#7Freeze/ThawDurability,Google,[Online].Available:https://drive.google.com/file/d/0ByWupltkC24LRkltZlV2OXQzZGs/ view.(Accessed14June2019).

[23]UltraFiberTechnicalBulletinUFTB#2Finishability,Google,[Online].Available:https://drive.google.com/file/d/0ByWupltkC24LS1VYRTV1ZmstR3c/ view.(Accessed14June2019).

[24]P.Azarsa,R.Gupta,A.Biparva,Crystallinewaterproofingadmixtureseffectsonself-healingandpermeabilityofconcrete,1stInternationalConference onNewHorizonsinGreenCivilEngineering,Victoria,2018.

[25]ASTMC150/C150M-19a,StandardSpecificationforPortlandCement,ASTMinternational,2019. [26]SolomonUltraFiber,[Online].Available:http://www.ultrafiber500.com/#500.(Accessed17June2019).

[27]P.Soroushian,ShahramRavanbakhsh,Controlofplasticshrinkagecrackingwithspecialtycellulosefibers,ACIMater.J.95(4)(1998)429–43507. [28]500 Product Information [Online]. Available: https://www.solomoncolors.com/documents/ultrafiber/Technical%20Fiber%20Binder%20-%20500%

20Specification.pdf.(Accessed14June2019).

[29]N.Banthia,F.Majdzadeh,J.Wu,etal.,Fibersynergyinhybridfiberreinforcedconcrete(HyFRC)inflexure,shearandimpact,in:JoaquimBarros(Ed.), BEFIB2012–FibreReinforcedConcrete,vol.482012,pp.91–97.

[30]ASTMC192/C192M-15,StandardPracticeforMakingandCuringConcreteTest,ASTMInternational,2015. [31]C143/C143M15a,StandardTestMethodforSlumpofHydraulic-CementConcrete,ASTMInternational,2015.

[32]R.Gupta,A.Biparva,Innovativetesttechniquetoevaluate“self-sealing”ofconcrete,J.Test.Eval.43(5)(2014)p.20130285,1410. [33]ASTMC39/C39M-15a,StandardTestMethodforCompressiveStrengthofCylindricalConcreteSpecimens,ASTMInternational,2015.

[34]C293/C293M16,StandardTestMethodforFlexuralStrengthofConcrete(UsingSimpleBeamWithCenter-PointLoading),ASTMInternational,2016. [35]DIN1048,TestingConcrete:TestingofHardenedConcrete(specimensPreparedinMould)DeutscherAusschußfürStahlbetonoftheNormenausschuß

Bauwesen,(1991).

[36]M.Ibrahim,M.Issa,EvaluationofchlorideandwaterpenetrationinconcretewithcementcontaininglimestoneandIPA,Constr.Build.Mater.129 (2016)278–288.

[37]S.F.Selleck,E.N.Landis,M.L.Peterson,S.P.Shah,J.D.Achenbach,Ultrasonicinvestigationofconcretewithdistributeddamage,ACIMater.J.95(1)(1998) 27–36.

[38]N.F.Ariffin,M.W.Hussin,A.R.MohdSam,H.SeungLee,N.H.Nur,N.H.AbdulShukorLim,M.Samadi,Mechanicalpropertiesandself-healingmechanism ofepoxymortar,J.Technol.77(12)(2015)37–44.

[39]M.A.K.Bahrin,M.F.Othman,N.H.N.Azi,M.F.Talib,JurnalTeknologi,JurnalTeknologi(Sci.Eng.)78(6–13)(2016)137–143.

[40]M.Sarkar,T.Chowdhury,B.Chattopadhyay,R.Gachhui,S.Mandal,Autonomousbioremediationofamicrobialprotein(bioremediase)inPozzolana cementitiouscomposite,J.Mater.Sci.49(13)(2014)4461–4468.

[41]ASTMC597-16,StandardTestMethodforPulseVelocityThroughConcrete,ASTMinternational,2019. [42]S.E.Hedegaard,T.C.Hansen,Waterpermeabilityofflyashconcretes,Mater.Struct.25(7)(1992)381–387.

[43]W.Zhong,W.Yao,Influenceofdamagedegreeonself-healingofconcrete,Constr.Build.Mater.22(6)(2008)1137–1142.

[44]M.Roig-Flores,F.Pirritano,P.Serna,L.Ferrara,Effectofcrystallineadmixturesontheself-healingcapabilityofearly-ageconcretestudiedbymeansof permeabilityandcrackclosingtests,Constr.Build.Mater.114(2016)447–457.

[45]C.Edvardsen,Waterpermeabilityandautogenoushealingofcracksinconcrete,ACIMater.J.96(4)(1999)448–454.

Referenties

GERELATEERDE DOCUMENTEN

Een categorie-indeling kan hem hierbij helpen. Voorbeeld: Een royaal aangelegde ringweg door de buitenwijken van een stad, waar 70 kmf · toegestaan. zal automobilisten

F o=O and the slope of the T max curve at low temperatures is determined by the geometry under co-n- sideration. With increasing temperature an increasing, positive

De aantallen in de kaart zijn een relatieve maat voor de tal- rijkheid, omdat ze niet zonder meer omgere- kend kunnen worden naar de aantallen per kilometerhok.. De kaart die op

The research presented in this thesis was performed in the Advanced Production Engineering (APE) group of Engineering and Technology institute Groningen (ENTEG) and

Figure 3.8 Tribological performance as a function of carbon content: (a) average coefficient of friction; (b) wear rate; (c) coefficient of friction curves of WS 2 /a-C

It can be concluded that, for tribological applications, WS x C(H) coatings are not necessarily to reach WS 2 stoichiometry by excessively increasing the target- substrate

Figure 6.10 Details of the self-healing behavior on the wear scar of counterpart ball after sliding 6000 laps: (a) overview of the scar; close-ups of the marked areas in

A thermally reversible cross-linked polymer can be processed as a thermoplastic material at high temperature, while the material will behave like a thermoset at