• No results found

Catalytic mechanism and protein engineering of copper-containing nitrite reductase

N/A
N/A
Protected

Academic year: 2021

Share "Catalytic mechanism and protein engineering of copper-containing nitrite reductase"

Copied!
15
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

nitrite reductase

Wijma, Hein Jakob

Citation

Wijma, H. J. (2006, February 9). Catalytic mechanism and protein engineering of

copper-containing nitrite reductase. Retrieved from https://hdl.handle.net/1887/4302

Version:

Corrected Publisher’s Version

License:

Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from:

https://hdl.handle.net/1887/4302

(2)

References

1. Piontek, K., Antorini, M., and Choinowski, T. (2002) J. Biol. Chem.277, 37663-37669.

2. Kohzuma, T., Inoue, T., Yoshizaki. F, Sasakawa, Y., Onodera, K.,

Nagatomo, S., Kitagawa, T., Uzawa, S., Isobe, Y., Sugimura, Y., Gotowda, M., and Kai, Y. (1999) J. Biol. Chem.274, 11817-11823.

3. Tocheva, E. I., Rosell, F. I., Mauk, A. G., and Murphy, M. E. P. (2004) Science 304, 867-870.

4. Koch, M., Velarde, M., Harrison, M. D., Echt, S., Fischer, M., .,

Messerschmidt, A., and Dennison, C. (2005) J. Am. Chem. Soc.127, 158-166.

5. van Amsterdam, I. M., Ubbink, M., Einsle, O., Messerschmidt, A., Merli, A., Cavazzini, D., Rossi, G. L., and Canters, G. W . (2002) Nat. Struct. Biol.9, 48-52.

6. Haltia, T., Brown, K., Tegoni, M., Cambillau, C., Saraste, M., Mattila, K., and Djinovic-Carugo, K. (2003) Biochem. J.369, 77-88.

7. Gray, H. B., Malmstrom, B. G., and W illiams, R. J. (2000) J. Biol. Inorg. Chem.5, 551-559.

8. Randall, D. W ., Gamelin, D. R., LaCroix, L. B., and Solomon, E. I. (2000) J. Biol. Inorg. Chem.5, 16-29.

9. Ryde, U., Olsson, M. H., Roos, B. O., De Kerpel, J. O., and Pierloot, K. (2000) J. Biol. Inorg. Chem.5, 565-574.

10. Kroneck, P. M. H. (2001) in Handbook of Metalloproteins

(Messerschmidt, A., Huber, M., Poulos, T., and W ieghardt, K., Eds.) pp 1333-1341, John W iley & Sons, Ltd., Chichester.

11. Sato, K., and Dennison, C. (2002) Biochemistry41, 120-130.

12. Yamanaka, T., Kujimoto, S., and Okunuki, K. (1963) J. Biochem. (Tokyo) 53, 256-259.

13. Ugurbil, K., and Bersohn, R. (1977) Biochemistry16, 895-901.

14. Hansen, J. E., Longworth, J. W ., and Fleming, G. R. (1990) Biochemistry 29, 7329-7338.

15. Sweeney, J. A., Harmon, P. A., Asher, S. A., Hutnik, C. M., and Szabo, A. G. (1991) J. Am. Chem. Soc.113, 7531-7537.

16. Krezel, A., Lesniak, W ., Jezowska-Bojczuk, M., Mlynarz, P., Brasun, J., Kozlowski, H., and Bal, W . (2001) J. Inorg. Biochem.84, 77-88.

17. Kitajima, N., Fujisawa, K., Masako, T., and Moro-oka, Y. (1992) J. Am. Chem. Soc.114, 9232-9233.

(3)

19. Murphy, M. E., Lindley, P. F., and Adman, E. T. (1997) Protein Sci. 6, 761-70.

20. Rydén, L. G., and Hunt, L. T. (1993) J. Mol. Evol. 36, 41-46.

21. Liebermann, R. L., Arciero, D. M., Hooper, A. B., and Rosenzweig, A. C. (2001) Biochemistry 40, 5674-5681.

22. Arciero, D. M., Pierce, B. S., Hendrich, M. P., and Hooper, A. B. (2002) Biochemistry 41, 1703-1709.

23. Basumallick, L., Sarangi, R., DeBeer George, S., Elmore, B., Hooper, A. B., Hedman, B., Hodgson, K. O., and Solomon, E. I. (2005) J. Am. Chem. Soc. 127, 3531-3544.

24. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) Nucleic Acids. Res. 22, 4673-4680.

25. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., and Thompson, J. D. (2003) Nucleic Acids. Res. 31, 3497-3500. 26. Dennison, C., Lawler, A. T., and Kohzuma, T. (2002) Biochemistry 41,

552-560.

27. Sato, K., Kohzuma, T., and Dennison, C. (2003) J. Am. Chem. Soc. 125, 2101-2112.

28. Brischwein, M., Scharf, B., Engelhard, M., and Mäntele, W. (1993) Biochemistry 32, 13710-13717.

29. Scharf, B., and Engelhard, M. (1993) Biochemistry 32, 12894-12900. 30. Shoham, M. (2001) in Handbook of Metalloproteins (Messerschmidt, A.,

Huber, R., Poulos, T., and Wieghardt, K., Eds.) pp 1235-1241, John Wiley & Sons, Ltd., Chichester.

31. Komorowski, L., and Schäfer, G. (2001) FEBS Lett. 487, 351-355. 32. Ambler, R. P., and Tobari, J. (1985) Biochem. J. 232, 451-457. 33. Contera, S., and Iwasaki, H. (2002) Ultramicroscopy 91, 231-243. 34. Vijgenboom, E., Busch, J. E., and Canters, G. W. (1997) Microbiology

143, 2853-2863.

35. Yamada, T., Goto, M., Punj, V., Zaborina, O., Chen, M. L., Kimbara, K., Majundar, D., Cunningham, E., Das Gupta, T. K., and Chakrabarty, A. M. (2002) Proc. Natl. Acad. Sci. U S A 99, 14098-14103.

36. Nersissian, A. M., Hart, P. J., and Valentine, J. S. (2001) in Handbook of Metalloproteins (Messerschmidt, A., Huber, R., Poulos, T., and Wieghardt, K., Eds.) pp 1219-1234, John Wiley & Sons, Ltd., Chichester.

37. Nersissian, A. M., Immoos, C., Hill, M. G., Hart, P. J., Williams, G., Herrmann, R. G., and Valentine, J. S. (1998) Protein Sci. 7, 1915-29. 38. Machczynski, M. C., Vijgenboom, E., Samyn, B., and Canters, G. W.

(2004) Protein Sci. 13, 2388-2397.

(4)

40. Lindley, P. F. (2001) in Handbook of Metalloproteins (Messerschmidt, A., Huber, R., Poulos, T., Wieghardt, K.,, Ed.) pp 1369-1380, John Wiley & Sons, Ltd, Chicester.

41. Marcus, R. A., and Sutin, N. (1985) Biochim. Biophys. Acta 811, 265-322. 42. Marcus, R. A. (1996) in Protein Electron Transfer (Bendall, D. S., Ed.) pp

249-272, Bios Scientific Publishers Ltd., Oxford.

43. Fersht, A. (1985) in Enzyme Structure and Mechanism pp 55, 133, 156, 256, W.H.Freeman and Company, New York.

44. Miller, J. R., Calcaterra, L. T., and Closs, G. L. (1984) J. Am. Chem. Soc. 106, 3047-3049.

45. Farver, O., Eady, R. R., Sawers, G., Prudencio, M., and Pecht, I. (2004) FEBS Lett. 12, 173-176.

46. Farver, O., Eady, R. R., and Pecht, I. (2004) J. Phys. Chem. A 108, 9005-9007.

47. Hildebrandt, P., and Murgida, D. H. (2002) Bioelectrochemistry 55, 139-143.

48. Page, C. C., Moser, C. C., Chen, X., and Dutton, P. L. (1999) Nature 402, 47-52.

49. Moser, C. C., and Dutton, P. L. (1996) in Protein Electron Transfer (Bendall, D. S., Ed.) pp 1-21, Bios Scientific Publishers Ltd., Oxford. 50. Beratan, D. N., and Onuchic, J. N. (1996) in Protein Electron Transfer

(Bendall, D. S., Ed.) pp 23-42, Bios Scientific Publishers Ltd., Oxford. 51. Bendall, D. S. (1996) pp 300, Bios Scientific Publishers Ltd., Oxford. 52. Larsson, S. (2000) J. Biol. Inorg. Chem. 5, 560-564.

53. Johnson, K. A. (1992) The Enzymes 20, 1-61.

54. Strange, R. W., Murphy, L. M., Dodd, F. E., Abraham, Z. H., Eady, R. R., Smith, B. E., and Hasnain, S. S. (1999) J. Mol. Biol. 287, 1001-1009. 55. Gorren, A. C., den Blaauwen, T., Canters, G. W., Hopper, D. J., and

Duine, J. A. (1996) FEBS Lett. 381, 140-142.

56. Zumft, W. G. (1997) Microbiol. Mol. Biol. Rev. 61, 533-616. 57. Bange, H. W. (2000) Nature 408, 301-302.

58. Robertson, G. P., Paul, E. A., and Harwood, R. R. (2000) Science 289, 1922-1925.

59. Ichiki, H., Tanaka, Y., Mochizuki, K., Yoshimatsu, K., Sakurai, T., and Fujiwara, T. (2001) J. Bacteriol. 183, 4149-4156.

(5)

64. Rock, J. D., and Moir, J. W. (2005) Biochem. Soc. Trans. 33, 134-136. 65. Sasaki, S., Karube, I., Hirota, N., Arikawa, Y., Nishiyama, M., Kukimoto,

M., Horinouchi, S., and Beppu, T. (1998) Biosens.Bioelectron. 13, 1-5. 66. Wu, Q., Storrier, G. D., Pariente, F., Wang, Y., Shapleigh, J. P., and

Abruña, H. D. (1997) Anal. Chem. 69, 4856-4863.

67. Astier, Y., Canters, G. W., Davis, J. J., Hill, H. A. O., Verbeet, M. P., and Wijma, H. J. (2005) ChemPhysChem. 6, 1114-1120.

68. Glockner, A. B., Jungst, A., and Zumft, W. G. (1993) Arch. Microbiol. 160, 18-26.

69. Averill, B. A. (1996) Chem. Rev. 96, 2951-2964.

70. Einsle, O. (2001) in Handbook of Metalloproteins (Messerschmidt, A., Huber, M., Poulos, T., and Wieghardt, K., Eds.) pp 440-453, John Wiley & Sons Ltd., Chichester.

71. Jackson, M. A., Tiedje, J. M., and Averill, B. A. (1991) FEBS Lett. 291, 41-44.

72. Iwasaki, H., and Matsubara, T. (1972) J. Biochem. (Tokyo) 71, 645-52. 73. Miyata, M., and Mori, T. (1963) J. Biochem. (Tokyo) 53, 299-303. 74. Suzuki, H., and Iwasaki, H. (1962) J. Biochem. (Tokyo) 52, 193-199. 75. Michalski, W. P., and Nicholas, D. J. D. (1985) Biochim. Biophys. Acta

828, 130-137.

76. Kakutani, T., Watanabe, H., Arima, K., and Beppu, T. (1981) J. Biochem. (Tokyo) 89, 463-472.

77. Godden, J. W., Turley, S., Teller, D. C., Adman, E. T., Liu, M. Y., Payne, W. J., and LeGall, J. (1991) Science 253, 438-442.

78. Kukimoto, M., Nishiyama, M., Murphy, M. E., Turley, S., Adman, E. T., Horinouchi, S., and Beppu, T. (1994) Biochemistry 33, 5246-5252. 79. Kukimoto, M., Nishiyama, M., Ohnuki, T., Turley, S., Adman, E. T.,

Horinouchi, S., and Beppu, T. (1995) Protein. Eng. 8, 153-158. 80. Kukimoto, M., Nishiyama, M., Tanokura, M., Adman, E. T., and

Horinouchi, S. (1996) J. Biol. Chem. 271, 13680-13683.

81. Libby, E., and Averill, B. A. (1992) Biochem. Biophys. Res. Commun. 187, 1529-1535.

82. Abraham, Z. H., Smith, B. E., Howes, B. D., Lowe, D. J., and Eady, R. R. (1997) Biochem. J. 324, 511-516.

83. Murphy, M. E., Turley, S., and Adman, E. T. (1997) J. Biol. Chem. 272, 28455-28460.

84. Boulanger, M. J., and Murphy, M. E. (2001) Biochemistry 40, 9132-9141. 85. Boulanger, M. J., Kukimoto, M., Nishiyama, M., Horinouchi, S., and

(6)

86. Kataoka, K., Furusawa, H., Takagi, K., Yamaguchi, K., and Suzuki, S. (2000) J. Biochem. (Tokyo) 127, 345-350.

87. Zhao, Y., Lukoyanov, D. A., Toropov, Y. V., Wu, K., Shapleigh, J. P., and Scholes, C. P. (2002) Biochemistry 41, 7464-7474.

88. McPherson, M. J., Parsons, M. J., and Wilmot, C. M. (2001) in Handbook of Metalloproteins (Messerschmidt, A., Huber, M., Poulos, T., and Wieghardt, K., Eds.) pp 1245-1257, John Wiley & Sons, Ltd., Chichester. 89. McPherson, M. J., Parsons, M. J., Spooner, R. K., and Wilmot, C. M.

(2001) in Handbook of Metalloproteins (Messerschmidt, A., Huber, M., Poulos, T., and Wieghardt, K., Eds.) pp 1272-1283, John Wiley & Sons, Ltd., Chichester.

90. Bordo, D., Pesce, A., Bolognesi, M., Stroppolo, M. E., Falconi, M., and Desederi, A. (2001) in Handbook of Metalloproteins (Messerschmidt, A., Huber, M., Poulos, T., and Wieghardt, K., Eds.) pp 1284-1300, John Wiley & Sons, Ltd., Chichester.

91. Solomon, E. I., Sunduram, U.M., Machonkin, T.E. (1996) Chem. Rev. 96, 2563-2605.

92. Solomon, E. I., Baldwin, M. J., and Lowery, M. D. (1992) Chem. Rev. 92, 521-542.

93. Magnus, K. A. (2001) in Handbook of Metalloproteins (Messerschmidt, A., Huber, M., Poulos, T., and Wieghardt, K., Eds.) pp 1303-1318, John Wiley & Sons, Ltd., Chichester.

94. Eicken, C., Gerdemann, C., and Krebs, B. (2001) in Handbook of Metalloproteins (Messerschmidt, A., Huber, M., Poulos, T., and

Wieghardt, K., Eds.) pp 1319-1329, John Wiley & Sons, Ltd., Chichester. 95. Brown, K., Tegoni, M., Prudêncio, M., Pereira, A. S., Besson, S., Moura, J.

J., Moura, I., and Cambillau, C. (2000) Nat. Struct. Biol. 7, 191-195. 96. Kannt, A., and Michel, H. (2001) in Handbook of Metalloproteins

(Messerschmidt, A., Huber, M., Poulos, T., and Wieghardt, K., Eds.) pp 331-347, John Wiley & Sons, Ltd., Chichester.

97. Boulanger, M. J., and Murphy, M. E. (2002) J. Mol. Biol. 315, 1111-1127. 98. Yoshie, S., Noda, N., Tsuneda, S., Hirata, A., and Inamor, Y. (2004) Appl.

Environ. Microbiol. 70, 3152-3157.

99. Suzuki, S., kataoke, K, Yamaguchi, K, Inoue, T., Kai, Y. (1999) Coord. Chem. Rev. 190-192, 245-265.

100. Impagliazzo, A., and Ubbink, M. (2004) J. Am. Chem. Soc. 126, 5658-5659.

101. Kohzuma, T., Takase, S., Shidara, S., and Suzuki, S. (1993) Chem. Lett. 12, 149-152.

(7)

103. Deligeer, Kataoka, K., Yamaguchi, K., and Suzuki, S. (2000) Bull. Chem. Soc. Jpn. 73, 1839-1840.

104. Berks, B. C., Ferguson, S. J., Moir, J. W. B., and Richardson, D. J. (1995) Biochim. Biophys. Acta 1232, 97-173.

105. Fujiwara, T., Yamanaka, T., and Fukumori, Y. (1995) Curr. Microbiol. 31, 1-4.

106. Dodd, F. E., Hasnain, S. S., Hunter, W. N., Abraham, Z. H., Debenham, M., Kanzler, H., Eldridge, M., Eady, R. R., Ambler, R. P., and Smith, B. E. (1995) Biochemistry 34, 10180-10186.

107. Pearson, I. V., and Ferguson, S. J. (2003) J. Bacteriol. 185, 6308-6315. 108. Crowley, P. B., and Carrondo, M. A. (2004) Proteins 55, 603-612. 109. Kukimoto, M., Nishiyama, M., Tanakura, M., Murphy, M. E., Adman, E.

T., and Horinouchi, S. (1996) FEBS Lett. 394, 87-90.

110. Prudêncio, M., Eady, R. R., and Sawers, G. (2001) Biochem. J. 353, 259-266.

111. Pinho, D., Besson, S., Brondino, C. D., de Castro, B., and Moura, I. (2004) Eur. J. Biochem. 271, 2361-2369.

112. Ichiki, H., Tanaka, Y., Mochizuki, K., Yoshimatsu, K., Sakurai, T., and Fujiwara, T. (2001) J. Bacteriol. 183, 4149-56.

113. Hulse, C. L., Tiedje, J. M., and Averill, B. A. (1988) Anal. Biochem. 172, 420-426.

114. Suzuki, S., Deligeer, Yamaguchi, K., Kataoka, K., Kobayashi, K., Tagawa, S., Kohzuma, T., Shidara, S., and Iwasaki, H. (1997) J. Biol. Inorg. Chem. 2, 265-274.

115. Deligeer, Fukunaga, R., Kataoka, K., Yamaguchi, K., Kobayashi, K., Tagawa, S., and Suzuki, S. (2002) J. Inorg. Biochem. 91, 132-138. 116. Kakutani, T., Watanabe, H., Arima, K., and Beppu, T. (1981) J. Biochem.

(Tokyo) 89, 453-461.

117. Peracchi, A. (2001) Trends Biochem. Sci. 26, 497-503.

118. Iwasaki, H., Shidara, S., Suzuki, H., and Mori, T. (1963) J. Biochem. (Tokyo) 53, 299-303.

119. Cutruzzolà, F., Aresa, M., and Brunori, M. (2001) in Handbook of Metalloproteins (Messerschmidt, A., Huber, M., Poulos, T., and Wieghardt, K., Eds.) pp 69-79, John Wiley & Sons, Ltd., Chichester. 120. Prudêncio, M., Rohovec, J., Peters, J. A., Tocheva, E., Boulanger, M. J.,

Murphy, M. E. P., Hupkes, H., Kosters, W., Impagliazzo, A., and Ubbink, M. (2004) Chemistry 10, 3252-3260.

121. Schanstra, J. P., Rink, R., Pries, F., and Janssen, D. B. (1993) Protein Expr. Pur. 4, 479-489.

(8)

123. Léger, C., Elliott, S. J., Hoke, K. R., Jeuken, L. J. C., Jones, A. K., and Armstrong, F. A. (2003) Biochemistry 42, 8653-8662.

124. Bendall, D. S. (1996) in Protein Electron Transfer (Bendall, D. S., Ed.) pp 43-68, Bios scientific publishers Ltd., Oxford.

125. Pauleta, S. R., Guerlesquin, F., Goodhew, C. F., Devreese, B., Van Beumen, J., Pereira, A. S., Moura, I., and Pettigrew, G. W. (2004) Biochemistry 43, 11214-11255.

126. Wasser, I. M., de Vries, S., Moenne-Loccoz, P., Schroder, I., and Karlin, K. D. (2002) Chem. Rev. 102, 1201-1234.

127. Halfen, J. A., Mahapatra, S., Olmstead, M. M., and Tolman, W. B. (1994) J. Am. Chem. Soc. 116, 2173-2174.

128. Casella, L., Carugo, O., Gulotti, M., Doldi, S., and Frassoni, M. (1996) Inorg. Chem. 35, 1101-1113.

129. Adman, E. T., Murphy, M.E.P. (2001) in Handbook of Metalloproteins (Messerschmidt, A., Huber, R., Poulos, T., Wieghardt, K.,, Ed.) pp 1381-1390, John Wiley & Sons, Ltd, Chicester.

130. Kashem, M. A., Dunford, H. B., Liu, M. Y., Payne, W. J., and LeGall, J. (1987) Biochem. Biophys. Res. Commun. 145, 563-8.

131. Adman, E. T., Godden, J. W., and Turley, S. (1995) J. Biol. Chem. 270, 27458-27474.

132. Pearson, R. G. (1963) J. Am. Chem. Soc. 85, 3535-3539.

133. Olesen, K., Veselov, A., Zhao, Y., Wang, Y., Danner, B., Scholes, C. P., and Shapleigh, J. P. (1998) Biochemistry 37, 6086-6094.

134. Zhang, H. M., Boulanger, M. J., Mauk, A. G., and Murphy, M. E. P. (2000) J. Phys. Chem. B 104, 10738-10742.

135. Ellis, M. J., Dodd, F. E., Strange, R. W., Prudencio, M., Sawers, G., Eady, R. R., and Hasnain, S. S. (2001) Acta Crystallogr. D Biol. Crystallogr. 57, 1110-1118.

136. Kobayashi, K., Tagawa, S., Deligeer, and Suzuki, S. (1999) J. Biochem. (Tokyo) 126, 408-412.

137. Thauer, R. K., Jungermann, K., and Decker, K. (1977) Bact. Rev. 41, 100-180.

138. Adman, E. T. (1991) Adv. Protein Chem. 42, 145-197.

139. Murphy, M. E., Turley, S., Kukimoto, M., Nishiyama, M., Horinouchi, S., Sasaki, H., Tanokura, M., and Adman, E. T. (1995) Biochemistry34, 12107-12117.

140. Yamaguchi, K., Kobayashi, M., Kataoka, K., and Suzuki, S. (2003) Biochem. Biophys. Res. Comm. 300, 36-40.

(9)

142. Dodd, F. E., Van Beeumen, J., Eady, R. R., and Hasnain, S. S. (1998) J. Mol. Biol. 282, 369-382.

143. Veselov, A., Olesen, K., Sienkiewicz, A., Shapleigh, J. P., and Scholes, C. P. (1998) Biochemistry 37, 6095-6105.

144. Howes, B. D., Abraham, Z. H., Lowe, D. J., Bruser, T., Eady, R. R., and Smith, B. E. (1994) Biochemistry 33, 3171-3177.

145. Boulanger, M. J., and Murphy, M. E. P. (2003) Protein Sci. 12, 248-256. 146. Nishiyama, M., Suzuki, J., Kukimoto, M., Ohnuki, T., Horinouchi, S., and

Beppu, T. (1993) J. Gen. Microbiol. 139, 725-733.

147. Wijma, H. J., Boulanger, M. J., Molon, A., Fittipaldi, M., Huber, M., Murphy, M. E., Verbeet, M. P., and Canters, G. W. (2003) Biochemistry 42, 4075-4083.

148. Brenner, A. J., and Harris, E. D. (1995) Anal. Biochem. 226, 80-4.

149. Girsch, P., and de Vries, S. (1997) Biochim. Biophys. Acta 1318, 202-216. 150. Dennison, C., Kohzuma, T., McFarlane, W., Suzuki, S., and Sykes, A. G.

(1994) Inorg. Chem. 33, 3299-3305.

151. Nicholas, D. J. D., and Nason, A. (1957) Methods Enzymol. 3, 981-984. 152. Lide, D. R. (2001) CRC Handbook of Chemistry and Physics, 82 ed., CRC

Press, Boca Raton London New York Washington, D.C.

153. Clark, W. M. (1960) Oxidation-Reduction Potentials of organic systems, The Williams & Wilkins company, Baltimore.

154. Horio, T., Higashi, T., Sasagawa, M., Kusai, K., Nakai, M., and Okunuki, K. (1960) Biochem. J. 77, 194-201.

155. Lopes, H., Besson, S., Moura, I., and Moura, J. J. (2001) J. Biol. Inorg. Chem. 6, 55-62.

156. Moir, J. W. B., Baratta, D., Richardson, D. J., and Ferguson, S. J. (1993) Eur. J. Biochem. 212, 377-385.

157. Gorren, A. C., de Boer, E., and Wever, R. (1987) Biochim. Biophys. Acta 916, 38-47.

158. Knowles, R. (1982) Microbiol. Rev. 46, 43-70.

159. Richter, C. D., Allen, J. W., Higham, C. W., Koppenhofer, A., Zajicek, R. S., Watmough, N. J., and Ferguson, S. J. (2002) J. Biol. Chem.277, 3093-3100.

160. Xu, F. (1997) J. Biol. Chem. 272, 924-928.

161. Fersht, A. (1999) Structure and Mechanism in Protein Science, 1st ed., W.H. Freeman and Company, New York.

162. Goretski, J., Zafiriou, O. C., and Hollocher, T. C. (1990) J. Biol. Chem. 265, 11535-11538.

(10)

164. Heering, H. A., Hirst, J., and Armstrong, F. A. (1998) J. Phys. Chem. B 102, 6889-6902.

165. Hagedoorn, P. L., Hagen, W. R., Stewart, L. J., Docrat, A., Bailey, S., and Garner, C. D. (2003) FEBS Lett. 555, 606-610.

166. Léger, C., Heffron, K., Pershad, H. R., Maklashina, E., Luna-Chavez, C., Cecchini, G., Ackrell, B. A., and Armstrong, F. A. (2001) Biochemistry 40, 11234-11245.

167. Sucheta, A., Ackrell, B. A., Cochran, B., and Armstrong, F. A. (1992) Nature 356, 361-362.

168. Hirst, J., Ackrell, B. A. C., and Armstrong, F. A. (1997) J. Am. Chem. Soc. 119, 7434-7439.

169. Hirst, J., Sucheta, A., Ackrell, B. A. C., and Armstrong, F. A. (1996) J. Am. Chem. Soc. 118, 5031-5038.

170. Hulse, C. L., and Averill, B. A. (1989) J. Am. Chem. Soc. 111, 2322-2323. 171. Monzani, E., Anthony, G. J., Koolhaas, A., Spandre, A., Leggieri, E.,

Casella, L., Gulotti, M., Nardin, G., Randaccio, L., Fontani, M., Zanello, P., and Reedijk, J. (2000) J. Biol. Inorg. Chem. 5, 251-261.

172. Stankovich, M. T. (1980) Anal. Biochem. 109, 295-308.

173. van Leeuwen, J. W., van Dijk, C., and Veeger, C. (1983) Eur. J. Biochem. 135, 601-607.

174. Jones, A. K., Lamle, S. E., Pershad, H. R., Vincent, K. A., Albracht, S. P. J., and Armstrong, F. A. (2003) J. Am. Chem. Soc. 125, 8505-8514. 175. Segel, I. H. (1975) Enzyme Kinetics, John Wile & Sons, Inc., New York. 176. Suzuki, S., Furusuwa, H., Kataoka, K., Yamaguchi, K., Kobayashi, K., and

Tagawa, S. (2000) Inorg. React. Mechan. 2, 129-135.

177. Hough, M. A., Ellis, M. J., Antonyuk, S., Strange, R. W., Sawers, G., Eady, R. R., and Hasnain, S. S. (2005) J. Mol. Biol. in press.

178. Dodd, F. E., Hasnain, S. S., Abraham, Z. H. L., Eady, R. R., and Smith, B. E. (1997) Acta Cryst. D 53, 406-418.

179. Huang, C. Y. (1979) Methods Enzymol. 63, 54-84.

180. Armstrong, F. A., Heering, H. A., and Hirst, J. (1997) Chem. Soc. Rev. 26, 169-179.

181. Fersht, A. (1985) in Enzyme Structure and Mechanism pp 136, W.H.Freeman and Company, New York.

182. Léger, C., Jones, A. K., Albracht, S. P. J., and Armstrong, F. A. (2002) J. Phys. Chem. B 106, 13058-13063.

183. Zhang, J., Welinder, A. C., Hansen, A. G., Christensen, H. E. M., and Ulstrup, J. (2003) J. Phys. Chem. B 107, 12480-12484.

(11)

185. Barrick, D. (1995) Curr. Opin. Biotechnol. 6, 411-418.

186. van Pouderoyen, G., Andrew, C. R., Loehr, T. M., Sanders-Loehr, J., Mazumdar, S., Allen, H., Hill, H. A. O., and Canters, G. W. (1996) Biochemistry 35, 1397-1407.

187. Bonander, N., Karlsson, B. G., and Vanngard, T. (1996) Biochemistry 35, 2429-36.

188. Farver, O., Jeuken, L. J. C., Canters, G. W., and Pecht, I. (2000) Eur. J. Biochem. 267, 3123-3129.

189. Jeuken, L. J. C., van Vliet, P., Verbeet, M. P., Camba, R., McEvoy, J. P., Armstrong, F. K., and Canters, G. W. (2000) J. Am. Chem. Soc. 122, 12186-12194.

190. Englander, S. W., Calhoun, D. B., and Englander, J. J. (1987) Anal. Biochem. 161, 300-306.

191. Kohzuma, T., Shidara, S., and Suzuki, S. (1994) Bull. Chem. Soc. Jpn. 67, 138-143.

192. Otwinowski, Z. M., W. (1997) Methods Enzymol. 276, 307-326. 193. Brunger, A. T. (1997) Methods Enzymol. 277, 366-404.

194. Brunger, A. T., Adams, P. D., Clore, G. M., Delano, W. L., Gros, P., R.W., G.-K., Jiang, J. S., Kuszewski, J., Nilges, N., Pannu, N. S., Rice, L. M., Simonson, T. & G.L., W. (1998) Acta Cryst. 54, 905-921.

195. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. (1993) J. Appl. Cryst. 26, 283-291.

196. Jones, T. A., Zou, J.-Y., Cowan, S. W. & Kjeldgaard, M. (1991) Acta Cryst. A 47, 110-119.

197. Jeuken, L. J. C., Ubbink, M., Bitter, J. H., van Vliet, P., Meyer-Klaucke, W., and Canters, G. W. (2000) J. Mol. Biol. 299, 737-755.

198. Solomon, E. I., Penfield, K. W., Gewirth, A. A., Lowery, M. D., Shadle, S. E., Guckert, J. A., and LaCroix, L. B. (1996) Inorg. Chim. Acta 243, 67-78. 199. Messerschmidt, A., Prade, L., Kroes, S. J., Sanders-Loehr, J., Huber, R.,

and Canters, G. W. (1998) Proc. Natl. Acad. Sci. U S A 95, 3443-8. 200. Guss, J. M., Merritt, E. A., Phizackerley, R. P., and Freeman, H. C. (1996)

J. Mol. Biol. 262, 686-705.

201. Petratos, K., Dauter, Z., and Wilson, K. S. (1988) Acta Crystallogr. B 44, 628-36.

202. Bond, C. S., Blankenship, R. E., Freeman, H. C., Guss, J. M., Maher, M. J., Selvaraj, F. M., Wilce, M. C., and Willingham, K. M. (2001) J. Mol. Biol. 306, 47-67.

203. Karlsson, B. G., Tsai, L. C., Nar, H., Sanders-Loehr, J., Bonander, N., Langer, V., and Sjolin, L. (1997) Biochemistry 36, 4089-95.

(12)

205. Guss, J. M., Bartunik, H. D., and Freeman, H. C. (1992) Acta Crystallogr. B 48, 790-811.

206. Nar, H., Messerschmidt, A., Huber, R., van de Kamp, M., and Canters, G. W. (1991) J. Mol. Biol. 221, 765-72.

207. Romero, A., Hoitink, C. W., Nar, H., Huber, R., Messerschmidt, A., and Canters, G. W. (1993) J. Mol. Biol. 229, 1007-1021.

208. Guss, J. M., Harrowell, P. R., Murata, M., Norris, V. A., and Freeman, H. C. (1986) J. Mol. Biol. 192, 361-387.

209. Vakoufari, E., Wilson, K. S., and Petratos, K. (1994) FEBS Lett. 347, 203-6.

210. LaCroix, L. B., Shadle, S. E., Wang, Y. N., Averill, B. A., Hedman, B., Hodgson, K. O., and Solomon, E. I. (1996) J. Am. Chem. Soc. 118, 7755-7768.

211. Pierloot, K., De Kerpel, J. O. A., Ryde, U., Olsson, M. H. M., and Roos, B. O. (1998) J. Am. Chem. Soc. 120, 13156-13166.

212. Farver, O., Eady, R. R., Abraham, Z. H., and Pecht, I. (1998) FEBS Lett. 436, 239-242.

213. Malmstrom, B. G., and Leckner, J. (1998) Curr. Opin. Chem. Biol. 2, 286-292.

214. Solomon, E. I., Szilagyi, R. K., DeBeer George, S., and Basumallick, L. (2004) Chem. Rev. 104, 419-458.

215. van Pouderoyen, G., den Blaauwen, T., Reedijk, J., and Canters, G. W. (1996) Biochemistry 35, 13205-13211.

216. Vidakovic, M., and Germanas, J. P. (1995) Angew. Chem., Int. Ed. 34, 1622-1624.

217. van Gastel, M., Coremans, J. W. A., Mol, J., Jeuken, L. J. C., Canters, G. W., and Groenen, E. J. J. (1999) J. Biol. Inorg. Chem. 4, 257-265. 218. Hall, J. F., Kanbi, L. D., Strange, R. W., and Hasnain, S. S. (1999)

Biochemistry 38, 12675-12680.

219. Kataoka, K., Yamaguchi, K., Sakai, S., Takagi, K., and Suzuki, S. (2003) Biochem. Biophys. Res. Comm. 303, 519-524.

220. Berry, S. M., Ralle, M., Low, D. W., Blackburn, N. J., and Lu, Y. (2003) J. Am. Chem. Soc. 125, 8760-8768.

221. Diederix, R. E. M., Canters, G. W., and Dennison, C. (2000) Biochemistry 39, 9551-60.

222. Pascher, T., Karlsson, B. G., Nordling, M., Malmstrom, B. G., and Vanngard, T. (1993) Eur. J. Biochem. 212, 289-296.

223. Tsai, L., Bonander, N., Harata, K., Karlsson, B. G., Vänngard, T., Langer, V., and Sjölin, L. (1996) Acta Cryst. D 52, 950-958.

(13)

225. Campbell, I. D., and Dwek, R. A. in Biological Spectroscopy pp 220, The Benjamin/Cummings Publishing Company, Inc., London, Amsterdam, Ontario, Sydney.

226. Moore, G. R., and Pettigrew, G. W. (1990) Cytochromes c, Springer-Verlag, Berlin, Heidelberg, New York.

227. Murshudov, G. N., Vagin, A., and Dodson, E. J. (1997) Acta Cryst. 53, 240.

228. van Gastel, M., Boulanger, M. J., Canters, G. W., Huber, M., Murphy, M. E. P., Verbeet, M. P., and Groenen, E. J. J. (2001) J. Phys. Chem. B 105, 2236-2243.

229. De Kerpel, J. O. A., and Ryde, U. (1999) Proteins 36, 157-174.

230. Ellis, M. J., Prudencio, M., Dodd, F. E., Strange, R. W., Sawers, G., Eady, R. R., and Hasnain, S. S. (2002) J. Mol. Biol. 316, 51-64.

231. Kroes, S. J., Hoitink, C. W. G., Andrew, C. R., Ai, J., Sanders-Loehr, J., Messerschmidt, A., Hagen, W. R., and Canters, G. W. (1996) Eur. J. Biochem. 240, 342-351.

232. Libeu, C. A. P., Kukimoto, M., Nishiyama, M., Horinouchi, S., and Adman, E. T. (1997) Biochemistry 36, 13160-13179.

233. Adman, E. T. (1991) in Advances in Protein Chemistry pp 145-197. 234. Cowen, J. A. (1993) in Inorganic Biochemistry pp 7, VCH Publishers, Inc.,

New York, Weinheim, Cambridge.

235. Winkler, J. R., P., W.-S., Leckner, J., Malmström, B. G., and Gray, H. B. (1997) Proc. Natl. Acad. Sciences U.S.A. 94, 4246-4249.

236. Terrettaz, S., Becka, A. M., Traub, M. J., Fettinger, J. C., and Miller, C. J. (1995) J. Phys. Chem. 99, 11216-11224.

237. Terrettaz, S., Cheng, J., and Miller, C. J. (1996) J. Am. Chem. Soc. 118, 7857-7858.

238. Farver, O., Lu, Y., Ang, M. C., and Pecht, I. (1999) Proc. Natl. Acad. Sciences U.S.A. 96, 899-902.

239. Di Bilio, A. J., Dennison, C., Gray, H. B., Ramirez, B. E., Sykes, A. G., and Winkler, J. R. (1998) J. Am. Chem. Soc. 120, 7551-7556.

240. Di Bilio, A. J., Hill, M. G., Bonander, N., Karlsson, B. G., Villahermosa, R. M., Malmström, B. G., Winkler, J. R., and Gray, H. B. (1997) J. Am. Chem. Soc. 119, 9921-9922.

241. Sweetser, P. B. (1967) Anal. Chem. 39, 979-982.

242. Wherland, S., Holwerda, R. A., Rosenberg, R. C., and Gray, H. B. (1975) J. Am. Chem. Soc. 97, 5260-5262.

243. Yousafzai, F. K., and Eady, R. R. (2002) J. Biol. Chem. 277, 33067-34073. 244. Wong, J. T. (1975) Kinetics of Enzyme Mechanisms, Academic Press,

(14)

245. Den Blaauwen, T., Hoitink, C. W. G., Canters, G. W., Han, J., Loehr, T. M., and Sanders-Loehr, J. (1993) Biochemistry 32, 12455-12464.

246. Andrew, C. R., Yeom, H., Valentine, J. S., Karlsson, B. G., Bonander, N., van Pouderoyen, G., Canters, G. W., Loehr, T. M., and Sanders-Loehr, J. (1994) J. Am. Chem. Soc. 116, 11489-11498.

247. Andrew, C. R., Han, J., den Blauwen, T., van Pouderoyen, G., Vijgenboom, E., Canters, G. W., Loehr, T. M., and Sanders-Loehr, J. (1997) J. Biol. Inorg. Chem. 2, 98-107.

248. Ryde, U., Olsson, M. H. M., Roos, B. J., and Borin, A. C. (2001) Theor. Chem. Acc. 105, 452-462.

249. Olsson, M. H. M., Ryde, U., Roos, B. J., and Pierloot, K. (1998) J. Biol. Inorg. Chem. 3, 109-125.

250. Ryde, U., Olsson, M. H. M., Pierloot, K., and Roos, B. J. (1996) J. Mol. Biol. 261, 586-596.

251. Harrison, M. D., and Dennison, C. (2004) Chem. Biochem. 5.

252. Hwang, H. J., Berry, S. M., Nilges, M. J., and Lu, Y. (2005) J. Am. Chem. Soc. 127, 7274-7275.

253. Canters, G. W., Hill, H. A. O., Kitchen, N. A., and Adman, E. T. (1984) J. Mag. Res. 57, 1-23.

254. Murphy, L. M., Dodd, F. E., Yousafzai, F. K., Eady, R. R., and Hasnain, S. S. (2002) J. Mol. Biol. 315, 859-871.

255. Allen, J. W. A., Watmough, N. J., and Ferguson, S. J. (2000) Nat. Struct. Biol. 7, 885-888.

256. Dennison, C., Vijgenboom, E., de Vries, S., van der Oost, J., and Canters, G. W. (1995) FEBS Lett. 365, 92-94.

257. Jones, L. H., Liu, A., and Davidson, V. L. (2003) J. Biol. Chem. 278, 47269-47274.

258. Hay, M., Richards, J. H., and Lu, Y. (1996) Proc. Natl. Acad. Sci. USA 93, 461-464.

(15)

Referenties

GERELATEERDE DOCUMENTEN

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of

Catalytic mechanism and protein engineering of copper-containing nitrite reductase.. Wijma,

Furthermore, all oxidized type-1 copper sites have an EPR spectrum with a small hyperfine splitting in comparison to the majority of Cu-coordination complexes (see Figure 3, the

Significantly, the data in Table 1 show that the azurin for both members of class IB NiRs gives a 100-fold lower catalytic activity than a suitable synthetic

Below pH 6.5, the catalytic activity diminished at higher nitrite concentrations in agreement with electron transfer being slower to the nitrite bound type-2 site than to

Furthermore, we find that at saturating nitrite concentrations the type-1ĺtype-2 electron transfer is rate-limiting and that the midpoint potential of the type-1 site is not

The structures of NiR M150G show that the allosteric effectors restore the geometry of the native type-1 site (Table 4), in agreement with the restored electron transfer

It can be calculated (41) that the 0.3 eV lower reorganization energy affects the rate of electron transfer more than the 100 mV lowering of the reduction potential of a type- 1