• No results found

Cover Page The handle

N/A
N/A
Protected

Academic year: 2021

Share "Cover Page The handle"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The handle http://hdl.handle.net/1887/66260 holds various files of this Leiden University

dissertation.

Author: Eistrup, C.

Title: From midplane to planets : the chemical fingerprint of a disk

Issue Date: 2018-10-16

(2)

From Midplane to Planets

The Chemical Fingerprint of a Disk

Christian Eistrup

(3)
(4)

From Midplane to Planets

The Chemical Fingerprint of a Disk

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties te verdedigen op dinsdag 16 oktober 2018 klokke 10.00 uur

door

Christian Eistrup

geboren te Hørsholm, Denemarken in 1988

(5)

Prof. dr. C. Mordasini (Universit¨at Bern) Prof. dr. I.A.G. Snellen

Prof. dr. H.J.A. R¨ottgering

Christian Eistrup, 2018c

Cover artwork: adapted from “ALBEDO” by Kasper Eistrup Cover layout: Iris Nijman

Image in “Acknowledgement”-section:

http://www.clker.com/clipart-pink-elephant-12.html ISBN: 978-94-028-1202-2

An electronic version of this thesis can be found at www.strw.leidenuniv.nl/∼eistrup

(6)

Til mor, far og Astrid, for støtten til at tage springet!

The stars are for everyone to see, yet for no one to touch and control. So let go, sit back, relax, be fascinated, become curious, and wonder. The Universe can open and broaden your mind!

(7)
(8)

Contents i

Contents

1 Introduction 1

1.1 Planets and exoplanets . . . 2

1.2 Making planets . . . 3

1.3 Protoplanetary disks, and the era of ALMA . . . 5

1.4 Astrochemistry: laboratory, simulations and observations . . . 8

1.5 Combining astrochemistry and planet formation . . . 10

1.6 Comets as fossils of planet-forming material . . . 12

1.7 This thesis . . . 14

1.8 Main conclusions . . . 16

1.9 Future outlook . . . 17

2 Setting the volatile composition of (exo)planet-building material Does chemical evolution in disk midplanes matter? 19 2.1 Introduction . . . 21

2.2 Methods . . . 25

2.2.1 Physical disk model . . . 25

2.2.2 Chemical model . . . 28

2.3 Results . . . 30

2.3.1 Reduced chemical network . . . 31

2.3.2 Full chemical network . . . 34

2.3.3 Main nitrogen reservoirs . . . 36

2.4 Discussion . . . 37

2.4.1 Compositional diversity at different radii: inheritance vs reset 37 2.4.2 C/O ratio . . . 40

2.4.3 Implications for planet formation and comets . . . 42

2.4.4 Caveats of model assumptions . . . 43

2.5 Conclusions . . . 45

2.A Timescales . . . 47

3 Molecular abundances and C/O ratios in chemically evolving planet- forming disk midplanes 49 3.1 Introduction . . . 51

3.2 Methods . . . 53

3.2.1 Evolving disk model . . . 54

(9)

3.3 Results . . . 58

3.3.1 Static versus evolving disk: shifting icelines . . . 60

3.3.2 Timescales of chemical changes . . . 61

3.3.3 Varying disk masses . . . 66

3.3.4 Importance of initial abundances: inheritance vs reset . . . 67

3.3.5 O2 as a significant disk midplane molecule . . . 67

3.3.6 Caveats of model assumptions . . . 68

3.4 Discussion . . . 70

3.4.1 Iceline shifts: comparison to other studies . . . 70

3.4.2 What happens to gaseous CO? . . . 70

3.4.3 Evolving elemental ratios . . . 72

3.4.4 Impact for planet formation and planet atmospheric compo- sition . . . 75

3.5 Summary . . . 76

3.A Physical structure for 0.55 MMSN disk . . . 78

4 Formation of cometary O2 ice and related ice species on grain surfaces in the midplane of the pre-Solar nebula 79 4.1 Introduction . . . 81

4.2 Methods . . . 82

4.2.1 Ionisation levels . . . 83

4.2.2 Chemical network . . . 84

4.3 Results . . . 85

4.3.1 PSN abundance evolution . . . 85

4.3.2 Including ozone ice chemistry . . . 89

4.3.3 Exploring the sensitivity of the abundances to assumed grain- surface parameters . . . 90

4.3.4 Including a primordial source of O2 ice . . . 95

4.4 Discussion . . . 96

4.4.1 Chemical starting conditions . . . 96

4.4.2 Dependence on ionisation levels . . . 96

4.4.3 Changing Ebinfor atomic oxygen, and inclusion of O3 . . . 97

4.4.4 Narrowing down on O2ice production . . . 97

4.4.5 Activation energy for O3ice production pathway . . . 98

4.4.6 Location of O2ice production sweet spot in PSN disk midplane 99 4.4.7 Primordial origin of O2ice . . . 99

4.5 Conclusion . . . 99

4.A Appendix: additional figures . . . 100

5 Matching protoplanetary disk midplane chemical evolution to cometary compositions A chemical evolution taxonomy for comets 113 5.1 Introduction . . . 115

5.2 Methods . . . 116

(10)

Contents iii

5.2.1 Model description . . . 116

5.2.2 Statistical comparison between observations and models . . 118

5.3 Results . . . 119

5.3.1 Full sample of species . . . 119

5.3.2 Correlation for C- and O-carrying species only . . . 121

5.4 Discussion . . . 121

5.5 Conclusion . . . 127

5.A Evolving modelled abundances and cometary abundances . . . 128

Bibliography 135

English Summary 143

Nederlandse Samenvatting 149

Dansk Resum´e 155

Publications 161

Curriculum Vitae 163

Acknowledgements 167

Referenties

GERELATEERDE DOCUMENTEN

Atomic Carbon can be an e fficient tracer of the molecular gas mass, and when combined to the detection of high-J and low-J CO lines it yields also a sensitive probe of the

Indeed, if planet formation lasts for longer than a few times 10 5 yrs in the disk midplane and a high level of ionisation is present, then the chemical abundances and elemental

In Fig. 3, panels b and d show abundances after 7 Myr evolution for an evolving disk with a high level of ionisation, with panel b) assuming a reset scenario for the initial

(2015), while able to reproduce the luminosity trend, was still unable to re- produce the absence of water emission in disks around intermediate-mass stars. We have demonstrated

We have demonstrated in Sections 3 and 4 that the strength of the infrared water spectrum is linked to an inside-out depletion scenario in disks by finding (1) a similar emitting

Here, we rederive estimates of the amount of water vapor, using an updated estimate of the disk gas mass. We also con- sider the e ffect of a more compact distribution of

An unsharp masked version of the SPHERE Q φ image was obtained by subtracting the smoothed version (by ∼10×FWHM).. ZIMPOL polarized light brightness profiles. The location of the

When considering initial atomic abundances (Figs. 3b and 3d) a similar radial behaviour (although not identical) is seen when comparing the results for reduced and full chemistry..