• No results found

VU Research Portal

N/A
N/A
Protected

Academic year: 2021

Share "VU Research Portal"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

VU Research Portal

Structural and spectroscopic in vivo imaging of the human retina with scanning light

ophthalmoscopy

Damodaran, M.

2020

document version

Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

Damodaran, M. (2020). Structural and spectroscopic in vivo imaging of the human retina with scanning light ophthalmoscopy.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:

vuresearchportal.ub@vu.nl

(2)

Structural

and spectroscopic

in

vivo imaging of the human

retina

with scanning light

ophthalmoscopy

Mathi

Damodaran

2020

(3)

This thesis was reviewed by:

Prof. dr. M. L. Groot Vrije Universiteit Amsterdam Prof. dr. M. C. G. Aalders Universiteit van Amsterdam Prof. dr. ir. R. M. Verdaasdonk University of Twente Dr. T. T. J. M. Berendschot Maastricht University Dr. D. J. Robinson Erasmus Medical Centre

© 2020 Mathi Damodaran.

All rights are reserved. Any part of this thesis (including the digital art) may not be reproduced, built upon, text or data mined without prior permission from the author.

Chapters 3 is licensed under the OSA Open Access Publishing Agreement:

© 2020 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.

Chapters 4 and 5 were published by SPIE under a Creative Commons Attribution License:

Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

ISBN: 978-94-028-2026-3

Printed in the Netherlands by Ipskamp Drukkers.

Cover art prepared by M. Damodaran and S. K. Vipin using neural style transfer. A digital version of this thesis can be obtained from: http://dare.ubvu.vu.nl/

The author acknowledges grant support from Dutch Technology Foundation STW, Nether-lands Organisation for Health Research and Development ZonMW, and Heidelberg Engi-neering GmbH.

(4)

VRIJE UNIVERSITEIT

S

TRUCTURAL AND SPECTROSCOPIC IN VIVO IMAGING OF THE HUMAN RETINA WITH SCANNING LIGHT OPHTHALMOSCOPY

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan

de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus

prof.dr. V. Subramaniam,

in het openbaar te verdedigen

ten overstaan van de promotiecommissie

van de Faculteit der Bètawetenschappen

op vrijdag 3 juli 2020 om 11.45 uur

in de aula van de universiteit,

De Boelelaan 1105

door

Mathivanan Damodaran

geboren te Dharmapuri, India

(5)

promotor:

prof.dr. J.F. de Boer

copromotor:

prof.dr. A. Amelink

(6)

Contents

1 General introduction . . . . 1

1.1 Human eye: anatomy and physiology. . . 2

1.1.1 Blood supply to the retina . . . 7

1.1.2 Common retinal pathologies . . . 9

1.2 Retinal imaging techniques. . . 12

1.2.1 Fundus photography . . . 13

1.2.2 Scanning Laser Ophthalmoscope. . . 15

1.2.3 Optical Coherence Tomography . . . 15

1.3 Thesis aim and outline . . . 16

References . . . 1

8

2 Principles of retinal imaging and retinal oximetry . . . . 23

2.1 Retinal imaging by scanning . . . 24

2.1.1 Line scanning. . . 26

2.1.2 Digital micromirror devices . . . 28

2.2 Retinal imaging — optical considerations, laser safety and wavelength ranges . . . . 30

2.2.1 Optical considerations. . . 30

2.2.2 Laser Safety considerations in retinal imaging. . . 32

2.2.3 Light sources and signal to noise estimation. . . 36

2.3 Retinal Oximetry . . . 38

2.3.1 Retinal diseases and oxygenation . . . 38

2.3.2 Evolution of retinal oximetry . . . 39

2.3.3 Comparison of oximetry techniques . . . 40

References . . . 4

4

3 Digital micromirror device based ophthalmoscope . . . . 49

3.1 Introduction . . . 50

3.2 Methods . . . 51

3.2.1 Optical system . . . 52

3.2.2 Annular illumination on the pupil plane and retinal resolution . . . 54

3.2.3 Parallel scanning method . . . 55

3.2.4 Confocal image processing using virtual pinholes . . . 56

3.2.5 Model eye measurements to evaluate SNR improvement. . . 57

3.2.6 In vivo retinal imaging. . . 60

3.3 Results . . . 60

3.3.1 Model eye measurements to evaluate SNR improvement. . . 60 v

(7)

3.3.2 In vivo retinal images . . . 62

3.4 Discussion . . . 6

6

3.5 Application: Fixational eye motion detection . . . 6

7

3.6 Conclusion . . .

69

References . . . 7

1

4 Optimal wavelengths for sub-diffuse scanning laser oximetry . . . . 75

4.1 Introduction . . . 76

4.2 Theory of retinal oximetry and identifying optimum wavelengths. . . 79

4.2.1 Theory of retinal oximetry . . . 79

4.3 Experimental validation . . . 93

4.3.1 Scanning Laser Ophthalmoscope - description of the system . . . 93

4.3.2 Measurements in model eye using a retina mimicking phantom . . . 93

4.3.3 Estimating vessel diameter from the images. . . 96

4.3.4 Experimental Results with retinal phantoms . . . 98

4.4 Discussion . . . 101

4.5 Conclusions. . . 105

References . . . 10

6

5 sub-diffuse scanning laser oximetry of the human retinain vivo . . . 111

5.1 Introduction . . . 112

5.2 Methods . . . 113

5.2.1 Wavelength selection for dual wavelength retinal oximetry . . . 113

5.2.2 System design . . . 116

5.2.3 Balanced detection to increase the signal-to-noise ratio. . . 120

5.2.4 Wavelength sweep hyperspectral imaging . . . 121

5.2.5 in vivo human measurements . . . 123

5.2.6 Retinal vessel segmentation and oxygenation map. . . 123

5.3 Results and discussion . . . 124

5.3.1 Technical aspects regarding multispectral SLO with an SC source. . . 124

5.3.2 in vivo two wavelength oximetry . . . 128

5.3.3 Wavelength sweep hyperspectral imaging . . . 128

5.4 Conclusion . . . 136

References . . . 13

8

6 Non-invasive optical measurement of haemoglobin concentration in the posterior eye of adult humans . . . 143

6.1 Introduction . . . 144

6.2 Methods . . . 147

6.3 Results and discussion . . . 151

6.4 Conclusion . . . 153

References . . . 155

7 Discussion and outlook . . . 157

7.1 Background . . . 158

7.2 Digital micromirror based SLO . . . 158

7.3 Quantitative retinal imaging . . . 160

(8)

7.3.2 Retinal haemoglobin concentration. . . 162 7.4 Future directions . . . 163 7.5 Thesis conclusion . . . 165 References . . . 16

6

8 Summary . . . 169 9 Curriculum Vitae . . . 177 10 Acknowledgements . . . 181

Referenties

GERELATEERDE DOCUMENTEN

Structural and spectroscopic in vivo imaging of the human retina with scanning light ophthalmoscopy..

Spectral Domain optical coherence tomography (SD-OCT) based on visible wave- lengths [22, 23, 59] has been used to measure oxygenation in retinal blood vessels.. Recent intense

We used an annulus in the illumination arm to create an annular illumination on the cornea and block most of the corneal reflections using a circular aperture in the detection

For non-optimal wavelengths, the difference in ρ values with and without correction is much higher (data not shown) and hence, using the simplified model presented without

5.2.1 Wavelength selection for dual wavelength retinal oximetry Oxygenation is typically assessed by imaging the retinal vessels at different wave- lengths using multispectral

A novel vessel segmentation algorithm that delineates the blood vessels and tissue was described to facilitate the segmentation of small blood vessels for oximetry estimation. It

Het doel van het werk dat gepresenteerd wordt in dit proefschrift is om nieuwe ap- paraten en technieken te ontwikkelen die beeldvorming van het netvlies kunnen uitvoeren, en deze

• DMD based ophthalmoscope with concentric circle scanning for fixation, oral presentation, Emerging Digital Micromirror Device Based Systems and Ap-. plications X, SPIE photonics