• No results found

University of Groningen A journey into the coordination chemistry, reactivity and catalysis of iron and palladium formazanate complexes Milocco, Francesca

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen A journey into the coordination chemistry, reactivity and catalysis of iron and palladium formazanate complexes Milocco, Francesca"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

A journey into the coordination chemistry, reactivity and catalysis of iron and palladium

formazanate complexes

Milocco, Francesca

DOI:

10.33612/diss.160960083

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Milocco, F. (2021). A journey into the coordination chemistry, reactivity and catalysis of iron and palladium

formazanate complexes. University of Groningen. https://doi.org/10.33612/diss.160960083

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco Processed on: 2-2-2021 Processed on: 2-2-2021 Processed on: 2-2-2021

Processed on: 2-2-2021 PDF page: 1PDF page: 1PDF page: 1PDF page: 1

A journey into the coordination

chemistry, reactivity and

catalysis of iron and palladium

formazanate complexes

(3)

554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco Processed on: 2-2-2021 Processed on: 2-2-2021 Processed on: 2-2-2021

Processed on: 2-2-2021 PDF page: 2PDF page: 2PDF page: 2PDF page: 2

The work described in this thesis was carried out at the Stratingh Institute of Chemistry, University of Groningen, The Netherlands.

This work was financially supported by the Netherlands Organisation for Scientific Research (NWO).

Cover designed by Francesca Milocco

(4)

554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco Processed on: 2-2-2021 Processed on: 2-2-2021 Processed on: 2-2-2021

Processed on: 2-2-2021 PDF page: 3PDF page: 3PDF page: 3PDF page: 3

A journey into the coordination

chemistry, reactivity and

catalysis of iron and palladium

formazanate complexes

PhD thesis

to obtain the degree of PhD at the University of Groningen

on the authority of the Rector Magnificus Prof. C. Wijmenga

and in accordance with the decision by the College of Deans. This thesis will be defended in public on

Friday 4 June 2021 at 16.15 hours

by

Francesca Milocco

born on 17 April 1991 in Udine, Italy

(5)

554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco Processed on: 2-2-2021 Processed on: 2-2-2021 Processed on: 2-2-2021

Processed on: 2-2-2021 PDF page: 4PDF page: 4PDF page: 4PDF page: 4

Supervisors

Prof. E. Otten Prof. W.R. Browne

Assessment Committee

Prof. M. Tromp Prof. M. Albrecht

(6)

554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco Processed on: 2-2-2021 Processed on: 2-2-2021 Processed on: 2-2-2021

Processed on: 2-2-2021 PDF page: 5PDF page: 5PDF page: 5PDF page: 5

i

Table of contents

Chapter 1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Ch

h

ha

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

a

a

a

a

a

a

a

a

ap

a

a

a

a

a

a

a

a

a

a

a

pt

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

t

t

tt

t

t

t

t

t

te

t

t

t

t

t

t

t

t

t

t

e

er

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

r

r

r

r

r

r

r 1

r

r

r

r

r

r

r

r

r

r

r

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

IIntroduction

1.1 Catalytic transformations ... 2 1.1.1 CO2 conversion ... 2

1.2 Development of non-noble metal catalysts for 2-electron redox-transformations ... 3

1.2.1 Iron... 4

1.3 Metal-ligand bonding: the electrons and orbitals dance ... 5

1.4 Redox active ligands ... 6

1.4.1 Redox active ligands acting as electron reservoir for catalytic reactions ... 8

1.4.2 Redox active ligands: a useful tool for CO2 conversion ... 10

1.5 Formazanate ligands ... 11

1.5.1 Redox activity of formazanate ligands ... 13

1.5.2 Iron formazanate complexes ... 14

1.6 Thesis outline ... 16 1.7 References ... 16

Chapter 2

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Ch

h

h

ha

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

a

ap

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

p

pt

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

te

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

e

er

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

r 2

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

19

Electronic control of spin-crossover properties in four-coordinate

bis(formazanate) iron(II) complexes

2.1 Introduction ... 20

2.2 Synthesis of bis(formazanate) iron(II) complexes ... 21

2.3 X-ray crystallography ... 22

2.4 Mössbauer spectroscopy and SQUID magnetometry studies in the solid state ... 24

2.5 Variable-temperature NMR and UV-Vis spectroscopy in solution ... 26

2.6 Computational studies ... 32

2.7 Conclusion ... 35

2.8 Experimental Section ... 36

2.8.1 General Considerations ... 36

2.8.2 Synthesis of the ligands... 36

2.8.3 Synthesis of the complexes ... 37

2.8.4 X-ray crystallography ... 40

2.8.5 X-ray powder diffraction ... 42

2.8.6 Mössbauer spectroscopy ... 42

2.8.7 SQUID magnetometry ... 44

2.8.8 DSC ... 45

2.8.9 VT-NMR spectral data ... 45

2.8.10 Analysis of temperature dependence of γHS ... 49

2.8.11 Computational details ... 50

(7)

554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco Processed on: 2-2-2021 Processed on: 2-2-2021 Processed on: 2-2-2021

Processed on: 2-2-2021 PDF page: 6PDF page: 6PDF page: 6PDF page: 6

ii

Chapter 3

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Ch

h

ha

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

a

ap

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

pt

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

t

t

t

t

t

t

t

t

t

te

t

t

t

t

t

t

t

t

t

t

t

t

e

er

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

r

r 3

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

55

W

Widening the window of spin-crossover temperatures in bis(formazanate)

iron(II) complexes via steric and non-covalent interactions

3.1 Introduction ... 56

3.2 Bis(formazanate) iron(II) complexes ... 57

3.3 Solid state characterization ... 58

3.3.1 X-ray crystallography of 4-coordinate compounds ... 58

3.3.2 Mössbauer spectroscopy and SQUID magnetometry studies ... 60

3.3.3 X-ray crystallography of the 6-coordinate compound 12 ... 61

3.4 Solution characterization ... 62

3.4.1 Variable-temperature NMR spectroscopy ... 62

3.4.2 Computational studies ... 64

3.4.3 Variable-temperature UV-Vis spectroscopy ... 65

3.5 Conclusion ... 68

3.6 Experimental Section ... 69

3.6.1 General Considerations... 69

3.6.2 Synthesis of the ligands ... 69

3.6.3 Synthesis of the complexes ... 69

3.6.4 X-ray crystallography ... 71

3.6.5 Mössbauer spectroscopy ... 73

3.6.6 DSC ... 73

3.6.7 VT-NMR spectral data ... 74

3.6.8 UV-Vis analysis of temperature dependence of molar extinction coefficient ... 79

3.6.9 Analysis of temperature dependence of γHS ... 80

3.6.10 DFT calculations ... 80 3.7 References ... 81

Chapter 4

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Ch

h

ha

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

a

a

a

ap

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

p

pt

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

te

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

e

er

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

r

r 4

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

83

Isocyanide derivatives of bis(formazanate) iron complexes."To be or not to be

(bonded)?"

4.1 Introduction ... 84

4.1.1 Carbon monoxide... 84

4.1.2 Isocyanide ... 85

4.1.3 Fe(II) and Fe(I) complexes with carbon monoxide and isocyanide ligands ... 85

4.2 Isocyanide coordination to Fe(L1)2 ... 86

4.2.1 Studies of the reactivity of 1 and 1-Red toward CO and CNAr ... 86

4.2.2 Synthesis and solid state characterization of 1-CNAr: X-Ray and IR ... 89

4.2.3 Isocyanide dissociation ... 91

4.2.4 Cyclic voltammetry studies of 1-CNAr ... 94

4.3 Characterization of a derivative with asymmetric, fluorinated formazanate ligands ... 95

4.3.1 J coupling in 19F NMR spectroscopy ... 96

4.3.2 NMR characterization of 11-CNpAn ... 98

4.3.3 Proposed structural model for 11-CNpAn ... 105

(8)

554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco Processed on: 2-2-2021 Processed on: 2-2-2021 Processed on: 2-2-2021

Processed on: 2-2-2021 PDF page: 7PDF page: 7PDF page: 7PDF page: 7

iii

4.4 Conclusion ... 109

4.5 Experimental Section ... 110

4.5.1 General Considerations ... 110

4.5.2 Synthesis of the complexes ... 110

4.5.3 IR spectral data ... 112 4.5.4 X-ray crystallography ... 113 4.5.5 NMR spectral data ... 114 4.5.6 Cyclic voltammetry... 118 4.6 References ... 119

Chapter 5

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Ch

h

h

ha

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

pt

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

te

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

e

er

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

r

r 5

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

121

R

Redox behavior of formazanate iron complexes

5.1 Introduction ... 123

5.1.1 Redox chemistry of formazans ... 123

5.1.2 Redox behavior of formazanate ligands ... 123

5.2 Cyclic voltammetry studies of FeL2 ... 125

5.3 Attempts of oxidative addition to the iron(I) complex 1-Red ... 128

5.4 Fe(III) formazanate complexes ... 129

5.4.1 Synthesis and characterization of 12-Ox... 132

5.4.2 Investigation of the coordination ability of L12 toward Fe(II) and Fe(III) ... 136

5.5 Conclusion ... 139

5.6 Experimental Section ... 140

5.6.1 General Considerations ... 140

5.6.2 Synthesis of the complexes ... 140

5.6.3 In situ NMR reactivity studies ... 140

5.6.4 Test reactions ... 141 5.6.5 X-ray crystallography ... 142 5.6.6 Cyclic voltammetry... 144 5.7 References ... 146

Chapter 6

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Ch

h

ha

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

pt

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

t

te

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

e

er

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

r

r 6

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

147

Ferrate(II) complexes with redox-active formazanate ligands

6.1 Introduction ... 148

6.2 Mono(formazanate) ferrate complexes ... 149

6.2.1 NMR studies on the formation of [Bu4N][FeLX2] ... 149

6.2.2 Synthesis and characterization of [Bu4N][FeLX2] ... 150

6.3 Reactivity of [Bu4N][LFeBr2] with isocyanide... 155

6.3.1 Cyclic voltammetry studies of 1Br-CNpAn ... 157

6.4 Conclusion ... 159

6.5 Experimental Section ... 160

6.5.1 General Considerations ... 160

6.5.2 Synthesis of the complexes ... 160

6.5.3 In situ NMR reactivity studies ... 161

6.5.4 X-ray crystallography ... 163

(9)

554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco Processed on: 2-2-2021 Processed on: 2-2-2021 Processed on: 2-2-2021

Processed on: 2-2-2021 PDF page: 8PDF page: 8PDF page: 8PDF page: 8

iv

Chapter 7

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Ch

h

h

ha

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

a

ap

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

pt

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

t

t

t

te

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

e

er

ee

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

r

r 7

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

165

H

Highly selective single-component formazanate ferrate(II) catalysts for the

conversion of CO

2

into cyclic carbonates

7.1 Introduction ... 166

7.2 Synthesis and characterization of [Bu4N][FeLX2] ... 167

7.2.1 Cyclic voltammetry studies of [Bu4N][FeLX2] ... 169

7.3 NMR studies on the reactivity of 1Br ... 170

7.4 Catalytic studies with [Bu4N][FeLX2] ... 173

7.4.1 Halide effect ... 173

7.4.2 Electronic effects of substituted formazanate ligands ... 174

7.4.3 Substrate scope ... 175

7.5 Conclusion ... 178

7.6 Future perspective ... 179

7.7 Experimental Section ... 182

7.7.1 General Considerations... 182

7.7.2 Synthesis of the ligands ... 182

7.7.3 Synthesis of the complexes ... 183

7.7.4 Catalytic tests ... 185

7.7.5 UV-Vis absorption spectroscopy ... 186

7.7.6 X-ray crystallography ... 187

7.7.8 NMR spectral data of product mixtures after catalysis ... 188

7.7.9 FTIR spectra of product mixtures after catalysis ... 189

7.8 References ... 190

Chapter 8

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Ch

h

h

ha

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

a

a

a

ap

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

p

pt

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

te

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

e

er

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

r

r 8

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

8

193

Palladium alkyl complexes with a formazanate ligand: synthesis, structure and

reactivity

8.1 Introduction ... 194

8.2 Synthesis and characterization of palladium formazanate complexes ... 194

8.2.1 Bis(formazanate) palladium complex ... 194

8.2.2 Mono(formazanate) palladium complex ... 196

8.2.3 Attempts of chloride abstraction ... 197

8.3 Ligand exchange and insertion reactions ... 198

8.4 Conclusion ... 200

8.5 Experimental Section ... 201

8.5.1 General Considerations... 201

8.5.2 Synthesis of the complexes ... 201

8.5.3 In situ NMR reactivity ... 202

8.5.4 Attempted chloride abstraction from Pd-1c ... 205

8.5.5 DFT calculations ... 210

8.5.6 UV-Vis absorption spectroscopy ... 210

(10)

554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco Processed on: 2-2-2021 Processed on: 2-2-2021 Processed on: 2-2-2021

Processed on: 2-2-2021 PDF page: 9PDF page: 9PDF page: 9PDF page: 9

v

Appendix A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Ap

p

p

pp

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

pe

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

e

en

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

nd

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

di

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

i

ix

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

x

x

x

x A

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

213

G

General considerations on techniques and measurements

A.1 Synthetic methods ... 214

A.1.1 Ligands ... 214

A.1.2 Complexes ... 214

A.2 Physical methods ... 214

A.2.1 Elemental Analysis ... 214

A.2.2 X-Ray Crystallography ... 214

A.2.3 X-ray powder diffraction ... 214

A.2.4 DSC ... 215

A.2.5 Mössbauer Spectroscopy ... 215

A.2.6 SQUID magnetometry ... 215

A.2.7 IR spectroscopy ... 215

A.2.8 NMR Spectroscopy ... 215

A.2.9 UV-Vis spectroscopy ... 215

A.2.10 EPR spectroscopy ... 216

A.2.11 Cyclic Voltammetry ... 216

A.3 Analysis of the thermodynamic parameters for the spin crossover equilibrium in Chapter 2 and 3 ... 216

A.3.1 Analysis of temperature dependence of NMR chemical shifts ... 216

A.3.2 Analysis of temperature dependence of the magnetic susceptibility and of the molar extinction coefficient ... 217

A.3.3 Magnetic measurements in solution ... 218

A.4 References ... 219

A.5 List of compounds ... 219

A.5.1 Abbreviations ... 219 A.5.2 Ligands ... 220 A.5.3 Complexes ... 220

Summary

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Su

u

u

um

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

m

mm

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

ma

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

a

ar

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

r

ry

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

y

221

Samenvatting

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

Sa

a

am

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

m

me

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

e

e

e

e

en

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

n

nv

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

v

v

v

va

v

v

v

v

v

v

v

v

v

v

v

v

v

v

v

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

t

t

t

t

t

t

t

t

tt

t

t

t

t

t

t

t

t

t

t

ti

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

in

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

226

Acknowledgments

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

Ac

c

c

ck

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

k

kn

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

no

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

o

ow

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

w

wl

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

le

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

e

e

e

ed

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

dg

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

g

gm

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

m

me

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

m

en

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

e

n

nt

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

t

t

t

t

ts

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

229

(11)

554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco 554702-L-bw-Milocco Processed on: 2-2-2021 Processed on: 2-2-2021 Processed on: 2-2-2021

Processed on: 2-2-2021 PDF page: 10PDF page: 10PDF page: 10PDF page: 10

Referenties

GERELATEERDE DOCUMENTEN

Throughout this thesis, we study the coordination chemistry of the redox active formazanate ligands to iron and palladium and we explore the (catalytic) reactivity of the

Deze heteroleptische, tetraëdrische complexen hebben een heel andere elektronische structuur in vergelijking met de homoleptische verbinding 1, geïllustreerd door de hoge

Thanks to the technical staff for all your precious help: Oetze (thank you for nor retiring before the end of my PhD!), Pieter and Johan (for all the chats during my long

A journey into the coordination chemistry, reactivity and catalysis of iron and palladium formazanate complexes..

ability to promote unusual group transfer reactivity,24–27 and their importance in base metal catalysis.8,28–32 Nature also makes use of redox-active ligands as storage of

Thus, a series of bisformazanatemagnesium complexes n-Mg, their corresponding monoTHF adducts n-MgTHF and bisformazanatecalcium complexes n-Ca complexes are presented and compared

Scheme 4.4 Synthesis of tetrazepine derivatives 4.1 and 4.2 via nucleophilic aromatic substitution using KH as base.. These findings contribute to a new synthetic route

For azobenzene, rotation and inversion mechanisms are discussed in the literature as possible thermal reaction paths from Z to E.36,37 Transition state calculations for 4.3