• No results found

Network properties of the mammalian circadian clock Rohling, J.H.T.

N/A
N/A
Protected

Academic year: 2021

Share "Network properties of the mammalian circadian clock Rohling, J.H.T."

Copied!
2
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Network properties of the mammalian circadian clock

Rohling, J.H.T.

Citation

Rohling, J. H. T. (2009, December 15). Network properties of the mammalian circadian clock. Retrieved from https://hdl.handle.net/1887/14520

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded

from: https://hdl.handle.net/1887/14520

Note: To cite this publication please use the final published version (if applicable).

(2)

The biological clock regulates daily and seasonal rhythms in mammals. This clock is located in the suprachiasmatic nuclei (SCN), which are two small nuclei each consisting of 10,000 neurons.

The neurons of the SCN endogenously generate a rhythm of approximately 24 hours. Under the infl uence of the light-dark cycle, the SCN produce a coordinated output that is subjected to daily environmental changes. The adaptation to the light-dark cycle is a property of the neuronal network of the SCN. This neuronal network also explains the adjustment to long summer days and short winter days, and to shifts in the light-dark cycle caused by transatlantic fl ights or shift work.

In this thesis the neuronal network of the SCN is investigated using computational techniques. The computer simulations were directed by experimental results, while, vice versa, new experiments were guided by results from the simulations. These coordinated efforts of computational science and life sciences show how properties emerge at the neuronal network level, that are not present in individual cells.

Network properties of the

mammalian

circadian clock

Jos Rohling

Network properties of the mammalian circadian clock Jos Rohling

Uitnodiging

voor de promotie van Jos Rohling

dinsdag 15 december 2009op om 11.15 uur in de Senaatskamer van het Academiegebouw

Rapenburg 73 te Leiden Houdt u rekening met

tijdrovende parkeerproblemen bij het Academiegebouw.

Na afl oop van de promotie is er een receptie in het Academiegebouw

Jos Rohling 06-19928100 j.h.t.rohling@lumc.nl

Paranimfen:

Floor van Oosterhout 06-41421064 Rogier Coenraads

06-26962925 phdjos@live.com

247762 789090 9

ISBN 978-90-9024776-2

rohling.indd 1 10/11/2009 10:55:45 AM

Referenties

GERELATEERDE DOCUMENTEN

Figure 5.3 Phase shifts of multiunit electrical activity rhythms in brain slices from mice kept on a short and long photoperiod.. Examples of extracellular multiunit recordings

The simulation data is shown from one day before the phase shift until seven days after the shift, following the phase shifting protocol used by Reddy et al.. The behavioral data

In chapter 3, this research question was used to create a simulation model in which single unit activity patterns were distributed over the circadian cycle and accumulated to

Nuesslein-Hildesheim B, O'Brien JA, Ebling FJ, Maywood ES, Hastings MH (2000) The circadian cycle of mPER clock gene products in the suprachiasmatic nucleus of the siberian

Om een eenduidig signaal door te geven van de individuele klokcellen aan de andere lichaamsfuncties die afhankelijk zijn van deze centrale klok moeten de individuele ritmes van

Network properties of the circadian clock mPer1 messenger RNA of Per1 mPer2 messenger RNA of Per2.. mRNA messenger RNA (Ribonucleic acid) MUA multi

Systeembiologie, waarbij data uit verschillende disciplines in een gemeenschappelijk keurslijf worden geperst, is niet het antwoord op problemen met grote hoeveelheden data. Beter

Apart from light (photic stimulus), the biological clock is also responsive to non-photic stimuli, such as behavioural activity and pharmacological agents. The research described