• No results found

VU Research Portal

N/A
N/A
Protected

Academic year: 2021

Share "VU Research Portal"

Copied!
4
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

VU Research Portal

Deconstruction of septin assembly

Szuba, A.

2019

document version

Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)

Szuba, A. (2019). Deconstruction of septin assembly.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:

vuresearchportal.ub@vu.nl

(2)

Contents

1 Introduction 1

1.1 Cell shape control 1

1.1.1 Plasma membrane 1

1.1.2 Cytoskeleton 2

1.2 Septins 6

1.2.1 The septin family of proteins 6

1.2.2 Hierarchical assembly of septins into higher-order structures 7

1.2.3 Septin functions 10

1.3 Septins at the cell cortex 11

1.3.1 Septins and cell rigidity 11

1.3.2 Septin interactions with the plasma membrane 11

1.3.3 Septin-actin interaction 12

1.4 Goal and approach of this thesis 13

1.5 Thesis outline 13

2 Quantifying septin self-assembly by electron microscopy-based mass

mapping 15

2.1 Introduction 16

2.2 Materials and methods 18

2.2.1 Septin complex purification 18

2.2.2 Protein characterization 20

2.2.3 TIRF imaging of septins 22

2.2.4 Mass mapping by STEM 24

2.2.5 Atomic force microscopy (AFM) 25

2.3 Results 26

2.3.1 TIRF microscopy investigation of septin polymerization 26

2.3.2 Mass mapping of septin filaments and bundles 29

2.4 Discussion 35

2.5 Supplemental material 37

(3)

Contents

3 Membrane-templated assembly of septins 41

3.1 Introduction 42

3.2 Materials and Methods 44

3.2.1 Septin preparation 44

3.2.2 Fluorescence microscopy of septins on supported lipid bilayers 44 3.2.3 Transmission electron microscopy of septins on lipid

mono-layers 46

3.2.4 Cryo-electron microscopy of septins on lipid vesicles 46

3.2.5 Atomic force microscopy of septins on supported lipid bilayers 47

3.3 Results 49

3.3.1 Fluorescence imaging of septins on supported lipid bilayers 49

3.3.2 Electron microscopy imaging of septins on lipid monolayers 54

3.3.3 Electron microscopy imaging of septins on lipid vesicles 57

3.3.4 Atomic force microscopy imaging of septin-membrane

inter-actions 59

3.4 Discussion 68

3.4.1 Septins form rigid membrane-anchored networks 68

3.4.2 Towards a model of septin assembly on membranes 69

3.4.3 Biological implications 73

3.5 Supplemental material 73

4 Binding and self-assembly of septins on model biomembranes 77

4.1 Introduction 77

4.2 Methods 80

4.2.1 Vesicle preparation 80

4.2.2 Septin preparation 81

4.2.3 QCM-D 81

4.2.4 Combined QCM-D/SE measurements 82

4.2.5 AFM force indentation 84

4.3 Results 85

4.3.1 Septins bind charged lipid membranes through electrostatic

interactions 85

4.3.2 Mass transport limits the rate of septin adsorption 88

4.3.3 Dependence of septin adsorption on septin concentration 89

4.3.4 Impact of septin polymerization on membrane binding 91

4.3.5 Septin organization revealed through analysis of

hydrody-namically trapped water content 94

4.3.6 Mechanical properties of the septin films 95

4.3.7 Thickness of the membrane-bound septin films 98

4.4 Discussion 102

4.4.1 Comparison of QCM-D and SE data with AFM measurements102

4.4.2 Towards a model for membrane-templated septin assembly 103

4.5 Supplemental material 107

(4)

Contents

4.5.1 Figures 107

4.5.2 Tables 115

5 Summary and Outlook 119

5.1 Summary 119

5.2 Outlook 121

Acknowledgements 127

Bibliography 131

Referenties

GERELATEERDE DOCUMENTEN

Figure 2.1: Overview of the experimental system. Step 1) Micrometre-sized colloidal particles are coated with a lipid bilayer by adding small unilamellar vesicles (SUVs) that

class 9 superresolution microscopy class 9 superresolution microscopy class 9 superresolution microscopy class 10 lifetimes, FLIM, FRET Class 11 Non-linear and label free. Label

De ACM heeft daarop destijds aangegeven aan GTS dat te willen doen op basis van zo recent mogelijke cijfers over realisaties (besparingen moeten blijken).. GTS geeft aan

De ACM heeft echter geen aanwijzingen dat zij geen goede schatter heeft voor de kosten van kwaliteitsconversie per eenheid volume.. Daarom komt zij tot de conclusie dat zij wel

De historische PV gemeten op de transportdienst achtte de ACM representatief voor de verwachte PV op de aansluitdienst.. De transportdienst vertegenwoordigt het grootste deel van

For test- ing DMEM Complete, cholesterol supplemented DMEM and functionalized SLBs, a different batch of TR-DHPE vesicles was created for a total of 5 batches.. Peak size and peak

geïsoleerd te staan, bijvoorbeeld het bouwen van een vistrap op plaatsen waar vismigratie niet mogelijk is omdat de samenhangende projecten zijn vastgelopen op andere

† Electronic supplementary information (ESI) available: The supporting informa- tion consists of 5 figures and 1 table: large fields of view of microscopy images; a table listing