• No results found

University of Groningen Long-term effects of large and small herbivores on plant diversity in a salt-marsh system Chen, Qingqing

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Long-term effects of large and small herbivores on plant diversity in a salt-marsh system Chen, Qingqing"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Long-term effects of large and small herbivores on plant diversity in a salt-marsh system

Chen, Qingqing

DOI:

10.33612/diss.111645595

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Chen, Q. (2020). Long-term effects of large and small herbivores on plant diversity in a salt-marsh system. https://doi.org/10.33612/diss.111645595

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)
(3)

$OEHUWL-&DQHSXFFLD$3DVFXDO-3pUH]& ,ULEDPH2 D -RLQWFRQWUROE\ rodent herbivory and nutrient availability of plant diversity in a salt marsh-salty steppe transition zone. J. Veg. Sci., 22, 216–224.

$OEHUWL-&DVDULHJR$0'DOHR3)DQMXO(6LOOLPDQ%5%HUWQHVV0et al. (2011b). Abiotic stress mediates top-down and bottom-up control in a Southwestern Atlantic salt marsh. Oecologia.

Ankney, C.D. (1996). An Embarrassment of Riches: Too Many Geese. J. Wildl. Manage., 60, 217–223.

Bakker, E.S. & Olff, H. (2003). Impact of different-sized herbivores on recruitment opportunities for subordinate herbs in grasslands. J. Veg. Sci., 14, 465–474.

Bakker, E.S., Ritchie, M.E., Olff, H., Milchunas, D.G. & Knops, J.M.H.H. (2006). Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size.

Ecol. Lett., 9, 780–788.

Bakker, J.P. (1985). The impact of grazing on plant communities, plant populations and soil conditions on salt marshes. Vegetatio, 62, 391–398.

%DNNHU-3  1DWXUHPDQDJHPHQWE\JUD]LQJDQGFXWWLQJRQWKHHFRORJLFDOVLJQL¿FDQFH of grazing and cutting regimes applied to restore species-rich grassland communities in the Netherlands. University of Groningen. Kluwer Academic Publishers, Dordrecht. %DNNHU-3%RV' GH9ULHV<  7RJUD]HRUQRWWRJUD]HWKDWLVWKHTXHVWLRQ

Challenges to Wadden Sea - Proc. 10th Int. Sci. Wadden Sea Symp., 67–87.

%DNNHU -3 'LMNVWUD 0  5XVVFKHQ 37   'LVSHUVDO JHUPLQDWLRQ DQG HDUO\ establishment of halophytes and glycophytes on a grazed and abandoned salt-marsh gradient. New Phytol., 101, 291–308.

%DNNHU-3(O]LQJD-$ GH9ULHV< D (IIHFWVRIORQJWHUPFXWWLQJLQDJUDVVODQG system: Perspectives for restoration of plant communities on nutrient-poor soils. Appl.

Veg. Sci., 5, 107–120.

%DNNHU-3(VVHOLQN3'LMNHPD.69DQ'XLQ:( 'H-RQJ'- E 5HVWRUDWLRQ of salt marshes in the Netherlands. Hydrobiologia, 478, 29–51.

%DNNHU-32OII+:LOOHPV-+ =REHO0  :K\'R:H1HHG3HUPDQHQW3ORWV in the Study of Long-Term Vegetation Dynamics ? J. Veg. Sci., 7, 147–155.

Bakker, J.P., De Vlas, J. & Van Tooren, B.F. (1993). Uitbreiding begrazing van de Oosterkwelder op Schiermonnikoog. Levende Nat., 94, 118–122.

%DNNHU-3 'H9ULHV<  *HUPLQDWLRQDQGHDUO\HVWDEOLVKPHQWRIORZHUVDOWPDUVK species in grazed and mown salt marsh. J. Veg. Sci., 3, 247–252.

%DUUHWW6&+  ,QÀXHQFHVRIFORQDOLW\RQSODQWVH[XDOUHSURGXFWLRQProc. Natl. Acad.

Sci. U. S. A., 112, 8859–66.

Bengtsson,B. O. (2003). Genetic variation in organisms with sexual and asexual reproduction.

J. Evol. Biol., 16, 189–199.

Bertness, M.D., Brisson, C.P., Coverdale, T.C., Bevil, M.C., Crotty, S.M. & Suglia, E.R. (2014). Experimental predator removal causes rapid salt marsh die-off. Ecol. Lett., 17, 830–835.

Billington, H.L., Mortimer, A.M. & McNeilly, T. (1988). Divergence and genetic structure in DGMDFHQWJUDVVSRSXODWLRQV4XDQWLWDWLYHJHQHWLFVEvolution (N. Y)., 42, 1267–1277. %RFNHOPDQQD&5HXVFK7%+%LMOVPD5 %DNNHU-3  +DELWDWGLIIHUHQWLDWLRQ

R

vs. isolation-by-distance: the genetic population structure of Elymus athericus in European salt marshes. Mol. Ecol., 12, 505–15.

%RUHU(76HDEORRP(:*UXQHU'6+DUSROH:6+LOOHEUDQG+/LQG(0et al. (2014). Herbivores and nutrients control grassland plant diversity via light limitation.

Nature, 508, 517–520.

%RV'%DNNHU-3'H9ULHV< 9DQ/LHVKRXW6  /RQJWHUPYHJHWDWLRQFKDQJHV LQH[SHULPHQWDOO\JUD]HGDQGXQJUD]HGEDFNEDUULHUPDUVKHVLQWKH:DGGHQ6HDAppl.

Veg. Sci., 5, 45–54.

Bromberg, K., Crain, C.M. & Bertness, M.D. (2009). Small-Mammal Herbivore Control of Secondary Succession in New England Tidal Marshes. Ecology, 90, 430–440.

Bullock, J.M., Franklin, J., Stevenson, M.J., Silvertown, J., Sarah, J., Gregory, S.J., et al. (2001). A Plant Trait Analysis of Responses to Grazing in a Long-Term Experiment. J.

Appl. Ecol., 38, 253–267.

Bullock, J.M., Hill, B.C., Silvertown, J., Sutton, M., Bullock, J.M., Hill, B.C., et al. (1995). Gap Colonization as a Source of Grassland Community Change : Effects of Gap Size and Grazing on the Rate and Mode of Colonization by Different Species. Oikos, 72, 273–282. Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., et al. (2012).

Biodiversity loss and its impact on humanity. Nature, 486, 59–67.

Cargill, S.M. & Jefferies, R.L. (1984). The Effects of Grazing by Lesser Snow Geese on the Vegetation of a Sub- Arctic Salt Marsh. J. Appl. Ecol., 21, 669.

Catorci, A., Cesaretti, S., Malatesta, L. & Tardella, F.M. (2014). Effects of grazing vs mowing on the functional diversity of sub-Mediterranean productive grasslands. Appl. Veg. Sci., 17, 658–669.

De Cauwer, B. & Reheul, D. (2009). Impact of land use on vegetation composition, diversity and potentially invasive, nitrophilous clonal species in a wetland region in Flanders.

Agron. Sustain. Dev., 29, 277–285.

&KDQJ(5=R]D\D(/.XLMSHU'3- %DNNHU-3  6HHGGLVSHUVDOE\VPDOO KHUELYRUHV DQG WLGDO ZDWHU$UH WKH\ LPSRUWDQW ¿OWHUV LQ WKH DVVHPEO\ RI VDOWPDUVK communities? Funct. Ecol., 19, 665–673.

&RXJKODQ-0+DQ66WHIDQRYLü6 'LFNLQVRQ7$  :LGHVSUHDGJHQHUDOLVW FORQHV DUH DVVRFLDWHG ZLWK UDQJH DQG QLFKH H[SDQVLRQ LQ DOORSRO\SORLGV RI 3DFL¿F Northwest Hawthorns (Crataegus L.). Mol. Ecol., 26, 5484–5499.

Crawley, M.J. (1990). Rabbit Grazing , Plant Competition and Seedling Recruitment in Acid Grassland. J. Appl. Ecol., 27, 803–820.

'DL;  ,PSDFWRI&DWWOH'XQJ'HSRVLWLRQRQWKH'LVWULEXWLRQ3DWWHUQRI3ODQW6SHFLHV in an Alvar Limestone Grassland. J. Veg. Sci., 11, 715–724.

Daleo, P., Alberti, J., Bruschetti, C.M., Martinetto, P., Pascual, J. & Iribarne, O. (2017). Herbivory and presence of a dominant competitor interactively affect salt marsh plant diversity. J. Veg. Sci., 28, 1178–1186.

'DYLGVRQ.()RZOHU066NRY0:'RHUU6+%HDXPRQW1 *ULI¿Q-1   Livestock grazing alters multiple ecosystem properties and services in salt marshes: a meta-analysis. J. Appl. Ecol., 54, 1395–1405.

Davies, K.F., Chesson, P., Harrison, S., Inouye, B.D., Melbourne, B.A. & Rice, K.J. (2005). Spatial Heterogeneity Explains the Scale Dependence of the Native-Exotic Diversity

(4)

References

144

$OEHUWL-&DQHSXFFLD$3DVFXDO-3pUH]& ,ULEDPH2 D -RLQWFRQWUROE\ rodent herbivory and nutrient availability of plant diversity in a salt marsh-salty steppe transition zone. J. Veg. Sci., 22, 216–224.

$OEHUWL-&DVDULHJR$0'DOHR3)DQMXO(6LOOLPDQ%5%HUWQHVV0et al. (2011b). Abiotic stress mediates top-down and bottom-up control in a Southwestern Atlantic salt marsh. Oecologia.

Ankney, C.D. (1996). An Embarrassment of Riches: Too Many Geese. J. Wildl. Manage., 60, 217–223.

Bakker, E.S. & Olff, H. (2003). Impact of different-sized herbivores on recruitment opportunities for subordinate herbs in grasslands. J. Veg. Sci., 14, 465–474.

Bakker, E.S., Ritchie, M.E., Olff, H., Milchunas, D.G. & Knops, J.M.H.H. (2006). Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size.

Ecol. Lett., 9, 780–788.

Bakker, J.P. (1985). The impact of grazing on plant communities, plant populations and soil conditions on salt marshes. Vegetatio, 62, 391–398.

%DNNHU-3  1DWXUHPDQDJHPHQWE\JUD]LQJDQGFXWWLQJRQWKHHFRORJLFDOVLJQL¿FDQFH of grazing and cutting regimes applied to restore species-rich grassland communities in the Netherlands. University of Groningen. Kluwer Academic Publishers, Dordrecht. %DNNHU-3%RV' GH9ULHV<  7RJUD]HRUQRWWRJUD]HWKDWLVWKHTXHVWLRQ

Challenges to Wadden Sea - Proc. 10th Int. Sci. Wadden Sea Symp., 67–87.

%DNNHU -3 'LMNVWUD 0  5XVVFKHQ 37   'LVSHUVDO JHUPLQDWLRQ DQG HDUO\ establishment of halophytes and glycophytes on a grazed and abandoned salt-marsh gradient. New Phytol., 101, 291–308.

%DNNHU-3(O]LQJD-$ GH9ULHV< D (IIHFWVRIORQJWHUPFXWWLQJLQDJUDVVODQG system: Perspectives for restoration of plant communities on nutrient-poor soils. Appl.

Veg. Sci., 5, 107–120.

%DNNHU-3(VVHOLQN3'LMNHPD.69DQ'XLQ:( 'H-RQJ'- E 5HVWRUDWLRQ of salt marshes in the Netherlands. Hydrobiologia, 478, 29–51.

%DNNHU-32OII+:LOOHPV-+ =REHO0  :K\'R:H1HHG3HUPDQHQW3ORWV in the Study of Long-Term Vegetation Dynamics ? J. Veg. Sci., 7, 147–155.

Bakker, J.P., De Vlas, J. & Van Tooren, B.F. (1993). Uitbreiding begrazing van de Oosterkwelder op Schiermonnikoog. Levende Nat., 94, 118–122.

%DNNHU-3 'H9ULHV<  *HUPLQDWLRQDQGHDUO\HVWDEOLVKPHQWRIORZHUVDOWPDUVK species in grazed and mown salt marsh. J. Veg. Sci., 3, 247–252.

%DUUHWW6&+  ,QÀXHQFHVRIFORQDOLW\RQSODQWVH[XDOUHSURGXFWLRQProc. Natl. Acad.

Sci. U. S. A., 112, 8859–66.

Bengtsson,B. O. (2003). Genetic variation in organisms with sexual and asexual reproduction.

J. Evol. Biol., 16, 189–199.

Bertness, M.D., Brisson, C.P., Coverdale, T.C., Bevil, M.C., Crotty, S.M. & Suglia, E.R. (2014). Experimental predator removal causes rapid salt marsh die-off. Ecol. Lett., 17, 830–835.

Billington, H.L., Mortimer, A.M. & McNeilly, T. (1988). Divergence and genetic structure in DGMDFHQWJUDVVSRSXODWLRQV4XDQWLWDWLYHJHQHWLFVEvolution (N. Y)., 42, 1267–1277. %RFNHOPDQQD&5HXVFK7%+%LMOVPD5 %DNNHU-3  +DELWDWGLIIHUHQWLDWLRQ

References

145

R

vs. isolation-by-distance: the genetic population structure of Elymus athericus in European salt marshes. Mol. Ecol., 12, 505–15.

%RUHU(76HDEORRP(:*UXQHU'6+DUSROH:6+LOOHEUDQG+/LQG(0et al. (2014). Herbivores and nutrients control grassland plant diversity via light limitation.

Nature, 508, 517–520.

%RV'%DNNHU-3'H9ULHV< 9DQ/LHVKRXW6  /RQJWHUPYHJHWDWLRQFKDQJHV LQH[SHULPHQWDOO\JUD]HGDQGXQJUD]HGEDFNEDUULHUPDUVKHVLQWKH:DGGHQ6HDAppl.

Veg. Sci., 5, 45–54.

Bromberg, K., Crain, C.M. & Bertness, M.D. (2009). Small-Mammal Herbivore Control of Secondary Succession in New England Tidal Marshes. Ecology, 90, 430–440.

Bullock, J.M., Franklin, J., Stevenson, M.J., Silvertown, J., Sarah, J., Gregory, S.J., et al. (2001). A Plant Trait Analysis of Responses to Grazing in a Long-Term Experiment. J.

Appl. Ecol., 38, 253–267.

Bullock, J.M., Hill, B.C., Silvertown, J., Sutton, M., Bullock, J.M., Hill, B.C., et al. (1995). Gap Colonization as a Source of Grassland Community Change : Effects of Gap Size and Grazing on the Rate and Mode of Colonization by Different Species. Oikos, 72, 273–282. Cardinale, B.J., Duffy, J.E., Gonzalez, A., Hooper, D.U., Perrings, C., Venail, P., et al. (2012).

Biodiversity loss and its impact on humanity. Nature, 486, 59–67.

Cargill, S.M. & Jefferies, R.L. (1984). The Effects of Grazing by Lesser Snow Geese on the Vegetation of a Sub- Arctic Salt Marsh. J. Appl. Ecol., 21, 669.

Catorci, A., Cesaretti, S., Malatesta, L. & Tardella, F.M. (2014). Effects of grazing vs mowing on the functional diversity of sub-Mediterranean productive grasslands. Appl. Veg. Sci., 17, 658–669.

De Cauwer, B. & Reheul, D. (2009). Impact of land use on vegetation composition, diversity and potentially invasive, nitrophilous clonal species in a wetland region in Flanders.

Agron. Sustain. Dev., 29, 277–285.

&KDQJ(5=R]D\D(/.XLMSHU'3- %DNNHU-3  6HHGGLVSHUVDOE\VPDOO KHUELYRUHV DQG WLGDO ZDWHU$UH WKH\ LPSRUWDQW ¿OWHUV LQ WKH DVVHPEO\ RI VDOWPDUVK communities? Funct. Ecol., 19, 665–673.

&RXJKODQ-0+DQ66WHIDQRYLü6 'LFNLQVRQ7$  :LGHVSUHDGJHQHUDOLVW FORQHV DUH DVVRFLDWHG ZLWK UDQJH DQG QLFKH H[SDQVLRQ LQ DOORSRO\SORLGV RI 3DFL¿F Northwest Hawthorns (Crataegus L.). Mol. Ecol., 26, 5484–5499.

Crawley, M.J. (1990). Rabbit Grazing , Plant Competition and Seedling Recruitment in Acid Grassland. J. Appl. Ecol., 27, 803–820.

'DL;  ,PSDFWRI&DWWOH'XQJ'HSRVLWLRQRQWKH'LVWULEXWLRQ3DWWHUQRI3ODQW6SHFLHV in an Alvar Limestone Grassland. J. Veg. Sci., 11, 715–724.

Daleo, P., Alberti, J., Bruschetti, C.M., Martinetto, P., Pascual, J. & Iribarne, O. (2017). Herbivory and presence of a dominant competitor interactively affect salt marsh plant diversity. J. Veg. Sci., 28, 1178–1186.

'DYLGVRQ.()RZOHU066NRY0:'RHUU6+%HDXPRQW1 *ULI¿Q-1   Livestock grazing alters multiple ecosystem properties and services in salt marshes: a meta-analysis. J. Appl. Ecol., 54, 1395–1405.

Davies, K.F., Chesson, P., Harrison, S., Inouye, B.D., Melbourne, B.A. & Rice, K.J. (2005). Spatial Heterogeneity Explains the Scale Dependence of the Native-Exotic Diversity

(5)

Relationship. Ecology, 86, 1602–1610.

'HH-57KRPDV607KRPSVRQ6' 3DOPHU0:  /RQJWHUPODWHVHDVRQ mowing maintains diversity in southern US tallgrass prairie invaded by Bothriochloa ischaemum. Appl. Veg. Sci., 19, 442–453.

Díaz, S., Fargione, J., Chapin, F.S. & Tilman, D. (2006). Biodiversity Loss Threatens Human :HOO%HLQJPLoS Biol., 4, e277.

Díaz, S., Lavorel, S., McIntyre, S., Falczuk, V., Casanoves, F., Milchunas, D.G., et al. (2007). Plant trait responses to grazing - A global synthesis. Glob. Chang. Biol., 13, 313–341. Didiano, T.J., Turley, N.E., Everwand, G., Schaefer, H., Crawley, M.J. & Johnson, M.T.J.

(2014). Experimental test of plant defence evolution in four species using long-term rabbit exclosures. J. Ecol., 102, 584–594.

Douhovnikoff, V. & Dodd, R.S. (2003). Intra-clonal variation and a similarity threshold for LGHQWL¿FDWLRQRIFORQHV$SSOLFDWLRQWR6DOL[H[LJXDXVLQJ$)/3PROHFXODUPDUNHUV

Theor. Appl. Genet., 106, 1307–1315.

'XULQJ$+- :LOOHPV -+   'LYHUVLW\ 0RGHOV$SSOLHG WR D &KDON *UDVVODQG

Vegetatio, 57, 103–114.

Elschot, K., Bakker, J.P., Temmerman, S., Van De Koppel, J. & Bouma, T.J. (2015). Ecosystem engineering by large grazers enhances carbon stocks in a tidal salt marsh.

Mar. Ecol. Prog. Ser., 537, 9–21.

)RNNHPD:GH%RHU:YDQGHU-HXJG+3'RNWHU$1ROHW%$'H.RN/-et

al. (2016). The nature of plant adaptations to salinity stress has trophic consequences. Oikos, 125, 804–811.

Fritch, R.A., Sheridan, H., Finn, J.A., Kirwan, L. & hUallacháin, D.Ó. (2011). Methods of HQKDQFLQJERWDQLFDOGLYHUVLW\ZLWKLQ¿HOGPDUJLQVRILQWHQVLYHO\PDQDJHGJUDVVODQG$ \HDU¿HOGH[SHULPHQWJ. Appl. Ecol., 48, 551–560.

*iVSiU%%RVVGRUI2 'XUND:  6WUXFWXUHVWDELOLW\DQGHFRORJLFDOVLJQL¿FDQFH of natural epigenetic variation: a large-scale survey in Plantago lanceolata. New Phytol., 221, 1585–1596.

Gedan, K.B., Silliman, B.R. & Bertness, M.D. (2009). Centuries of Human-Driven Change in Salt Marsh Ecosystems. Ann. Rev. Mar. Sci., 1, 117–141.

Gillet, F., Kohler, F., Vandenberghe, C. & Buttler, A. (2010). Effect of dung deposition on small-scale patch structure and seasonal vegetation dynamics in mountain pastures.

Agric. Ecosyst. Environ., 135, 34–41.

Gough, L. & Grace, J.B. (1998a). Effects of Flooding , Salinity and Herbivory on Coastal Plant Communities , Louisiana , United States. Oecologia, 117, 527–535.

Gough, L. & Grace, J.B. (1998b). Herbivore Effects on Plant Species Density at Varying Productivity Levels. Ecology, 79, 1586–1594.

*UHHQEHUJ5&DUGRQL$(QV%*DQ;,VDFFK-3.RI¿MEHUJ.et al. (2014). The

distribution and conservation of birds of coastal salt marshes. Cambridge University

Press, Cambridge, UK.

Hallett, L.M., Jones, S.K., MacDonald, A.A.M., Jones, M.B., Flynn, D.F.B., Ripplinger, J., et

al. (2016). codyn: An r package of community dynamics metrics. Methods Ecol. Evol.,

7, 1146–1151.

Hartnett, D.C. & Bazzaz, F.A. (1985). The Genet and Ramet Population Dynamics of

R

Solidago Canadensis in an Abandoned. J. Ecol.

+DXWLHU < 7LOPDQ ' ,VEHOO ) 6HDEORRP (: %RUHU (7  5HLFK 3%   Anthropogenic environmental changes affect ecosystem stability via biodiversity.

Science (80-. )., 348, 336–340.

He, Q. & Silliman, B.R. (2016). Consumer control as a common driver of coastal vegetation worldwide. Ecol. Monogr., 86, 278–294.

+HUEVW&:lVFKNH1%DUWR(.$UQROG6*HX‰'+DOERWK,et al. (2013). Land XVH LQWHQVL¿FDWLRQ LQ JUDVVODQGV +LJKHU WURSKLF OHYHOV DUH PRUH QHJDWLYHO\ DIIHFWHG than lower trophic levels. Entomol. Exp. Appl., 147, 269–281.

Herrera, C.M. & Bazaga, P. (2011). Untangling individual variation in natural populations : ecological , genetic and epigenetic correlates of long-term inequality in herbivory. Mol.

Ecol., 20, 1675–1688.

Hillebrand, H., Gruner, D.S., Borer, E.T., Bracken, M.E.S., Cleland, E.E., Elser, J.J., et al. (2007). Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc. Natl. Acad. Sci., 104, 10904–9.

Holdredge, C., Bertness, M.D. & Altieri, A.H. (2009). Role of crab herbivory in die-off of new england salt marshes. Conserv. Biol., 23, 672–679.

Howison, R.A., Olff, H., Steever, R. & Smit, C. (2015). Large herbivores change the direction of interactions within plant communities along a salt marsh stress gradient. J. Veg. Sci., 26, 1159–1170.

Jacquemyn, H., Brys, R. & Hermy, M. (2003). Short-term effects of different management regimes on the response of calcareous grassland vegetation to increased nitrogen. Biol.

Conserv., 111, 137–147.

Johnson, D.R., Lara, M.J., Shaver, G.R., Batzli, G.O., Shaw, J.D. & Tweedie, C.E. (2011). Exclusion of brown lemmings reduces vascular plant cover and biomass in Arctic coastal tundra: Resampling of a 50 + year herbivore exclosure experiment near Barrow, Alaska. Environ. Res. Lett., 6, 045507.

.DDUOHMlUYL((VNHOLQHQ$ 2ORIVVRQ-  +HUELYRUHVUHVFXHGLYHUVLW\LQZDUPLQJ tundra by modulating trait-dependent species losses and gains. Nat. Commun., 8, 419. Kahmen, S., Poschlod, P. & Schreiber, K.F. (2002). Conservation management of calcareous

grasslands. Changes in plant species composition and response of functional traits during 25 years. Biol. Conserv., 104, 319–328.

.OHLMQ' 6WHLQJHU7  &RQWUDVWLQJHIIHFWVRIJUD]LQJDQGKD\FXWWLQJRQWKHVSDWLDO and genetic population structure of Veratrum album, an unpalatable, long-lived, clonal plant species. J. Ecol., 90, 360–370.

9DQ.OLQN51ROWH60DQGHPD)6/DJHQGLMN''*:DOOLV'H9ULHV0)%DNNHU J.P., et al. (2016). Effects of grazing management on biodiversity across trophic levels–The importance of livestock species and stocking density in salt marshes. Agric.

Ecosyst. Environ., 235, 329–339.

9DQ.OLQN56FKUDPD01ROWH6%DNNHU-3:DOOLV'H9ULHV0) %HUJ03   Defoliation and Soil Compaction Jointly Drive Large-Herbivore Grazing Effects on Plants and Soil Arthropods on Clay Soil. Ecosystems, 18, 671–685.

.RED\DVKL7+RUL< 1RPRWR1  (IIHFWVRIWUDPSOLQJDQGYHJHWDWLRQUHPRYDO on species diversity and micro-environment under different shade conditions. J. Veg.

(6)

References

146

Relationship. Ecology, 86, 1602–1610.

'HH-57KRPDV607KRPSVRQ6' 3DOPHU0:  /RQJWHUPODWHVHDVRQ mowing maintains diversity in southern US tallgrass prairie invaded by Bothriochloa ischaemum. Appl. Veg. Sci., 19, 442–453.

Díaz, S., Fargione, J., Chapin, F.S. & Tilman, D. (2006). Biodiversity Loss Threatens Human :HOO%HLQJPLoS Biol., 4, e277.

Díaz, S., Lavorel, S., McIntyre, S., Falczuk, V., Casanoves, F., Milchunas, D.G., et al. (2007). Plant trait responses to grazing - A global synthesis. Glob. Chang. Biol., 13, 313–341. Didiano, T.J., Turley, N.E., Everwand, G., Schaefer, H., Crawley, M.J. & Johnson, M.T.J.

(2014). Experimental test of plant defence evolution in four species using long-term rabbit exclosures. J. Ecol., 102, 584–594.

Douhovnikoff, V. & Dodd, R.S. (2003). Intra-clonal variation and a similarity threshold for LGHQWL¿FDWLRQRIFORQHV$SSOLFDWLRQWR6DOL[H[LJXDXVLQJ$)/3PROHFXODUPDUNHUV

Theor. Appl. Genet., 106, 1307–1315.

'XULQJ$+- :LOOHPV -+   'LYHUVLW\ 0RGHOV$SSOLHG WR D &KDON *UDVVODQG

Vegetatio, 57, 103–114.

Elschot, K., Bakker, J.P., Temmerman, S., Van De Koppel, J. & Bouma, T.J. (2015). Ecosystem engineering by large grazers enhances carbon stocks in a tidal salt marsh.

Mar. Ecol. Prog. Ser., 537, 9–21.

)RNNHPD:GH%RHU:YDQGHU-HXJG+3'RNWHU$1ROHW%$'H.RN/-et

al. (2016). The nature of plant adaptations to salinity stress has trophic consequences. Oikos, 125, 804–811.

Fritch, R.A., Sheridan, H., Finn, J.A., Kirwan, L. & hUallacháin, D.Ó. (2011). Methods of HQKDQFLQJERWDQLFDOGLYHUVLW\ZLWKLQ¿HOGPDUJLQVRILQWHQVLYHO\PDQDJHGJUDVVODQG$ \HDU¿HOGH[SHULPHQWJ. Appl. Ecol., 48, 551–560.

*iVSiU%%RVVGRUI2 'XUND:  6WUXFWXUHVWDELOLW\DQGHFRORJLFDOVLJQL¿FDQFH of natural epigenetic variation: a large-scale survey in Plantago lanceolata. New Phytol., 221, 1585–1596.

Gedan, K.B., Silliman, B.R. & Bertness, M.D. (2009). Centuries of Human-Driven Change in Salt Marsh Ecosystems. Ann. Rev. Mar. Sci., 1, 117–141.

Gillet, F., Kohler, F., Vandenberghe, C. & Buttler, A. (2010). Effect of dung deposition on small-scale patch structure and seasonal vegetation dynamics in mountain pastures.

Agric. Ecosyst. Environ., 135, 34–41.

Gough, L. & Grace, J.B. (1998a). Effects of Flooding , Salinity and Herbivory on Coastal Plant Communities , Louisiana , United States. Oecologia, 117, 527–535.

Gough, L. & Grace, J.B. (1998b). Herbivore Effects on Plant Species Density at Varying Productivity Levels. Ecology, 79, 1586–1594.

*UHHQEHUJ5&DUGRQL$(QV%*DQ;,VDFFK-3.RI¿MEHUJ.et al. (2014). The

distribution and conservation of birds of coastal salt marshes. Cambridge University

Press, Cambridge, UK.

Hallett, L.M., Jones, S.K., MacDonald, A.A.M., Jones, M.B., Flynn, D.F.B., Ripplinger, J., et

al. (2016). codyn: An r package of community dynamics metrics. Methods Ecol. Evol.,

7, 1146–1151.

Hartnett, D.C. & Bazzaz, F.A. (1985). The Genet and Ramet Population Dynamics of

References

147

R

Solidago Canadensis in an Abandoned. J. Ecol.

+DXWLHU < 7LOPDQ ' ,VEHOO ) 6HDEORRP (: %RUHU (7  5HLFK 3%   Anthropogenic environmental changes affect ecosystem stability via biodiversity.

Science (80-. )., 348, 336–340.

He, Q. & Silliman, B.R. (2016). Consumer control as a common driver of coastal vegetation worldwide. Ecol. Monogr., 86, 278–294.

+HUEVW&:lVFKNH1%DUWR(.$UQROG6*HX‰'+DOERWK,et al. (2013). Land XVH LQWHQVL¿FDWLRQ LQ JUDVVODQGV +LJKHU WURSKLF OHYHOV DUH PRUH QHJDWLYHO\ DIIHFWHG than lower trophic levels. Entomol. Exp. Appl., 147, 269–281.

Herrera, C.M. & Bazaga, P. (2011). Untangling individual variation in natural populations : ecological , genetic and epigenetic correlates of long-term inequality in herbivory. Mol.

Ecol., 20, 1675–1688.

Hillebrand, H., Gruner, D.S., Borer, E.T., Bracken, M.E.S., Cleland, E.E., Elser, J.J., et al. (2007). Consumer versus resource control of producer diversity depends on ecosystem type and producer community structure. Proc. Natl. Acad. Sci., 104, 10904–9.

Holdredge, C., Bertness, M.D. & Altieri, A.H. (2009). Role of crab herbivory in die-off of new england salt marshes. Conserv. Biol., 23, 672–679.

Howison, R.A., Olff, H., Steever, R. & Smit, C. (2015). Large herbivores change the direction of interactions within plant communities along a salt marsh stress gradient. J. Veg. Sci., 26, 1159–1170.

Jacquemyn, H., Brys, R. & Hermy, M. (2003). Short-term effects of different management regimes on the response of calcareous grassland vegetation to increased nitrogen. Biol.

Conserv., 111, 137–147.

Johnson, D.R., Lara, M.J., Shaver, G.R., Batzli, G.O., Shaw, J.D. & Tweedie, C.E. (2011). Exclusion of brown lemmings reduces vascular plant cover and biomass in Arctic coastal tundra: Resampling of a 50 + year herbivore exclosure experiment near Barrow, Alaska. Environ. Res. Lett., 6, 045507.

.DDUOHMlUYL((VNHOLQHQ$ 2ORIVVRQ-  +HUELYRUHVUHVFXHGLYHUVLW\LQZDUPLQJ tundra by modulating trait-dependent species losses and gains. Nat. Commun., 8, 419. Kahmen, S., Poschlod, P. & Schreiber, K.F. (2002). Conservation management of calcareous

grasslands. Changes in plant species composition and response of functional traits during 25 years. Biol. Conserv., 104, 319–328.

.OHLMQ' 6WHLQJHU7  &RQWUDVWLQJHIIHFWVRIJUD]LQJDQGKD\FXWWLQJRQWKHVSDWLDO and genetic population structure of Veratrum album, an unpalatable, long-lived, clonal plant species. J. Ecol., 90, 360–370.

9DQ.OLQN51ROWH60DQGHPD)6/DJHQGLMN''*:DOOLV'H9ULHV0)%DNNHU J.P., et al. (2016). Effects of grazing management on biodiversity across trophic levels–The importance of livestock species and stocking density in salt marshes. Agric.

Ecosyst. Environ., 235, 329–339.

9DQ.OLQN56FKUDPD01ROWH6%DNNHU-3:DOOLV'H9ULHV0) %HUJ03   Defoliation and Soil Compaction Jointly Drive Large-Herbivore Grazing Effects on Plants and Soil Arthropods on Clay Soil. Ecosystems, 18, 671–685.

.RED\DVKL7+RUL< 1RPRWR1  (IIHFWVRIWUDPSOLQJDQGYHJHWDWLRQUHPRYDO on species diversity and micro-environment under different shade conditions. J. Veg.

(7)

Sci., 8, 873–880.

Koerner, S.E., Smith, M.D., Burkepile, D.E., Hanan, N.P., Avolio, M.L., Collins, S.L., et al. (2018). Change in dominance determines herbivore effects on plant biodiversity. Nat.

Ecol. Evol., 2, 1925–1932.

.RI¿MEHUJ . 6FKHNNHUPDQ + YDQ GHU -HXJG + +RUQPDQ 0  YDQ :LQGHQ ( (2017). Responses of wintering geese to the designation of goose foraging areas in The Netherlands. Ambio, 46, 241–250.

Kohler, F., Gillet, F., Gobat, J.M. & Buttler, A. (2004). Seasonal vegetation changes in mountain pastures due to simulated effects of cattle grazing. J. Veg. Sci., 15, 143–150. 9DQGH.RSSHO-+XLVPDQ-9DQ'HU:DO5 2OII+  3DWWHUQVRI+HUELYRU\$ORQJD

Prouductivity Gradient : An Empirical and Theoretical Investigation. Ecology, 77, 736–745. .XLMSHU'3- %DNNHU-3  7RSGRZQFRQWURORIVPDOOKHUELYRUHVRQVDOWPDUVK

vegetation along a prouctivity gradient. Ecology, 86, 914–923.

.XLMSHU'3-%HHN3YDQ:LHUHQ6( %DNNHU-3  7LPHVFDOHHIIHFWVLQWKH interaction between a large and a small herbivore. Basic Appl. Ecol., 9, 126–134. .XLMSHU'3-'XEEHOG- %DNNHU-3  &RPSHWLWLRQEHWZHHQ7ZR*UDVV6SHFLHV

with and without Grazing over a Productivity Gradient. Plant Ecol., 179, 237–246. .XLMSHU'3-1LMKRII'- %DNNHU-3  +HUELYRU\DQG&RPSHWLWLRQ6ORZGRZQ

Invasion of a Tall Grass along a Productivity Gradient. Oecologia, 141, 452–459. Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H. (2018). Package ‘ lmerTest .’

/DJHQGLMN ''* +RZLVRQ 5$ (VVHOLQN 3 8EHOV 5  6PLW &   5RWDWLRQ grazing as a conservation management tool: Vegetation changes after six years of application in a salt marsh ecosystem. Agric. Ecosyst. Environ., 246, 361–366.

/DYRUHO60FOQW\UH6/DQGVEHUJ- )RUEHV7'  3ODQWIXQFWLRQDOFODVVL¿FDWLRQV IURPJHQHUDOJURXSVWRVSHFL¿FJURXSVEDVHGRQUHVSRQVHWRGLVWXUEDQFHTrends Ecol.

Evol., 12.

Lepš, J. (2014). Scale- and time-dependent effects of fertilization , mowing and dominant removal on a grassland community during a 15-year experiment. J. Appl. Ecol., 51, 978–987.

Lezama, F. & Paruelo, J.M. (2016). Disentangling grazing effects: trampling, defoliation and urine deposition. Appl. Veg. Sci., 19, 557–566.

Lindsay, A., Clark, V. & Clark, M.L. V. (2018). Package ‘ polysat .’

/XGYtNRYi 9 3DYOĤ 9 9 *DLVOHU - +HMFPDQ 0  3DYOĤ /   /RQJ WHUP defoliation by cattle grazing with and without trampling differently affects soil penetration resistance and plant species composition in Agrostis capillaris grassland.

Agric. Ecosyst. Environ., 197, 204–211.

/XQGKROP -7  /DUVRQ ':   5HODWLRQVKLSV EHWZHHQ 6SDWLDO (QYLURQPHQWDO Heterogeneity and Plant Species Diversity on a Limestone Pavement. Ecography

(Cop.)., 26, 715–722.

0DGVHQ--DVSHUV&7DPVWRUI00RUWHQVHQ&( 5LJpW)  /RQJWHUPHIIHFWV of grazing and global warming on the composition and carrying capacity of graminoid marshes for moulting geese in east Greenland. Ambio, 40, 638–649.

0DQGHO5:KD\+5.OHPHQW( 1LFRO&-  ,QYLWHGUHYLHZ(QYLURQPHQWDO enrichment of dairy cows and calves in indoor housing. J. Dairy Sci., 99, 1695–1715.

R

Menu, S., Gauthier, G. & Reed, A. (2002). Changes in survival rates and population dynamics of greater snow geese over a 30 year period. J. Appl. Ecol., 39, 91–102.

0LNROD-6HWlOl+9LUNDMlUYL36DDULMlUYL.,OPDULQHQ.9RLJW:et al. (2009). Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecol. Monogr., 79, 221–244.

0LORWLü7(UIDQ]DGHK53pWLOORQ-0DHOIDLW-3 +RIIPDQQ0  6KRUWWHUP impact of grazing by sheep on vegetation dynamics in a newly created salt-marsh site.

Grass Forage Sci., 65, 121–132.

0RUWHQVHQ%'DQLHOVRQ%+DUSROH6:$OEHUWL-$UQLOODV&$%LHGHUPDQ/et al. (2017). Herbivores safeguard plant diversity by reducing variability in dominance. J.

Ecol., 38, 42–49.

0XOGHU&3+ 5XHVV5:  (IIHFWVRI+HUELYRU\RQ$UURZJUDVV,QWHUDFWLRQV between Geese , Neighboring Plants , and Abiotic Factors. Ecol. Monogr., 68, 275–293. O’Mara, F.P. (2012). The role of grasslands in food security and climate change. Ann. Bot.,

110, 1263–1270.

Oksanen, J. (2015). Multivariate analysis of ecological communities in R: vegan tutorial. R

Doc., 43.

2OII + 'H /HHXZ - %DNNHU - 3ODWHULQN 5  9DQ :LMQHQ +   9HJHWDWLRQ succesion and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevation gradient. J. Ecol., 85, 799–814.

Olff, H. & Ritchie, M.E. (1998). Effects of herbivores on grassland plant diversity. Trends

Ecol. Evol., 13, 261–265.

Olofsson, J., Hulme, philip E., Oksanen, L. & Suominen, O. (2004). Importance of large and small mammalian herbivores for the plant community structure in the forest tundra ecotone. Oikos, 106, 324–334.

Pascual, J., Alberti, J., Daleo, P. & Iribarne, O. (2017). Herbivory and trampling by small mammals modify soil properties and plant assemblages. J. Veg. Sci., 28, 1028–1035. Pennings, S.C. & Callaway, R.M. (2000). The Advantages of Clonal Integration under

'LIIHUHQW(FRORJLFDO&RQGLWLRQV$&RPPXQLW\:LGH7HVWEcology, 81, 709–716. 3HWHUVRQ6/5RFNZHOO5):LWWH&5.RRQV'1 6WHSKHQ3HWHUVRQ$/  

The Legacy of Destructive Snow Goose Foraging on Supratidal Marsh Habitat in the Hudson Bay Lowlands. Source Arctic, Antarct. Alp. Res. Publ. By Inst. Arct. Alp. Res.

Arctic, Antarct. Alp. Res., 45, 575–583.

3pWLOORQ - <VQHO ) &DQDUG$  /HIHXYUH -&   ,PSDFW RI DQ LQYDVLYH SODQW (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management: Responses of spider populations. Biol. Conserv., 126, 103–117.

Reich, P.B., Hobbie, S.E., Lee, T.D. & Pastore, M.A. (2018). Unexpected reversal of C 3 YHUVXV&JUDVVUHVSRQVHWRHOHYDWHG&2GXULQJD\HDU¿HOGH[SHULPHQWScience

(80-. )., 361, eaau8982.

5HLVFK& 3RVFKORG3  /DQGXVHDIIHFWVÀRZHULQJWLPH6HDVRQDODQGJHQHWLF differentiation in the grassland plant scabiosa columbaria. Evol. Ecol., 23, 753–764. Richards, C.L., Hamrick, J.L., Donovan, L.A. & Mauricio, R. (2004). Unexpectedly high

(8)

References

148

Sci., 8, 873–880.

Koerner, S.E., Smith, M.D., Burkepile, D.E., Hanan, N.P., Avolio, M.L., Collins, S.L., et al. (2018). Change in dominance determines herbivore effects on plant biodiversity. Nat.

Ecol. Evol., 2, 1925–1932.

.RI¿MEHUJ . 6FKHNNHUPDQ + YDQ GHU -HXJG + +RUQPDQ 0  YDQ :LQGHQ ( (2017). Responses of wintering geese to the designation of goose foraging areas in The Netherlands. Ambio, 46, 241–250.

Kohler, F., Gillet, F., Gobat, J.M. & Buttler, A. (2004). Seasonal vegetation changes in mountain pastures due to simulated effects of cattle grazing. J. Veg. Sci., 15, 143–150. 9DQGH.RSSHO-+XLVPDQ-9DQ'HU:DO5 2OII+  3DWWHUQVRI+HUELYRU\$ORQJD

Prouductivity Gradient : An Empirical and Theoretical Investigation. Ecology, 77, 736–745. .XLMSHU'3- %DNNHU-3  7RSGRZQFRQWURORIVPDOOKHUELYRUHVRQVDOWPDUVK

vegetation along a prouctivity gradient. Ecology, 86, 914–923.

.XLMSHU'3-%HHN3YDQ:LHUHQ6( %DNNHU-3  7LPHVFDOHHIIHFWVLQWKH interaction between a large and a small herbivore. Basic Appl. Ecol., 9, 126–134. .XLMSHU'3-'XEEHOG- %DNNHU-3  &RPSHWLWLRQEHWZHHQ7ZR*UDVV6SHFLHV

with and without Grazing over a Productivity Gradient. Plant Ecol., 179, 237–246. .XLMSHU'3-1LMKRII'- %DNNHU-3  +HUELYRU\DQG&RPSHWLWLRQ6ORZGRZQ

Invasion of a Tall Grass along a Productivity Gradient. Oecologia, 141, 452–459. Kuznetsova, A., Brockhoff, P.B. & Christensen, R.H. (2018). Package ‘ lmerTest .’

/DJHQGLMN ''* +RZLVRQ 5$ (VVHOLQN 3 8EHOV 5  6PLW &   5RWDWLRQ grazing as a conservation management tool: Vegetation changes after six years of application in a salt marsh ecosystem. Agric. Ecosyst. Environ., 246, 361–366.

/DYRUHO60FOQW\UH6/DQGVEHUJ- )RUEHV7'  3ODQWIXQFWLRQDOFODVVL¿FDWLRQV IURPJHQHUDOJURXSVWRVSHFL¿FJURXSVEDVHGRQUHVSRQVHWRGLVWXUEDQFHTrends Ecol.

Evol., 12.

Lepš, J. (2014). Scale- and time-dependent effects of fertilization , mowing and dominant removal on a grassland community during a 15-year experiment. J. Appl. Ecol., 51, 978–987.

Lezama, F. & Paruelo, J.M. (2016). Disentangling grazing effects: trampling, defoliation and urine deposition. Appl. Veg. Sci., 19, 557–566.

Lindsay, A., Clark, V. & Clark, M.L. V. (2018). Package ‘ polysat .’

/XGYtNRYi 9 3DYOĤ 9 9 *DLVOHU - +HMFPDQ 0  3DYOĤ /   /RQJ WHUP defoliation by cattle grazing with and without trampling differently affects soil penetration resistance and plant species composition in Agrostis capillaris grassland.

Agric. Ecosyst. Environ., 197, 204–211.

/XQGKROP -7  /DUVRQ ':   5HODWLRQVKLSV EHWZHHQ 6SDWLDO (QYLURQPHQWDO Heterogeneity and Plant Species Diversity on a Limestone Pavement. Ecography

(Cop.)., 26, 715–722.

0DGVHQ--DVSHUV&7DPVWRUI00RUWHQVHQ&( 5LJpW)  /RQJWHUPHIIHFWV of grazing and global warming on the composition and carrying capacity of graminoid marshes for moulting geese in east Greenland. Ambio, 40, 638–649.

0DQGHO5:KD\+5.OHPHQW( 1LFRO&-  ,QYLWHGUHYLHZ(QYLURQPHQWDO enrichment of dairy cows and calves in indoor housing. J. Dairy Sci., 99, 1695–1715.

References

149

R

Menu, S., Gauthier, G. & Reed, A. (2002). Changes in survival rates and population dynamics of greater snow geese over a 30 year period. J. Appl. Ecol., 39, 91–102.

0LNROD-6HWlOl+9LUNDMlUYL36DDULMlUYL.,OPDULQHQ.9RLJW:et al. (2009). Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecol. Monogr., 79, 221–244.

0LORWLü7(UIDQ]DGHK53pWLOORQ-0DHOIDLW-3 +RIIPDQQ0  6KRUWWHUP impact of grazing by sheep on vegetation dynamics in a newly created salt-marsh site.

Grass Forage Sci., 65, 121–132.

0RUWHQVHQ%'DQLHOVRQ%+DUSROH6:$OEHUWL-$UQLOODV&$%LHGHUPDQ/et al. (2017). Herbivores safeguard plant diversity by reducing variability in dominance. J.

Ecol., 38, 42–49.

0XOGHU&3+ 5XHVV5:  (IIHFWVRI+HUELYRU\RQ$UURZJUDVV,QWHUDFWLRQV between Geese , Neighboring Plants , and Abiotic Factors. Ecol. Monogr., 68, 275–293. O’Mara, F.P. (2012). The role of grasslands in food security and climate change. Ann. Bot.,

110, 1263–1270.

Oksanen, J. (2015). Multivariate analysis of ecological communities in R: vegan tutorial. R

Doc., 43.

2OII + 'H /HHXZ - %DNNHU - 3ODWHULQN 5  9DQ :LMQHQ +   9HJHWDWLRQ succesion and herbivory in a salt marsh: changes induced by sea level rise and silt deposition along an elevation gradient. J. Ecol., 85, 799–814.

Olff, H. & Ritchie, M.E. (1998). Effects of herbivores on grassland plant diversity. Trends

Ecol. Evol., 13, 261–265.

Olofsson, J., Hulme, philip E., Oksanen, L. & Suominen, O. (2004). Importance of large and small mammalian herbivores for the plant community structure in the forest tundra ecotone. Oikos, 106, 324–334.

Pascual, J., Alberti, J., Daleo, P. & Iribarne, O. (2017). Herbivory and trampling by small mammals modify soil properties and plant assemblages. J. Veg. Sci., 28, 1028–1035. Pennings, S.C. & Callaway, R.M. (2000). The Advantages of Clonal Integration under

'LIIHUHQW(FRORJLFDO&RQGLWLRQV$&RPPXQLW\:LGH7HVWEcology, 81, 709–716. 3HWHUVRQ6/5RFNZHOO5):LWWH&5.RRQV'1 6WHSKHQ3HWHUVRQ$/  

The Legacy of Destructive Snow Goose Foraging on Supratidal Marsh Habitat in the Hudson Bay Lowlands. Source Arctic, Antarct. Alp. Res. Publ. By Inst. Arct. Alp. Res.

Arctic, Antarct. Alp. Res., 45, 575–583.

3pWLOORQ - <VQHO ) &DQDUG$  /HIHXYUH -&   ,PSDFW RI DQ LQYDVLYH SODQW (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management: Responses of spider populations. Biol. Conserv., 126, 103–117.

Reich, P.B., Hobbie, S.E., Lee, T.D. & Pastore, M.A. (2018). Unexpected reversal of C 3 YHUVXV&JUDVVUHVSRQVHWRHOHYDWHG&2GXULQJD\HDU¿HOGH[SHULPHQWScience

(80-. )., 361, eaau8982.

5HLVFK& 3RVFKORG3  /DQGXVHDIIHFWVÀRZHULQJWLPH6HDVRQDODQGJHQHWLF differentiation in the grassland plant scabiosa columbaria. Evol. Ecol., 23, 753–764. Richards, C.L., Hamrick, J.L., Donovan, L.A. & Mauricio, R. (2004). Unexpectedly high

(9)

Ecol. Lett., 7, 1155–1162.

Rouger, R. & Jump, A.S. (2014). A seascape genetic analysis reveals strong biogeographical structuring driven by contrasting processes in the polyploid saltmarsh species Puccinellia maritima and Triglochin maritima. Mol. Ecol., 23, 3158–3170.

5XSSUHFKW):DQQHU$6WRFN0 -HQVHQ.  6XFFHVVLRQLQVDOWPDUVKHVODUJH scale and long-term patterns after abandonment of grazing and drainage. Appl. Veg.

Sci., 18, 86–98.

Rusch, G.M. & Oesterheld, M. (1997). Relationship between Productivity, and Species and Functional Group Diversity in Grazed and Non-Grazed Pampas Grassland. Oikos, 78, 519–526.

Scheepens, J.F., Veeneklaas, R.M., Van De Zande, L. & Bakker, J.P. (2007). Clonal structure of Elytrigia atherica along different successional stages of a salt marsh. Mol. Ecol., 16, 1115–1124.

6FKUDPD0+HLMQLQJ3%DNNHU-39DQ:LMQHQ+-%HUJ03 2OII+ D  Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia, 172, 231–243.

6FKUDPD0.XLMSHU'3-9HHQHNODDV50 %DNNHU-3  /RQJWHUPGHFOLQHLQD salt marsh hare population largely driven by bottom-up factors. Ecoscience, 22, 71–82. Schrama, M., Veen, G.F.C., Bakker, E.S.L., Ruifrok, J.L., Bakker, J.P. & Olff, H. (2013b).

An integrated perspective to explain nitrogen mineralization in grazed ecosystems.

Perspect. Plant Ecol. Evol. Syst., 15, 32–44.

Silvertown, J., Servaes, C., Biss, P. & Macleod, D. (2005). Reinforcement of reproductive LVRODWLRQEHWZHHQDGMDFHQWSRSXODWLRQVLQWKH3DUN*UDVV([SHULPHQWHeredity (Edinb)., 95, 198–205.

Sitters, J., Bakker, E.S., Veldhuis, M.P., Veen, G.F., Allgeier, J.E. & Gonzalez, A.L. (2017). The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences. Front. Earth Sci., 5, 1–8.

Smith, R.K., Jennings, N. V. & Harris, S. (2005). A quantitative analysis of the abundance and demography of European hares Lepus europaeus in relation to habitat type, ….

Mamm. Rev., 35, 1–24.

Smith, S.E., Arredondo, T., Aguiar, M., Huber-sannwald, E., Smith, S.E., Arredondo, T., et al. (2009). Fine-Scale Spatial Genetic Structure in Perennial Grasses in Three Environments. Rangl. Ecol. Manag., 62, 356–363.

Stammel, B., Kiehl, K. & Pfadenhauer, J. (2003). Alternative management on fens : Response of vegetation to grazing and mowing. Appl. Veg. Sci., 6, 245–254.

7lOOH0'HiN%3RVFKORG39DONy2:HVWHUEHUJ/ 0LOEHUJ3  *UD]LQJ YVPRZLQJ$PHWDDQDO\VLVRIELRGLYHUVLW\EHQH¿WVIRUJUDVVODQGPDQDJHPHQWAgric.

Ecosyst. Environ., 222, 200–212.

7lOOH0)RJHOIRUV+:HVWHUEHUJ/ 0LOEHUJ3  7KHFRQVHUYDWLRQEHQH¿WRI mowing vs grazing for management of species-rich grasslands: A multi-site, multi-year ¿HOGH[SHULPHQWNord. J. Bot., 33, 761–768.

Thornton, P.K. (2010). Livestock production: Recent trends, future prospects. Philos. Trans.

R. Soc. B Biol. Sci., 365, 2853–2867.

7LOPDQ'5HLFK3%.QRSV-:HGLQ'0LHONH7 /HKPDQ&/  'LYHUVLW\

R

and productivity in a long-term grassland experiment. Science (80-. )., 294, 843–845. 7UDYLV 6(  +HVWHU 0:  $ VSDFHIRUWLPH VXEVWLWXWLRQ UHYHDOV WKH ORQJWHUP

GHFOLQHLQJHQRW\SLFGLYHUVLW\RIDZLGHVSUHDGVDOWPDUVKSODQW6SDUWLQDDOWHUQLÀRUD over a span of 1500 years. J. Ecol., 93, 417–430.

7VFKDUQWNH 7 &ORXJK < :DQJHU 7& -DFNVRQ / 0RW]NH , 3HUIHFWR , et al. (2012). Global food security, biodiversity conservation and the future of agricultural LQWHQVL¿FDWLRQBiol. Conserv., 151, 53–59.

Valladares, F., Gianoli, E. & Gomez, J.M. (2007). Ecological limits to plant phenotypic plasticity. New Phytol., 176, 749–763.

Veeneklaas, R., Bockelmann, A., Reusch, T. & Bakker, J. (2011). Effect of grazing and mowing on the clonal structure of Elytrigia atherica: A long-term study of abandoned and managed sites. Preslia, 83, 455–470.

9HHQHNODDV 50 'LMNHPD .6 +HFNHU 1  %DNNHU -3   6SDWLRWHPSRUDO dynamics of the invasive plant species Elytrigia atherica on natural salt marshes. Appl.

Veg. Sci., 16, 205–216.

Vivian-smith, G. (1997). Microtopographic Heterogeneity and Floristic Diversity in ([SHULPHQWDO:HWODQG&RPPXQLWLHVJ. Ecol., 85, 71–82.

Völler, E., Auge, H., Bossdorf, O. & Prati, D. (2013). Land use causes genetic differentiation of life-history traits in Bromus hordeaceus. Glob. Chang. Biol., 19, 892–899.

Völler, E., Bossdorf, O., Prati, D. & Auge, H. (2017). Evolutionary responses to land use in eight common grassland plants. J. Ecol., 105, 1290–1297.

9DQ'HU:DO5(JDV09DQ'HU9HHQ$ %DNNHU-3 D (IIHFWVRI5HVRXUFH Competition and Herbivory on Plant Performance along a Natural Productivity Gradient. J. Ecol., 88, 317–330.

9DQ'HU:DO5.XQVW3 'UHQW5  ,QWHUDFWLRQVEHWZHHQKDUHDQGEUHQWJRRVHLQ a salt marsh system: Evidence for food competition? Oecologia, 117, 227–234. 9DQ 'HU :DO 5 :LMQHQ + YDQ :LHUHQ 6 YDQ %HXFKHU 2  %RV ' E  2Q

)DFLOLWDWLRQEHWZHHQ+HUELYRUHV+RZ%UHQW*HHVH3UR¿WIURP%URZQ+DUHVEcology, 81, 969–980.

:DQJ<1DXPDQQ8:ULJKW67 :DUWRQ',  0YDEXQGDQ5SDFNDJHIRU model-based analysis of multivariate abundance data. Methods Ecol. Evol., 3, 471–474. :DQQHU$6XFKURZ6.LHKO.0H\HU:3RKOPDQQ16WRFN0et al. (2014). Scale

matters: Impact of management regime on plant species richness and vegetation type GLYHUVLW\LQ:DGGHQ6HDVDOWPDUVKHVAgric. Ecosyst. Environ., 182, 69–79.

:HOOVWHLQ&2WWH$ :DOGKDUGW5  6HHG%DQN'LYHUVLW\LQ0HVLF*UDVVODQGVLQ Relation to Vegetation Type , Management and Site Conditions. J. Veg. Sci., 18, 153–162. :LMQHQ +-9DQ:DO 59DQ 'HU  %DNNHU -3  7KH ,PSDFW RI +HUELYRUHV RQ

Nitrogen Mineralization Rate : Consequences for Salt-Marsh Succession. Oecologia, 118, 225–231.

:RRG61*HQHUDOL]HG$GGLWLYH0RGHOV$Q,QWURGXFWLRQZLWK5 QGHGLWLRQ &KDSPDQ and Hall/CRC (2017).

=DFKHLV$+XSS-:5XHVV5:=DFKHLV$0<+XSS-: 5XHVVW5:   Effects of Migratory Geese on Plant Communities of an Alaskan Salt Marsh. J. Ecol., 89, 57–71.

(10)

References

150

Ecol. Lett., 7, 1155–1162.

Rouger, R. & Jump, A.S. (2014). A seascape genetic analysis reveals strong biogeographical structuring driven by contrasting processes in the polyploid saltmarsh species Puccinellia maritima and Triglochin maritima. Mol. Ecol., 23, 3158–3170.

5XSSUHFKW):DQQHU$6WRFN0 -HQVHQ.  6XFFHVVLRQLQVDOWPDUVKHVODUJH scale and long-term patterns after abandonment of grazing and drainage. Appl. Veg.

Sci., 18, 86–98.

Rusch, G.M. & Oesterheld, M. (1997). Relationship between Productivity, and Species and Functional Group Diversity in Grazed and Non-Grazed Pampas Grassland. Oikos, 78, 519–526.

Scheepens, J.F., Veeneklaas, R.M., Van De Zande, L. & Bakker, J.P. (2007). Clonal structure of Elytrigia atherica along different successional stages of a salt marsh. Mol. Ecol., 16, 1115–1124.

6FKUDPD0+HLMQLQJ3%DNNHU-39DQ:LMQHQ+-%HUJ03 2OII+ D  Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia, 172, 231–243.

6FKUDPD0.XLMSHU'3-9HHQHNODDV50 %DNNHU-3  /RQJWHUPGHFOLQHLQD salt marsh hare population largely driven by bottom-up factors. Ecoscience, 22, 71–82. Schrama, M., Veen, G.F.C., Bakker, E.S.L., Ruifrok, J.L., Bakker, J.P. & Olff, H. (2013b).

An integrated perspective to explain nitrogen mineralization in grazed ecosystems.

Perspect. Plant Ecol. Evol. Syst., 15, 32–44.

Silvertown, J., Servaes, C., Biss, P. & Macleod, D. (2005). Reinforcement of reproductive LVRODWLRQEHWZHHQDGMDFHQWSRSXODWLRQVLQWKH3DUN*UDVV([SHULPHQWHeredity (Edinb)., 95, 198–205.

Sitters, J., Bakker, E.S., Veldhuis, M.P., Veen, G.F., Allgeier, J.E. & Gonzalez, A.L. (2017). The Stoichiometry of Nutrient Release by Terrestrial Herbivores and Its Ecosystem Consequences. Front. Earth Sci., 5, 1–8.

Smith, R.K., Jennings, N. V. & Harris, S. (2005). A quantitative analysis of the abundance and demography of European hares Lepus europaeus in relation to habitat type, ….

Mamm. Rev., 35, 1–24.

Smith, S.E., Arredondo, T., Aguiar, M., Huber-sannwald, E., Smith, S.E., Arredondo, T., et al. (2009). Fine-Scale Spatial Genetic Structure in Perennial Grasses in Three Environments. Rangl. Ecol. Manag., 62, 356–363.

Stammel, B., Kiehl, K. & Pfadenhauer, J. (2003). Alternative management on fens : Response of vegetation to grazing and mowing. Appl. Veg. Sci., 6, 245–254.

7lOOH0'HiN%3RVFKORG39DONy2:HVWHUEHUJ/ 0LOEHUJ3  *UD]LQJ YVPRZLQJ$PHWDDQDO\VLVRIELRGLYHUVLW\EHQH¿WVIRUJUDVVODQGPDQDJHPHQWAgric.

Ecosyst. Environ., 222, 200–212.

7lOOH0)RJHOIRUV+:HVWHUEHUJ/ 0LOEHUJ3  7KHFRQVHUYDWLRQEHQH¿WRI mowing vs grazing for management of species-rich grasslands: A multi-site, multi-year ¿HOGH[SHULPHQWNord. J. Bot., 33, 761–768.

Thornton, P.K. (2010). Livestock production: Recent trends, future prospects. Philos. Trans.

R. Soc. B Biol. Sci., 365, 2853–2867.

7LOPDQ'5HLFK3%.QRSV-:HGLQ'0LHONH7 /HKPDQ&/  'LYHUVLW\

References

151

R

and productivity in a long-term grassland experiment. Science (80-. )., 294, 843–845. 7UDYLV 6(  +HVWHU 0:  $ VSDFHIRUWLPH VXEVWLWXWLRQ UHYHDOV WKH ORQJWHUP

GHFOLQHLQJHQRW\SLFGLYHUVLW\RIDZLGHVSUHDGVDOWPDUVKSODQW6SDUWLQDDOWHUQLÀRUD over a span of 1500 years. J. Ecol., 93, 417–430.

7VFKDUQWNH 7 &ORXJK < :DQJHU 7& -DFNVRQ / 0RW]NH , 3HUIHFWR , et al. (2012). Global food security, biodiversity conservation and the future of agricultural LQWHQVL¿FDWLRQBiol. Conserv., 151, 53–59.

Valladares, F., Gianoli, E. & Gomez, J.M. (2007). Ecological limits to plant phenotypic plasticity. New Phytol., 176, 749–763.

Veeneklaas, R., Bockelmann, A., Reusch, T. & Bakker, J. (2011). Effect of grazing and mowing on the clonal structure of Elytrigia atherica: A long-term study of abandoned and managed sites. Preslia, 83, 455–470.

9HHQHNODDV 50 'LMNHPD .6 +HFNHU 1  %DNNHU -3   6SDWLRWHPSRUDO dynamics of the invasive plant species Elytrigia atherica on natural salt marshes. Appl.

Veg. Sci., 16, 205–216.

Vivian-smith, G. (1997). Microtopographic Heterogeneity and Floristic Diversity in ([SHULPHQWDO:HWODQG&RPPXQLWLHVJ. Ecol., 85, 71–82.

Völler, E., Auge, H., Bossdorf, O. & Prati, D. (2013). Land use causes genetic differentiation of life-history traits in Bromus hordeaceus. Glob. Chang. Biol., 19, 892–899.

Völler, E., Bossdorf, O., Prati, D. & Auge, H. (2017). Evolutionary responses to land use in eight common grassland plants. J. Ecol., 105, 1290–1297.

9DQ'HU:DO5(JDV09DQ'HU9HHQ$ %DNNHU-3 D (IIHFWVRI5HVRXUFH Competition and Herbivory on Plant Performance along a Natural Productivity Gradient. J. Ecol., 88, 317–330.

9DQ'HU:DO5.XQVW3 'UHQW5  ,QWHUDFWLRQVEHWZHHQKDUHDQGEUHQWJRRVHLQ a salt marsh system: Evidence for food competition? Oecologia, 117, 227–234. 9DQ 'HU :DO 5 :LMQHQ + YDQ :LHUHQ 6 YDQ %HXFKHU 2  %RV ' E  2Q

)DFLOLWDWLRQEHWZHHQ+HUELYRUHV+RZ%UHQW*HHVH3UR¿WIURP%URZQ+DUHVEcology, 81, 969–980.

:DQJ<1DXPDQQ8:ULJKW67 :DUWRQ',  0YDEXQGDQ5SDFNDJHIRU model-based analysis of multivariate abundance data. Methods Ecol. Evol., 3, 471–474. :DQQHU$6XFKURZ6.LHKO.0H\HU:3RKOPDQQ16WRFN0et al. (2014). Scale

matters: Impact of management regime on plant species richness and vegetation type GLYHUVLW\LQ:DGGHQ6HDVDOWPDUVKHVAgric. Ecosyst. Environ., 182, 69–79.

:HOOVWHLQ&2WWH$ :DOGKDUGW5  6HHG%DQN'LYHUVLW\LQ0HVLF*UDVVODQGVLQ Relation to Vegetation Type , Management and Site Conditions. J. Veg. Sci., 18, 153–162. :LMQHQ +-9DQ:DO 59DQ 'HU  %DNNHU -3  7KH ,PSDFW RI +HUELYRUHV RQ

Nitrogen Mineralization Rate : Consequences for Salt-Marsh Succession. Oecologia, 118, 225–231.

:RRG61*HQHUDOL]HG$GGLWLYH0RGHOV$Q,QWURGXFWLRQZLWK5 QGHGLWLRQ &KDSPDQ and Hall/CRC (2017).

=DFKHLV$+XSS-:5XHVV5:=DFKHLV$0<+XSS-: 5XHVVW5:   Effects of Migratory Geese on Plant Communities of an Alaskan Salt Marsh. J. Ecol., 89, 57–71.

(11)

Referenties

GERELATEERDE DOCUMENTEN

Chapter 5 Population differentiation via genotype selection under 22-year small herbivore exclusion at the early successional stage in a salt marsh. 107 Chapter 6 Synthesis

1 Chapter 3 Using this 46-year large herbivore exclosure experiment, I compared cattle grazing, mowing in late growing season (a proxy of aboveground consumption)

mowing (early growing season, late growing season, early and late growing season), grazing, and grazing plus different mowing treatments change the abundance of the

Using a 46-year experiment in a salt marsh, comparing cattle grazing, mowing (a proxy of aboveground consumption) and the ungrazed control, we found that the non-trophic effects

atherica and Atriplex portulacoides dominate the intermediate and late successional stages (Olff et al. rubra are highly preferred by hares and geese, while A. Several other

+RZHYHU ZH GHWHFWHG QR VLJQL¿FDQW HIIHFWV RI JUD]LQJ QRU LWV LQWHUDFWLRQ with stage for all three thresholds considered (Table S11). Genotype richness and diversity were

In addition, using long-term large and small herbivore exclosure experiments, I showed the sustainability of using low to moderate densities (usually relative to the productivity

In Madame Bovary blijft Emma, zoals men weet, weinig bespaard, maar ditmaal neemt Flaubert zijn heldin in bescherming, met een onverwachte wending die ik alleen maar groots kan