• No results found

The measurement of environmental economic inefficiency with pollution-generating technologies

N/A
N/A
Protected

Academic year: 2021

Share "The measurement of environmental economic inefficiency with pollution-generating technologies"

Copied!
29
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Resource

and

Energy

Economics

j o ur na l h o me pa g e:w w w . e l s e v i e r . c o m / l o c a t e / r e e

The

measurement

of

environmental

economic

inefficiency

with

pollution-generating

technologies

Juan

Aparicio

a

,

Magdalena

Kapelko

b

,

José

L.

Zofío

c,d,∗

aCenterofOperationsResearch(CIO).UniversidadMiguelHernández,Elche,Spain bDepartmentofLogistics,WroclawUniversityofEconomicsandBusiness,Wrocław,Poland cDepartmentofEconomics.UniversidadAutónomadeMadrid,Madrid,Spain

dErasmusResearchInstituteofManagement,ErasmusUniversity,Rotterdam,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received1July2019

Receivedinrevisedform9April2020 Accepted8June2020

Availableonline20June2020

JELclassification: D20 D24 N52 Q50 Keywords:

Environmentaleconomicinefficiency Pollution-generatingtechnologies Technicalandallocativeefficiency measurement

Dataenvelopmentanalysis USagriculture

a

b

s

t

r

a

c

t

Thisstudyintroducesthemeasurementofenvironmentalinefficiencyfromaneconomic

perspective.Wedevelopourproposalusingthelatestby-productionmodelsthatconsider

twoseparateandparalleltechnologies:astandardtechnologygeneratinggoodoutputs,

andapollutingtechnologyfortheby-productionofbadoutputs.Whileresearchinto

environmentalinefficiencyincorporatingundesirableorbadoutputsfromatechnological

perspectiveiswellestablished,nosignificantattemptshavebeenmadetoextendittothe

economicsphere.Basedonthedefinitionofnetprofits,wedevelopaneconomicinefficiency

measurethataccountsforsuboptimalbehaviorintheformofforegoneprivaterevenue

andenvironmentalcostexcess.Weshowthateconomicinefficiencycanbeconsistently

decomposedaccordingtotechnicalandallocativecriteria,consideringthetwoseparate

technologiesandmarketprices,respectively.Weillustratetheempiricalimplementation

ofourapproachusingadatasetonagricultureatthelevelofUSstates.

©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC

BYlicense(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Measuringtheenvironmentalinefficiencyofproductionunitsisanincreasinglyimportanttopicofrecenteconomic research.Environmentalinefficiencyassessmentintegratesmarketed(desirable,intended,orgood)outputswithnegative environmentalexternalitiesintoproductionmodeling(theproductionofso-calledundesirable,unintended,detrimental,or badoutputs).Suchanalysisisimportantfromtheperspectiveofsustainableproductionbecauseitprovidesvaluableinsights forfirmsandindustrystakeholdersonhowtoadoptenvironmentallyfriendlystrategies,andforpolicymakerstoimprove thedesignofpollutant-abatementinstruments,accountingforenvironmentalchallenges.

However,theexistingenvironmentalefficiencymodelslacktheeconomicinefficiencydimensionoftheanalysis;that is,acomprehensivemeasurethatalsoconsiderstheforegoneprofits,intheformoflowerrevenuesand/orhighercosts, thatarenotonlyrelatedtoatechnologicalinefficientbehavior,butalsotoallocativeinefficiency.Thisimpliesthatfirms shouldnotonlypursuebeingtechnicallyefficientbyexploitingthepotentialoftheproductionfrontier,buttheyshouldalso

∗ Correspondingauthorat:DepartmentofEconomics.UniversidadAutónomadeMadrid,Madrid,Spain. E-mailaddresses:jose.zofio@uam.es,jzofio@rsm.nl(J.L.Zofío).

https://doi.org/10.1016/j.reseneeco.2020.101185

0928-7655/©2020TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/ 4.0/).

(2)

usetheoptimalamountsof(goodandbad)outputsandinputsconsistentwithprofitmaximization(extensibletorevenue maximizationand/orcostminimization);i.e.,theyshouldbeallocativeefficientbysupplyinganddemandingtheoptimal bundles(ormixes)ofoutputandinputs.

Followingtheliteratureoneconomicefficiencymeasurementanditsdecompositionintotechnicalandallocative com-ponentsinitiatedbyFarrell(1957),webringthistheoreticalframeworktothefieldofenvironmentaleconomics.Inthis framework,economicefficiencyanalysisnotonlyconsiderstheproductionofgoodoutputs(associatedtoprivaterevenue), butmustalsoaccountfortheeconomiccostofproducingbadoutputs,whichisproxiedthroughtheso-calleddamagecost functions;andsincebadoutputsareexternalities,theyarealsorelatedintheliteraturetosocialcostfunctions,e.g.,see BretschgerandPattakou(2019).Fromtheperspectiveofthefirm,thepossibilityofsimultaneouslyincreasingmarketgoods whilereducingenvironmentallydamagingoutputsiseconomicallyappealing.Ononehand,thereisaclear(private) incen-tivetoincreaserevenue,butalsocurrentsustainabilityandcorporatesocialresponsibilityconcernsareincreasinglybrought intofirms’decisionmaking.Thismeansthatinefficientfirms,fallingshortfromthebestpracticefrontier,canimproveits environmentalefficiencyatnoprivatecost,andthereforeitispossibletoreducetheexternalitiescausedbybadoutputs bymatchingbestpracticestandardsofefficiency.Nowadaysfirmsroutinelyadvertiseenvironmentalachievementsintheir annualreports;e.g.,fortheairlineindustrythereductionofthecarbonfootprintisbecomingincreasinglyimportant.

Fromtheperspectiveofenvironmentaleconomics,theaboveframeworkcanberelatedtothenotionofnetprofits(ornet revenuesifweconsiderproductiveinputsasgiven,aswedoforsimplicityinourmodel).Thismeansthattheobjective func-tionofthefirmcorrespondstothemaximumofitsmarketrevenuesnetoftheenvironmentalcoststhatitcausesthroughthe inevitableby-productionofbadoutputs(i.e.,thematerialsbalanceprincipleassociatedtothefirstlawofthermodynamics). Ofcourse,thereductionofbadoutputsentailsabatementcostsifthefirmisefficient,therebyproducingatthetechnological frontier(andthisisreflectedbythesubstitutabilitycharacteristicsofthetechnologybetweenthegoodandthebadoutputs, seeMurtyetal.,2012).Butifthefirmistechnicallyinefficient,bothgoodandbadoutputscanbefreelyincreasedand reduced,respectively.Consequently,inefficientfirmscanincreaseprivaterevenuewhilereducingenvironmentaldamage. Insum,theenvironmentaleconomicefficiencymodelthatweproposedintheveinofFarrell(1957)extendstheexisting technologicalmodelsforenvironmentalefficiencymeasurementtoaccountfortheseeconomicdimensionsbypostulating anobjectivefunctionthataimsatmaximizingprivaterevenuenetoftheenvironmentaldamage.

Thedeterminationofeconomicefficiencyisimportantfromamanagerialstandpointfocusedonmarket-oriented perfor-mance,butalsoforotherstakeholdersanddecisionsmakerssuchas,forexample,politicians,localandstategovernments, orregulators(e.g.,environmentalprotectionagencies).Forexample,managersareinterestedinincreasingperformance notonlyinphysicaltermsbytakingadvantageofthebesttechnologyavailable,butalsobyrealizingtheeconomicgains associatedwithallocativeefficiencyimprovements;thatis,thechoiceofoptimaloutputandinputmixes,leadingtoeither maximumprofit,revenueorminimumcost.Theinformationonallocativeefficiencythatoureconomicmodelyieldsis alsorelevantfortheaboveeconomicagentsasimprovingallocativeinefficiencyisarguablycheaperandeasierforfirmsto achievethanimprovingtheirtechnicalinefficiency.Inthissense,beingawareofthelevelofthisinefficiencyandrelated potentialforrevenueincreasesorcostsavingsenablesfirmsto“reapalow-hangingfruit”.Forregulatorsminimizingthe environmentalcostofproductionfromanallocativeperspectiveisalsocritical,asthecostofcarbondioxideemissions (e.g.,relatedtorespiratoryillnesses)couldbelowerthanthoseassociatedtotheuseofpesticides(e.g.,relatedtocancer treatments).Howthepollutinginputscausingbothdamagesshouldberegulatedintermsoftheireconomiccostscannow beaddressedthankstoournewframework.

Consideringonlyatechnologicalperspective,theliteratureonmodelingproductiontechnologiesthataccountforbad outputshasdevelopedfollowingtwoapproachesmainly:oneinvolvingparametricmethods(suchasstochasticfrontier analysis,SFA;Aigneretal.,1977),andonebasedonnonparametricmethods(suchasdataenvelopmentanalysis,DEA;

Charnesetal.,1978;Bankeretal.,1984).Commontobothmethods,manydifferentapproacheshavebeenproposedto assessenvironmentalefficiencyofproductionunits.Lauwers(2009)classifiedtheseapproachesintothreegroups.Thefirst groupconcernsenvironmentallyadjustedproductionefficiencymodels,inwhichundesirableoutputsareincorporatedinto theproductiontechnology.Ingeneral,twomainbranchesofstudieswithinthisgroupcanbedistinguished:(i)treatingbad outputsasstrong(free)disposableinputs(Haynesetal.,1993;HailuandVeeman,2001)or(ii)treatingbadoutputsasweekly disposableoutputsandassumingthenull-jointnessofbothbadandgoodoutputs(Färeetal.,1986,1989).Thesecondgroup ofstudiesconsistsoffrontiereco-efficiencymodels(KorhonenandLuptacik,2004;KuosmanenandKortelainen,2005), whichdonotfollowaxiomaticproductionefficiencyframeworks,butrelateaggregateecologicaloutcomeswitheconomic outcomesonly.Inotherwords,eco-efficiencyismeasuredeitherthroughminimizationofenvironmentaloutcomesgiven economicoutcomes(e.g.,valueadded)orthealternativemaximizationofeconomicoutcomesgiventheenvironmental outcomes.Thethirdgroupofstudiesisbasedontheintroductionofthematerialsbalanceprincipleintoproductionmodels (LauwersandVanHuylenbroeck,2003;Coellietal.,2007;Førsund,2009).Thematerialsbalanceprinciplestatesthatflows intoandoutoftheenvironmentareequal,linkingtherawmaterialsusedintheproductionsystemtooutputs,bothintended andresidualones.

Dakpoetal.’s(2016)recentsurveyofenvironmentalefficiencystudiesextendedtheLauwers(2009)classificationinto thefourth,mostrecent,categoryofby-productionmodels,whicharebasedontheideaofdefiningtwosubtechnologiesin parallel:onethatgeneratesgoodoutputsandasecondthatgeneratesbadoutputs.ThisapproachwasintroducedbyMurty etal.(2012)and,asaconsistentandrelativelynewapproach,itsempiricalapplicationsareflourishing(e.g.,Dakpoetal., 2017;Arjomandietal.,2018;Rayetal.,2018),asareitsextensions(e.g.,Serraetal.,2014;Lozano,2015;Dakpo,2016;

(3)

Førsund,2018).Werelyonthenovelby-productionapproachtointroduceoureconomicenvironmentalefficiencymodel. Nevertheless,itcouldbeeasilyparticularizedforpreviousapproaches.1Wealsoconsiderrecentqualificationsoftheoriginal

by-productionmodelbyDakpo(2016)andFørsund(2018).2

Asanticipated,regardlessthemodelingapproach—parametricornon-parametric—underthefourlistedcategories,a commonfeatureofallpreviousstudiesisthattheyareonlycapableofmeasuringtechnicalefficiencybyfocusingonthe technologicalsideoftheproductionprocess,therebyneglectingthemeasurementofenvironmentalefficiencyfroman economicperspective.Thisallowsustosummarizewhatourmodeldoes;i.e.,enhancingtheexistingapproachesthroughthe introductionofameasureofenvironmentaleconomicinefficiencythat,groundedonthetheoreticalframeworkproposedby

Farrell(1957),considersbothgoodandbadoutputs,andenablesitsdecompositionintotechnicalandallocativecomponents. Tofillinthegapintheliteraturewepostulateacomprehensiveframeworkthatisconsistentwiththeeconomicbehaviorof organizationsintheirattempttomaximizerevenue,butalsoaccountsfortheenvironmentalinefficiencythatresultsfrom thefailuretominimizetheeconomiccostsassociatedtoenvironmentaldamage.Aspreviouslyremarked,thisresultsinthe definitionofaneteconomicfunctionthatmaximizesthedifferencebetweenprivate(market)revenuelessenvironmental (social)cost,usingpricesofgoodandbadoutputs.3 Inthisregard,ourframeworkiscapableofbalancingprivategains

(revenue)andenvironmentaldamage(cost)intoameasureofeconomicinefficiencythatcanbedecomposedaccordingto technicalandallocativecriteria.

From an appliedperspective we rely onDEA techniques becausemost existing empirical applicationsfollow this approach:theyareflexible,donotimposerestrictiveassumptionsontheparametricspecificationofthetechnology,noron thedistributionofenvironmentalinefficiency.4Nevertheless,thedrawbacksofDEAshouldbealsohighlightedandthese

includeitsdeterministicnatureandthesensitivitytooutliers(foracomprehensiveexpositionofstrengthsandweaknesses ofDEAsee,forexample,Stolp(1990),Berg(2010)).Awareofthesecaveats,whichcanbeeventuallyaddressedthrough,e.g., bootstrappingandotherresamplingtechniques(seethemethodsintroducedbySimarandZelenyuk(2006)employedinthe empiricalsection),wedefinetheDEAprogramsthatallowtheempiricalimplementationofournovelapproach.5Ourpointof

departureistheby-productionmodelintroducedbyMurtyetal.(2012),asitrepresentsthemostrecentextensionof previ-ousapproachesandcanarguablybeseenasageneralizationthat,byconsideringtwoindependenttechnologiesfordesirable andundesirableoutputs,avoidssomeoftheirinconsistencies(namely,themultiplicityofoptimalcombinationsof desir-ableandundesirableoutputsforagivenlevelofinputs,anderroneouslysignedmarginalratesoftransformation−shadow prices−betweenoutputsandinputs).

Wedemonstratethepracticalusefulnessofournewlydevelopedmethodologythroughanapplicationtostate-leveldata oftheUnitedStatesagriculturalsector.Agricultureinvolvestheproductionofnotonlygoodoutputssuchasprimaryfood commodities,butalsoofbadoutputsrelatedwith,forexample,theneedforfuel,theusageofpesticides,fertilizersand otheragriculturechemicals,orthemanagementofmanure(Skinneretal.,1997;Reinhardetal.,1999).Examplesofbad outputsassociatedtothesepollutinginputsinagriculturearegreenhousegasemissions,pesticideandnitrogenleaching andrunoff,risktohumanhealthandfishfromexposuretopesticidesandfertilizers,etc.(seeBalletal.,2001;Kellogetal., 2002;Dakpoetal.,2017).Intheempiricalapplicationwearecapableofconsideringtwoofthesebadoutputs:CO2emissions

andpesticideexposures.

Theremainderofthispaperisstructuredasfollows.Thenextsectionreviewstheby-productionmodelsoftechnical inefficiencyandintroducestheirmathematicalunderpinnings.Thesubsequentsectiondevelopsourextensionallowingthe measurementofeconomic(profit)inefficiency.Wethendiscussourempiricalapplication,brieflycommentingthedataset andpresentingtheresults.Conclusionsaredrawninthefinalsection.

2. Theby-productionmodels

Pittman(1983)andFäreetal.(1986)initiatedtheasymmetricmodelingofoutputswhenmeasuringefficiencydepending ontheirnature,increasingthosethataremarket-orientedwhilereducingthosethataredetrimentaltotheenvironment.A keyquestionishowtoaxiomaticallymodeltheproductiontechnologywhencalculatingtechnicalefficiencythroughdistance functions.Mostparticularly,ascommentedintheintroductiontothispaper,shouldtheaxiomsunderlyingtheproduction

1Detailsonthecharacteristicsoftheby-productionapproacharepresentedinthenextsection.

2Althoughweareawareofothermethodologicaldevelopmentsthatrelyontheby-productionmodel,suchasSerraetal.(2014)orLozano(2015),we

havenotconsideredthemsincetheirgeneralideaistomixtheby-productionapproachwithotherefficiencyframeworks,andnotthemodificationofthe modelperse.Hence,ifapplied,theirresultswouldnotbecomparabletothoseoftheoriginalby-productionmodel.

3Themodelcanbeeasilyenhancedtoincludetheminimizationofinputscost,butinsteadwekeepthedefinitionof“environmentalprofitinefficiency”

asatrade-offbetweenprivaterevenueandenvironmentalcost.

4SeeZofioandPrieto(2001)foranexpositionofearlymodelswithinthenon-parametricapproachbasedontheoutput,input,andhyperbolicdistance

functions,whichweresubsequentlyimplementedinaparametricframeworkbyCuestaetal.(2009).Duetal.(2016)relyonthelatterapproachtoestimate carbonabatementscoststhroughshadowprices.

5Brännlundetal.(1995)measuredprofitinefficiencyunderaquotasystemandtheproductionofundesirableoutputsbyDEAmodels.However,they

didnotusepricesforweightingthenegativeexternalitiesanddonotdecomposeprofitinefficiencyintoitsdrivers,somethingthatwewilldointhispaper. Additionally,wenotethatPhamandZelenyuk(2018)definerevenueinefficiencyinthebankingindustryaccountingfornonperformingloans(NPLs), whicharemodeledasundesirableoutputsundertheapproachofweakdisposability.However,themodelisinternaltothefirm(thatis,privaterevenue), asitdoesnotincludeenvironmentalindicators,whiletheydonotimplementitempirically.

(4)

technologyreflecttheirstrongorweakdisposability,andeventually,bemodeledasoutputsorasiftheywereinputs?Among theexistingapproachesfordealingwithundesirableoutputsandefficiency,theby-productionmodelintroducedbyMurty andRussell(2002)andMurtyetal.(2012)iscurrentlyconsideredapreferredoption.

Theby-productionapproachpositsthatcomplexproductionsystemsaremadeupofseveralindependentprocesses (Frisch,1965).Inthismodel,thetechnologycanbeseparatedintosetsofsub-technologies;onefortheproductionofgood outputsandoneforthegenerationofbadoutputs.The“global”technologyimpliesinteractionsbetweenseveralseparate sub-technologies.Førsund(2018)andMurtyandRussell(2018)recentlyclassifiedtheby-productionapproachamongthe multi-equationmodelingapproachesandarguedthatanimportantadvantageofthisapproachisthatitrepresents pollution-generatingtechnologiesbyaccountingfortheMaterialBalancePrinciple,therebysatisfyingthelawsofthermodynamics. Additionally,asMurtyetal.(2012)remarked,theby-productionmodelavoidstwoinconsistenciesofpreviousapproaches. Inparticular,severaltechnicalefficiencycombinationsofgoodandbadoutputs,withvaryinglevelsofbadoutput,couldbe possiblewhenholding(pollutingandnon-polluting)inputquantitiesfixed.However,intheabsenceofabatementactivities implementedbythefirm,thistypeofcombinationiscontrarytothephenomenonofby-production,sinceby-production impliesthat,atfixedlevelsofinputs,thereisonlyonelevelofpollutionatthefrontieroftheproductionpossibilityset. Moreover,itispossibletoobserveanegativetrade-offbetweentheinputsassociatedwithpollution,likefuel,andtheir associatedbadoutput,suchasCO2,whichrepresentsaclearinconsistency(morefuelbutlessCO2).Thesearethereasonswhy

theby-productionapproachisutilizedinthecurrentstudytointroducetheconceptofenvironmentaleconomicinefficiency takingmarketpricesintoaccount.

Inordertoreviewthestandardby-productionapproach,letusformallydefinex∈Rn

+asavectorofinputs,y∈Rm+ as

avectorofgoodoutputs,z ∈Rm

+ asavectorofbadoutputs(e.g.,pollutants),andletusassumethatpDMUshavebeen

observed.Murtyetal.(2012)presentedtheirmodelbysplittingtheinputvectorintotwogroups:non-pollutinginputs, x1 ∈Rn+1andpollution-generatinginputs,x2 ∈Rn+2,withn1+n2=n.6,7Thefirstsetcouldcompriseland,labor,andsoon,

whilethesecondset,inthecontextofourempiricalapplicationonagriculture,consistsofinputslikefuel,fertilizers,and pesticides,whichproducecertainpollutantsasby-products,suchasCO2emissionsandpesticideexposures.Inthisway,

the‘global’technology,denotedbyT ,istheintersectionoftwosub-technologies,T1andT2.WhereasT1isthestandard

productiontechnologywithonlygoodoutputs,T2representstheproductionofbadoutputs.InthemodelbyMurtyetal. (2012),bothtechnologiesarelinkedthroughthelevelofthepollutinginputs.Inmoredetail,Murtyetal.(2012)definein generaltermsthetechnologyas:

T=T1∩T2, (1) where T1=



(x1,x2,y,z)≥0:f (x1,x2,y)≤0



, (2) T2=



(x1,x2,y,z)≥0:z≥g (x2)



(3) andf andgarecontinuouslydifferentiablefunctions.ThesetT1 isastandardtechnologyset,reflectingthewaysin

whichtheinputscanbetransformedintotheintendedoutputs.Thestandardfree-disposabilitypropertiesmaybeimposed byassumingthat ∂f (x1,x2,y)

∂x1 ≤0,

∂f (x1,x2,y)

∂x2 ≤0and

∂f (x1,x2,y)

∂y ≥0.NotealsothatT1 imposesnoconstraintonz;thatis,it

isimplicitlyassumedthattheby-productdoesnotaffecttheproductionofbadoutputs.Ontheotherhand,T2 reflects

aresidual-generationmechanism.Itisworthmentioningthat,intheformulationofT2,pollutionisreallytreatedasan

output.Inparticular,Murtyetal.(2012)assumethat ∂g(x2)

∂x2 >0.Thisexpressionand theformulationofT2 capturethe factthatpollutionisanoutputoftheproductionprocessforwhichdisposalisnotfree.Thispropertywascalled“costly disposability”ofresiduals.InwordsofMurtyetal.(2012):“Costlydisposabilityimpliesthepossibilityofinefficienciesin thegenerationofpollution(e.g.,ifagivenlevelofcoalgeneratessomeminimallevelofsmoketheninefficiencyintheuse ofcoalmayimplythatthislevelofcoalcanalsogenerateagreateramountofsmoke)”.

Inthenon-parametricframeworkofDEA,thetwosub-technologiesmaybeexpressedmathematicallyundervariable returnstoscale(VRS)as:

T1=



(x1,x2,y,z)≥0: p



d=1 dx1d≤x1, p



d=1 dx2d≤x2, p



d=1 dyd≥y, p



d=1 d=1,d≥0



, (4) T2=



(x1,x2,y,z)≥0: p



d=1 dx2d≥x2, p



d=1 dzd≤z, p



d=1 d=1,d≥0



. (5)

6 AyresandKneese(1969)proposedthesetwosamegroupswhenintroducingthematerialsbalanceprincipletoeconomists.

7 AsMurtyetal.(2012),weassumethatDecisionMakingUnitsapplyuniformabatementfactorsand,consequently,thesefactorsarenotexplicitly

(5)

T1in(4)istherepresentationofthegeneralsetT1in(2)underseveralpostulatesasconvexityandminimalextrapolation

(seeBankeretal.,1984).ThesamecanbesaidforT2in(5)withrespecttothegeneralexpressionofT2in(3).Notethatthe

sub-technologiesaredefined,inthisframework,withtwodifferentintensityvariables:and.Otherwise,wewillhavea confusionbetweenthesevariablesintheabovetwoproductionpossibilitysets.

Regardingthemeasurementoftechnicalefficiency,Murtyetal.(2012)showedthatsomeconventionalapproaches,like thehyperbolicanddirectionaldistancefunctiondefinedonT=T1∩T2,areinadequateinthecontextofby-production.

Weusetheterm“output-oriented”inthiscontextbecausethesedistancefunctionsmeasureefficiencywithrespectto both goodandbadoutputs simultaneously.In thisway,theweaknessis duetothefactthat thetwo aforementioned measuresusethesamecoefficient(decisionvariable)fordeterminingefficiencybothinT1 forthegoodoutputsandT2

forthebadoutputs.Thisimpliesthatitispossibletoreachtheefficiencyfrontierforsomeofthesub-technologies,but theobservationcanfallshortofachievingthefrontieroftheotherone.Forconsistency,efficiencyintheby-production approachrequiresmodelsthatprojecttheassessedobservationsontoboththeefficientfrontierofT1 andtheefficient

frontierofT2.

TheabovementioneddrawbacksofstandardapproachesmotivatedMurtyetal.(2012)toproposeadifferentmeasurefor dealingwithgoodandbadoutputsunderby-production.ForDMU0,thismeasureisgood-output-specificand

bad-output-specific,andisbasedontheindexpreviouslydefinedbyFäreetal.(1985):

min 1 2

1 m m



j=1 j

standard efficiency + m1 m



k=1 k

environmental efficiency

s.t. p



d=1 dxid≤xi0, i=1,...,n p



d=1 dyjd≥yj0/j, j=1,...,m p



d=1 d=1, p



d=1 dxid≥xi0, i=n1+1,...,n p



d=1 dzkd≤kzk0, k=1,...,m p



d=1 d=1, j≤1, j=1,...,m k≤1, k=1,...,m d≥0,d≥0, d=1,...,p (6)

Model(6)projectstheassessedDMU0(x10,x20,y0,z0) ontotheefficientfrontierofthetechnologyTbyincreasinggood

outputsandreducingbadoutputs.Thesechangesarevariable-specific,usingadifferentdecisionvariableforeachdimension: j,j=1,...,m,andk,k=1,...,m.Theconstraintsofmodel(6)coincidewiththerestrictionsthatdefinetheDEAproduction

possibilitysetsT1 andT2 in(4)and(5).Additionally,theoptimalvalueof(6)coincideswiththemeanofthestandard

(6)

separable.Inthiscase,thismeansthattheoptimalvaluecanbedeterminedasthemeanofamodelthatminimizes 1 m m



j=1 j

onT1andamodelthatminimizesm1

m



k=1 konT2: min 1 m m



j=1 j s.t. p



d=1 dxid≤xi0, i=1,...,n p



d=1 dyjd≥yj0/j, j=1,...,m p



d=1 d=1, j≤1, j=1,...,m d≥0, d=1,...,p min 1 m m



k=1 k s.t. p



d=1 dxid≥xi0, i=n1+1,...,n2 p



d=1 dzkd≤kzk0, k=1,...,m p



d=1 d=1, k≤1, k=1,...,m d≥0, d=1,...,p (7)

ItisworthmentioningthattherecentpaperbyFørsund(2018)arguedthatnon-pollutioncausinginputsshouldalsobe includedintechnologyT2giventhatsubstitutionbetweenthetwogroupsofinputscanhelpmitigatethepollution.Dakpo etal.(2017)indicatedthatsomeadditionalconstraintsmustbeaddedtotheby-productionapproachofMurtyetal.(2012)in ordertoguaranteethattheprojectionpointsfortheinputdimensionsarethesameinT1andT2.Inparticular,thecondition

thatshouldbeincorporatedtomodel(6)wouldbe:

p



d=1 dxid= p



d=1

dxid,

i.Hereafter,weuseTMtodenotetheproduction

possibilitysetdefinedastheintersectionofT1andT2in(1)and(2),respectively,asawayofhighlightingthatthedefinition

ofthistechnologycorrespondstotheoriginalproposalofMurtyetal.(2012).Inthesameway,weuseTDtodenotethe

productionpossibilitysetdefinedfromtheoriginalby-productionapproachbutincorporatingtheconstraints

p



d=1 dxid= p



d=1

dxid,

i,aspointedoutbyDakpoetal.(2017).Finally,wewillutilizeTMF todenotetheproductionpossibilityset

definedbyMurtyetal.(2012)butincorporatingnon-pollutinginputsintechnologyT2.Likewise,TDFdenotestheproduction

possibilitysetàlaDakpoetal.(2017)butagainconsideringnon-pollutinginputsinthedefinitionoftechnologyT2.

Tointroduceoureconomicinefficiencymodel,weextendthestate-of-the-artofby-productionapproach(Murtyetal., 2012;Dakpoetal.,2017andFørsund,2018)byincorporatinginformationonmarketprices.Todothat,weresorttoduality theoryfollowingChambersetal.(1998),and,morerecently,Aparicioetal.(2015),Aparicioetal.(2016a),andAparicioetal. (2016b).Inparticular,werecallrelevantdualityresultsconcerningthedirectionaldistancefunction8.Consequently,we

startoutbydefiningthistypeofmeasurefromanoutput-orientedperspectiveinthecontextofby-production.Underthe viewpointintroducedbyMurtyetal.(2012),weneedameasurethatallowsustoprojecttheassessedobservationsonto

8 Althoughthedirectionaldistancefunctioniswell-knownduetoitsflexibilityandbecauseitencompassestheShepharddistancefunctions,itpresents

somedrawbacks.Thismeasureneglectsslacksand,therefore,itdoesnottakeintoaccountallsourcesoftechnicalinefficiency(see,e.g.,Ray,2004). Additionally,theuseofthedirectionaldistancefunctioncouldresultininfeasibilitiesundercertainconditions,whichareanalysedindetailinBriecand Kerstens(2009).

(7)

theefficientfrontiersofT1 andT2simultaneously.Inthisway,the“by-production”directionaloutput-orienteddistance

functionfortheMurtyetal.(2012)approachwithdirectionalvectorg= (0,y0,z0) isdefinedasfollows: → B



x0,y0,z0;TM



= max ıT1ˇT1+ıT2ˇT2 s.t. p



j=1 j0xij≤xi0, i=1,...,n1 (8.1) p



j=1 j0xij≤xi0, i=n1+1,...,n2 (8.2) − p



j=1 j0yrj+ˇT1yr0≤−yr0, r=1,...,m (8.3) p



j=1 j0=1, (8.4) − p



j=1 j0xij≤−xi0, i=n1+1,...,n2 (8.5) p



j=1 j0zkj+ˇT2zk0≤zk0, k=1,...,m (8.6) p



j=1 j0=1, (8.7) ˇT1,ˇT2,j0,j00 (8.8) (8)

Model(8)projectstheassessedDMU0(x10,x20,y0,z0) ontotheefficientfrontierofthetechnologyTbyincreasinggood

outputsandreducingbadoutputs.Inthismodel,thechangesinoutputsarenotvariable-specific,i.e.,itdoesnotutilize adifferentdecisionvariableforeachdimension.Instead,itusesthesameexpansionfactorforthegoodoutputs,ˇT1,and thesamereductionfactorforthebadoutputs,ˇT2.Moreover,theconstraintsofmodel(8)coincidewiththerestrictions thatdefinetheDEAproductionpossibilitysetsT1andT2in(4)and(5).Additionally,theexogenouscoefficientsıT1 ≥0and

ıT2 ≥0,ıT1+ıT2=1,whichappearintheobjectivefunction,areweightsthatarefixedexogenouslybythecorresponding decisionmaker(manager,politician,regulator,etc.)toreflecttherelativeimportanceofthestandard(traditional)wayof producingversusthenewandcleanparadigmforgeneratinggoodsandservices.Additionally,itslineardualis:

→ B



x0,y0,z0;TM



= min n1



i=1

v

1 i0xi0+ n2



i=n1+1

v

1 i0xi0− m



r=1 u1r0yr0+˛10+ − n2



i=n1+1

v

2 i0xi0+ m



k=1 u2k0zk0+˛20 s.t. n1



i=1

v

1 i0xij+ n2



i=n1+1

v

1 i0xij− m



r=1 u1r0yrj+˛01≥0, j=1,...,p (9.1) m



r=1 u1r0yr0≥ıT1, (9.2) − n2



i=n1+1

v

2 i0xij+ m



k=1 u2 k0zkj+˛20≥0, j=1,...,p (9.3) m



k=1 u2 k0zk0≥ı T2, (9.4)

v

1 i0,

v

2i0,u1r0,u2k0≥0, (9.5) ˛1 0,˛20free (9.6) (9)

Finally,tocompletethisopeningsection,werecallthefirstadditivemeasureanddecompositionofeconomicinefficiency proposedintheliterature.WerefertotheNerlovianprofitinefficiencymeasure,whichcanbedecomposedintotechnical

(8)

inefficiency(thedirectionaldistancefunction)andaresidualterminterpretedasallocativeinefficiency(Chambersetal., 1998).9

In the standard production context, considering private revenue and cost only, and given a vector of input and output prices (ω,q) ∈Rn++m and technology T , the profit function ˘ is defined as ˘T(ω,q)=

max x,y



m



r=1 qryr− n



i=1 ωixi: (x,y)∈T



.ProfitinefficiencyàlaNerloveforDMU0isdefinedasoptimalprofit(thatis,the

valueof theprofitfunctionatmarketprices)minusobservedprofit,both normalizedbythevalueofa reference

vec-torg= (gx,gy)Rn+m + : ˘T(ω,q)−





m r=1 qryr0− n



i=1 ωixi0



m



r=1 qrgyr+ n



i=1 ωigix

.Additionally,Chambersetal.(1998)showedthatprofitinefficiency

maybedecomposedintotechnicalinefficiencyandallocativeinefficiency,wheretechnicalinefficiencycorrespondstothe directionaldistancefunction→DT(x0,y0;gx,gy)=max



ˇ:(x0−ˇgx,y0+ˇgy)∈T



: ˘T(ω,q)−



m



r=1 qryr0− n



i=1 ωixi0



m



r=1 qrgry+ n



i=1 ωigix =→DT



x0,y0;gx,gy



+AIN T



x0,y0;ω,q;gx,gy



(10)

Inmodel(10),theleft-handsidecorrespondstoameasureofprofitinefficiency,definedasthenormalizeddifference betweenmaximumprofitandactualprofitatobservedmarketprices.Thismaybedecomposedintotechnicalinefficiency, i.e.,thevalueofthedirectionaldistancefunction→DT(x0,y0;gx,gy),andpriceorallocativeinefficiencyAITN(x0,y0;ω,q;gx,gy).

3. Measuringeconomicinefficiencywithby-productionmodelsinDEA 3.1. EconomicinefficiencymodelconsideringMurtyetal.’s(2012)technology

Wefirstintroducesomenotationanddefinitions.Givenafixedlevelofinputx0= (x10,...,xn0)∈Rn+andafixedlevel

ofbadoutputz0= (z10,...,zm0)∈Rm+,letusalsodefineasr (x0,z0,q,T ) themaximumfeasiblerevenuegiventheoutput

pricevectorq= (q1,...,qm)∈Rm++: r (x0,z0,q,T )=sup y



m



r=1 qryr: (x0,y,z0)∈T



=sup y



m



r=1 qryr: (x0,y,z0)∈ [T1∩T2]



. (11)

Eq.(11)representsagenericformulationforexpressinghowtodeterminethemaximumrevenue

m



r=1

qryr forgood

outputsthatcanbeobtainedgivenatechnologyT=T1∩Tandfixedquantitiesofinputsx0andbadoutputsz0.

UnderMurtyetal.’s(2012)approach, thisoptimizationproblemcanbealwayssolvedindependentlyonT1 andT2.

Therefore,asforT1,maximumfeasiblerevenuegiventheoutputpricevectorq= (q1,...,qm)∈Rm++maybedeterminedby:

r



x0,z0,q,TM



=sup y



m



r=1 qryr: (x0,y,z0)∈TM



=sup y



m



r=1 qryr: (x0,y,z0)∈T1



. (12)

Again,(12)representsageneralformulationforstatinghowtodeterminethemaximumrevenue

m



r=1

qryrforgoodoutputs

thatcanbeobtainedgiventhesub-technologyT1andfixedquantitiesofinputsx0andbadoutputsz0.

9 SeealsoKoopandDiewert(1982)andZieschang(1983)forearlierdecompositionsofeconomic(cost)efficiencyintotechnicalandallocative

com-ponents.TheseauthorsimplementFarrell’s(1957)decompositionbasedontheradialinputmeasurewithinaparametric(Cobb-Douglas)deterministic approach.

(9)

Next,weexplicitlyshowhowthevalueofr



x0,z0,q,TM



canbecalculatedinDEAundertheby-productionframework (seeRay,2004): r



x0,z0,q,TM



= max ,y s



r=1 qryr s.t. p



j=1 jxij≤xi0, i=1,...,n1 (13.1) p



j=1 jxij≤xi0, i=n1+1,...,n2 (13.2) − p



j=1 jyrj+yr≤0, r=1,...,m (13.3) p



j=1 j=1, (13.4) j≥0, j=1,...,p (13.5) yr≥0, r=1,...,m (13.6) (13)

Model(13)istheDEAimplementationofthegeneralexpressionin(12)fordeterminingmaximumrevenue.Theobjective functionisthesame,whiletheconstraintscoincidewiththosethatdefineT1in(4).

Thedualprogramof(13)is(14):10

min c,d, = n1



i=1 ci0xi0+ n2



i=n1+1 ci0xi0+ s.t. n1



i=1 ci0xij+ n2



i=n1+1 ci0xij− m



r=1 dr0yjr+ 0≥0, j=1,...,p (14.1) dr0≥qr, r=1,...,m (14.2) ci0≥0 i=1,...,n (14.3) (14)

Being(14)thedualproblemof(13),thedecisionvariablesci0,i=1,...,n,anddr0,r=1,...,m,canbeinterpretedas

shadowpriceswhilethedecisionvariable 0maybeinterpretedasshadowprofit(seeAparicioetal.,2015).

Ifrevenuemaximizationisassumed,asisthecasehere,thefirmfacesexogenouslydeterminedmarketoutputprices. Followingthisline,wemaysupposethattheobjectiveoftheDMUistochoosetheoutputscombinationthatyieldthe maximumrevenueattheapplicableprices.Inthissense,revenueinefficiencymeasureshowcloseistheobservedrevenue oftheDMUunderevaluationtothemaximumfeasiblerevenue.Toevaluateeconomiclossduetorevenueinefficiency, inthecontextofthedirectionaloutputdistancefunctions,FäreandPrimont(2006)provedthatanormalizedmeasureof

revenueinefficiency,inparticulartheratio

r(x0,q,T )− m



r=1 qryr0 m



r=1 qrgr

,maybedecomposedintotechnicalinefficiency,→Do



x0,y0;g



,

plusaresidualterminterpretedasallocativeinefficiencyintheFarrelltradition,wherer (x0,q,T ) and →

Do



x0,y0;g



denote

the‘standard’revenuefunctionanddirectionaloutputdistancefunction,respectively,andgisthecorrespondingreference directionalvector.

Likewise,wecanintroducecostefficiencyfollowingthesamerationale,andbasedonthecostfunction.However,in ourcontextweareinterestedinenvironmentalcostfunctionsratherthanprivatecosts,representingameasureofthe (monetary)minimaldamagecausedbytheproductionofundesirableoutputs.Theenvironmentalcostfunctionrepresents a“monetizedmetric”oftheecologicalfootprintofthebadoutputs;see,forexample,Pearceetal.(1996)whorelatethe damagepertonofCO2withthesocialcostofcarbon(SCC).Correspondingly,anobservationiseconomicallyinefficientin

environmentaltermsif,giventheamountofundesirableoutputsproduced,itcauseslargerdamagethanthatrepresented

10Actually,thedualprogramofmodel(13)hasanadditionalsetofnon-negativityconstraintsforthedecisionvariablesd

r0,r=1,...,m.However,this

(10)

bytheminimumenvironmentalcostfunction(eitherasaresultoftechnicalorallocativeinefficiencies).Letusassumethat itispossibletoobserveorestimatepricesfortheundesirableoutputs:w= (w1,...,wm)∈Rm++.UnderMurtyetal.’s(2012)

approach,theeco-damagefunctionwillbenon-parametricallydetermineddirectlyfromT2asfollows.

D



x0,y0,w,TM



= min ,z m



k=1 wkzr s.t. p



j=1 jxij≥xi0, i=n1+1,...,n2 (15.1) − p



j=1 jzkj+zk≥0, k=1,...,m (15.2) p



j=1 j=1, (15.3) j≥0, j=1,...,p (15.4) zk≥0, k=1,...,m (15.5) (15)

Model(15)minimizestheenvironmentalcost,

m



k=1

wkzr,associatedwiththeproduction/emissionofz(badoutputs)

givenafixedquantityofpollution-generatinginputs.Theconstraintsin(15)coincidewiththerestrictionsthatdefinethe sub-technologyT2in(5).

Thedualprogramof(15)is(16): max e,f, n2



i=n1+1 ei0xi0−0 s.t. n2



i=n1+1 ei0xij− m



k=1 fk0zkj−0≤0, j=1,...,p (16.1) fk0wk, r=1,...,m (16.2) ei0,fk0≥0 (16.3) (16)

Being(16)thelineardualofmodel(15),itiswell-knownthattheoptimalvaluesofbothmodelsarerelated.

Wenowderive,byduality,anormalizedmeasureofeconomicinefficiencyandshowhowitcanbedecomposedinto (desirable)revenueinefficiencyandeco-damageinefficiency.Inordertodothat,wefirstprovethefollowingtechnical proposition. Proposition1. LetıT1,ıT2 >0. Then, inf t,h

r



x0,z0,t,TM



− m



r=1 tryr0+ m



k=1 hkzr0−DT2



x0,y0,h,TM



:min

m



r=1 tryr0 ıT1 , m



k=1 hkzk0 ıT2

≥1

≥→B



x0,y0,z0;TM



.

Proof. Let x0 ∈Rn+, y0 ∈Rm+, z0 ∈R+m and let t ∈Rm+, h∈Rm+ such that min

m



r=1 tryr0 ıT1 , m



k=1 hkzk0 ıT2

≥1. Let



c0∗,d∗0, ∗0



be an optimal solution of (14) and let



e∗0,f0∗,∗0



be an optimal solution of (16) when x0 ∈Rn+,

(11)



v

1

0,u10,˛10,

v

20,u20,˛20



=



c0∗,t, 0∗,e∗0,h,∗0



is a feasible solution of (9). Constraints (9.5) and (9.6) are trivially satisfied. Regarding (9.1), n1



i=1 c∗i0xij+ n2



i=n1+1 c∗i0xij− m



r=1 tryrj+ 0∗

≥ by(14.2) n1



i=1 c∗i0xij+ n2



i=n1+1 c∗i0xij− m



r=1 d∗r0yrj+ 0∗

≥ by(14.1) 0. As for (9.2), m



r=1 tryr0 ıT1 ≥1 since m



r=1 tryr0 ıT1 ≥min

m



r=1 tryr0 ıT1 , m



k=1 hkzk0 ıT2

≥1. Therefore, m



r=1

tryr0≥ıT1. In the same way,

it is possible to prove that (9.3) and (9.4) are also satisfied. In particular, constraint (9.3) holds by (16.1) and (16.2). Consequently,



c∗0,t, ∗0,e∗0,h,∗0



is a feasible solution of (9). Regarding the objective function of (9) evaluated at this point, →B



x0,y0,z0;TM



≤ n1



i=1 c∗i0xi0+ n2



i=n1+1 c∗i0xi0− m



r=1 tryr0 + ∗0− n2



i=n1+1 e∗i0xi0+ m



k=1 hkzk0+ ∗0 = r



x0,z0,t,TM



− m



r=1 tryr0+ m



k=1 hkzr0−D



x0,y0,h,TM



, since models (13) and (14) have the same optimal value and models (15) and (16) also have the same optimal value. In this way, →B



x0,y0,z0;TM



is a lower boundoftheset

n1



i=1 ci0∗(t) xi0+ n2



i=n1+1 ci0∗(t) xi0− m



r=1 tryr0+ ∗0(t)− n2



i=n1+1 e∗i0(h) xi0 + m



k=1 hkzk0+∗0(h) :

(t,h)∈S0



, where



c∗0(t) ,d∗0(t) , ∗0(t)



is any optimal solution of (14) when q=t and



e∗0(h) ,f0∗(h) ,∗0(h)



is any opti-mal solution of (16) when w=h. Note that

n1



i=1 c∗i0(t) xi0+ n2



i=n1+1 c∗i0(t) xi0− m



r=1 tryr0+ ∗0(t)− n2



i=n1+1 e∗i0(h) xi0 + m



k=1 hkzk0+∗0(h) :

(t,h)∈S0



=



r



x0,z0,t,TM



− m



r=1 tryr0+ m



k=1 hkzr0−D



x0,y0,h,TM



:

(t,h)∈S0



,withS0=

(q,w) ∈Rm++m:min

m



r=1 qryr0 ıT1 , m



k=1 wkzk0 ıT2

≥1

.Now,giventhat theinfimumofa setisthegreatestlowerbound

ofthatset,weseethatinf

t,h



r



x0,z0,t,TM



− m



r=1 tryr0+ m



k=1 hkzr0−D



x0,y0,h,TM



: (t,h)∈S0



≥→B



x0,y0,z0;TM



, whichistheinequalitythatwewereseeking.

Let (q,w) ∈Rm+++mbemarketpricesforgoodandbadoutputs,respectively.Then,(˜q, ˜w)= (q,w)

min{ m



r=1 qr yr0 ıT1 , m



k=1 wkzk0 ıT2 } ∈S0= {(q,w)∈Rm+m+ :min{ m



r=1 qryr0 ıT1 , m



k=1 wkzk0 ıT2 }≥1}. Consequently,applyingProposition1,weget

r



x0,z0, ˜q,TM



− m



r=1 ˜qryr0+ m



k=1 ˜ wkzr0−D



x0,y0, ˜w,TM



≥ inf t,h



r



x0,z0,t,TM



− m



r=1 tryr0+ m



k=1 hkzr0−D



x0,y0,h,TM



: (q,h)∈S0



≥→B



x0,y0,z0;TM



. (17)

(12)

Thisinequalitywillbeusefulfor statingthedesiredrelationshipbetweeneconomicenvironmentalinefficiencyand

B



x0,y0,z0;TM



.

Finally,giventhatr



x0,z0,t,TM



isafunctionhomogeneousofdegree+1intandD



x0,y0,h,TM



isafunction homo-geneousofdegree+1inh,then



r



x0,z0,q,TM



− m



r=1 qryr0



+





m k=1 wkzr0−D



x0,y0,w,TM





min

m



r=1 qryr0 ıT1 , m



k=1 wkzk0 ıT2

≥→B



x0,y0,z0;TM



. (18)

Notethattheleft-handsideof(18)maybeinterpretedasa(normalized)measureofeconomicenvironmentalinefficiency. Additionally,followingFarrell’stradition,theright-handsidecanbeinterpretedas(environmental)technicalinefficiency andtheresidualtermassociatedwithclosingtheinequalitycouldbeinterpretedasallocativeinefficiency.Moreover,itis possibletodecomposetheleft-handsideof(18)into

r



x0,z0,q,TM



− m



r=1 qryr0+ m



k=1 wkzr0−D



x0,y0,w,TM



min

m



r=1 qryr0 ıT1 , m



k=1 wkzk0 ıT2

OverallInefficiency = = r



x0,z0,q,TM



− m



r=1 qryr0 min

m



r=1 qryr0 ıT1 , m



k=1 wkzk0 ıT2

(Good)RevenueInefficiency + m



k=1 wkzr0−D



x0,y0,w,TM



min

m



r=1 qryr0 ıT1 , m



k=1 wkzk0 ıT2

Eco-DamageInefficiency . (19)

However,notethatthenormalizationtermusedin(18)and(19)−thatis,min

m



r=1 qryr0 ıT1 , m



k=1 wkzk0 ıT2

−dependsontwo

differentterms,incontrasttowhathappenswithrespecttotheNerlovianprofitinefficiencymeasurein(10).Thismeansthat,

dependingontheobserveddataforeachDMU,overallinefficiencyisnormalizedbyeither

m



r=1 qryr0 ıT1 or m



k=1 wkzk0 ıT2 .Inother words,inthesamesample,theDMUscouldusedifferentnormalizationfactorsfortheirmeasureofoverallinefficiency. Somethingthatmakesdifficultthecomparisonofresults.Hence,byanalogywiththestandardapproachbasedonthe directionaldistancefunction,wesuggestresortingtoanendogenousvalueforıT1and,therefore,alsoforıT2=1ıT1,such

(13)

that m



r=1 qryr0 ıT1 = m



k=1 wkzk0

ıT2 .Inotherwords,thevalueofthisendogenousıT1makesthetwocomponentsbeequal.Itiseasyto checkthatthisvalueisıT1∗=

m



r=1 qryr0/



m



r=1 qryr0+ m



k=1 wkzk0



.

3.2. EconomicinefficiencymodelconsideringDakpoetal.’s(2017)approach

WenowturntoDakpoetal.’s(2017)approach.Inthiscase,theprojectionpointsinthetwosubtechnologiesfortheinput dimensionsmustcoincide.The“by-production”directionaloutputdistancefunctionunderthisapproachisasfollows:11

→ B



x0,y0,z0;TD



=max ıT1ˇT1+ıT2ˇT2 s.t. p



j=1 j0xij≤xi0, i=1,...,n1 (20.1) p



j=1 j0xij≤xi0, i=n1+1,...,n2 (20.2) − p



j=1 j0yrj+ˇT1yr0≤−yr0, r=1,...,m (20.3) p



j=1 j0=1, (20.4) − p



j=1 j0xij≤−xi0, i=n1+1,...,n2 (20.5) p



j=1 j0zkj+ˇT2zk0≤zk0, k=1,...,m (20.6) p



j=1 j0=1, (20.7) − p



j=1 j0xij+ p



j=1 j0xij≤0, i=n1+1,...,n2 (20.8) ˇT1,ˇT2,j0,j00 (20.9) (20)

Model(20)islikemodel(8),wheretheDakpoetal.’s(2017)approachhasbeenconsideredthroughconstraint(20.8), whichinterconnectstheprojectionsofthepollution-generatinginputsinT1andT2.

11Constraints(20.2)and(20.5)implythat p



j=1 j0xij+ p



j=1

j0xij≥0,foralli=n1+1,...,n2.Thisinequality,togetherwith(20.8),implies p



j=1 j0xij= p



j=1

j0xijforalli=n1+1,...,n2,whichcoincideswiththeconstraintrelatedtoDakpoetal.’s(2017)approach.Weprefertoinclude(20.8)insteadof p



j=1 j0xij= p



j=1

(14)

Itslineardualis: → B (x0,y0,z0;TD)=min n1



i=1

v

1 i0xi0+ n2



i=n1+1

v

1 i0xi0− m



r=1 u1r0yr0+˛10+ − n2



i=n1+1

v

2i0xi0+ m



k=1 u2k0zk0+˛20 s.t. n1



i=1

v

1 i0xij+ n2



i=n1+1

v

1 i0xij− m



r=1 u1 r0yrj+˛10+ (21.1) − n2



i=n1+1 i0x ij≥0,j=1,...,p m



r=1 u1r0yr0≥ıT1, (21.2) − n2



i=n1+1

v

2i0xij+ m



k=1 u2k0zkj+˛20+ n2



i=n1+1 i0xij≥0,j=1,...,p (21.3) m



k=1 u2 k0zk0≥ıT2, (21.4)

v

1 i0,

v

2 i0,u 1 r0,u2k0, i00, (21.5) ˛1 0,˛20free (21.6) (21)

Models(20)and(21)arerelatedbythetheoryofLinearProgramming.

Inthiscontextwenowdefineanewsupportfunction,representingprofitinDakpoetal.’smodel,as



x0,q,w,TD



:



x0,q,w,TD



=max m



r=1 qryr− m



k=1 wkzk s.t. p



j=1 j0xijxi0, i=1,...,n1 (22.1) p



j=1 j0xij≤xi0, i=n1+1,...,n2 (22.2) − p



j=1 j0yrj+yr≤0, r=1,...,m (22.3) p



j=1 j0=1, (22.4) − p



j=1 j0xij−xi0, i=n1+1,...,n2 (22.5) p



j=1 j0zkj−zk≤0, k=1,...,m (22.6) p



j=1 j0=1, (22.7) − p



j=1 j0xij+ p



j=1 j0xij≤0, i=n1+1,...,n2 (22.8) yr,zk,j0,j0≥0, (22.9) (22)

(15)

whichmaximizesthedifferencebetweenprivaterevenueandeco-damagecostsinourby-productioncontext.Notethat theDakpoetal.’s(2017)approachhasbeenconsideredinmodel(22)throughconstraint(22.8).

Thelineardualof(22)is:



x0,q,w,TD



=min n1



i=1 ci0xi0+ n2



i=n1+1 ci0xi0+ 0+ − n2



i=n1+1 ei0xi0+0 s.t. n1



i=1 ci0x ij+ n2



i=n1+1 ci0x ij− m



r=1 dr0y rj+ 0− n2



i=n1+1 ai0x ij≥0, (23.1) j=1,...,p, dr0≥qr, (23.2) − n2



i=n1+1 ei0x ij+ m



k=1 fk0z kj+0+ n2



i=n1+1 ai0x ij≥0, (23.3) j=1,...,p, fk0≤wk, (23.4) ci0,d r0,ei0,fk0,ai0≥0 (23.5) 0,0free. (23.6) (23)

ByLinearProgramming,theoptimalvaluesofmodel(22)and(23)arerelated. Next,weshowarelationshipbetween



x0,q,w,TD



and→B



x0,y0,z0;TD



. Proposition2. LetıT1,ıT2 >0. Then, inf t,h



x0,t,h,TD



− m



r=1 tryr0+ m



k=1 hkzr0:min

m



r=1 tryr0 ıT1 , m



k=1 hkzk0 ıT2

≥1

≥→B



x0,y0,z0;TD



.

Proof.FollowingthesamestepsthaninProposition1,wegetthedesiredresult. ApplyingProposition2,withmarketprices (q,w),wegetthefollowinginequality.



x0,q,w,TD





m



r=1 qryr0− m



k=1 wkzk0



min

m



r=1 qryr0 ıT1 , m



k=1 wkzk0 ıT2

≥→B



x0,y0,z0;TD



. (24)

Theleft-handsidein(24)maybeinterpretedasameasureofeconomicenvironmentalinefficiency,whichcouldbe decomposedintotechnicalinefficiency(theright-handsidein(24))andaresidualterm,interpretedasallocativeinefficiency.

(16)

3.3. EconomicinefficiencymodelconsideringFørsund’s(2018)proposal

Finally,itispossibletoincorporateFørsund’s(2018)proposal,adaptingMurtyetal.(2012)andDakpoetal.(2017).To dothis,itissufficienttoincludethenon-pollutinginputsinthesub-technologyT2.TheresultsofProposition1and2are

validfor→B



x0,y0,z0;TMF



and→B



x0,y0,z0;TDF



.Hence,wehavemodel(25).

→ B



x0,y0,z0;TMF



= max ıT1ˇT1+ıT2ˇT2 s.t. p



j=1 j0xij≤xi0, i=1,...,n1 (25.1) p



j=1 j0xij≤xi0, i=n1+1,...,n2 (25.2) − p



j=1 j0yrj+ˇT1yr0≤−yr0, r=1,...,m (25.3) p



j=1 j0=1, (25.4) − p



j=1 j0xij≤−xi0, i=1,...,n (25.5) p



j=1 j0zkj+ˇT2zk0≤zk0, k=1,...,m (25.6) p



j=1 j0=1, (25.7) ˇT1,ˇT2,j0,j00, (25.8) (25)

Model(25)islikemodel(8),wheretheFørsund’s(2018)approachhasbeenconsideredbychangingi=n1+1,...,n2by

i=1,...,ninconstraint(25.5).And D



x0,y0,w,TMF



= min ,z m



k=1 wkzr s.t. p



j=1 jxij≥xi0, i=1,...,n (26.1) − p



j=1 jzkj+zk≥0, k=1,...,m (26.2) p



j=1 j=1, (26.3) j≥0, j=1,...,p (26.4) zk≥0, k=1,...,m (26.5) (26) with r



x0,z0,q,TM



− m



r=1 qryr0+ m



k=1 wkzr0−D



x0,y0,w,TMF



min

m



r=1 qryr0 ıT1 , m



k=1 wkzk0 ıT2

≥→B



x0,y0,z0;TMF



. (27)

(17)

Model(26)allowstodeterminethedamagefunctionwhentheMurtyetal.(2012)approachisadaptedthroughFørsund’s (2018)proposal.Additionally, theleft-handsidein (27)maybeinterpreted asa measureofeconomic environmental inefficiency.Inparticular,itispossibletodecomposeitinto

r



x0,z0,q,TM



− m



r=1 qryr0+ m



k=1 wkzr0−D



x0,y0,w,TMF



min

m



r=1 qryr0 ıT1 , m



k=1 wkzk0 ıT2

OverallInefficiency = = r



x0,z0,q,TM



− m



r=1 qryr0 min

m



r=1 qryr0 ıT1 , m



k=1 wkzk0 ıT2

(Good)RevenueInefficiency

+ m



k=1 wkzr0−D



x0,y0,w,TMF



min

m



r=1 qryr0 ıT1 , m



k=1 wkzk0 ıT2

Eco-DamageInefficiency . (28)

RegardingDakpoetal.’s(2017)model,includingFørsund’s(2018)extension,wehave: B(x0,y0,z0;TDF)=max ıT1ˇT1+ıT2ˇT2 s.t. p



j=1 j0xij≤xi0, i=1,...,n1 (29.1) p



j=1 j0xij≤xi0, i=n1+1,...,n2 (29.2) − p



j=1 j0yrj+ˇT1yr0≤−yr0, r=1,...,m (29.3) p



j=1 j0=1, (29.4) − p



j=1 j0xij≤−xi0, i=1,...,n (29.5) p



j=1 j0zkj+ˇT2zk0≤zk0, k=1,...,m (29.6) p



j=1 j0=1, (29.7) − p



j=1 j0xij+ p



j=1 j0xij≤0, i=n1+1,...,n2 (29.8) ˇT1,ˇT2, j0,j0≥0 (29.9) (29)

(18)

And



x0,q,w,TDF



=max m



r=1 qryr− m



k=1 wkzk s.t. p



j=1 j0xij≤xi0, i=1,...,n1 (30.1) p



j=1 j0xij≤xi0, i=n1+1,...,n2 (30.2) − p



j=1 j0yrj+yr≤0, r=1,...,m (30.3) p



j=1 j0=1, (30.4) − p



j=1 j0xij≤−xi0, i=1,...,n (30.5) p



j=1 j0zkj−zk≤0, k=1,...,m (30.6) p



j=1 j0=1, (30.7) − p



j=1 j0xij+ p



j=1 j0xij≤0, i=n1+1,...,n2 (30.8) yr,zk,j0,j0≥0, (30.9) (30)

whichresultsinthefollowinginequality:



x0,q,w,TDF





m



r=1 qryr0− m



k=1 wkzk0



min

m



r=1 qryr0 ıT1 , m



k=1 wkzk0 ıT2

≥→B



x0,y0,z0;TDF



. (31)

Inequalities(27)and(31)makeitpossibletodefinetechnicalandallocativetermsasdriversofthecorrespondingmeasure ofeconomicenvironmentalinefficiency.IntheempiricalapplicationwesolvethemodelscorrespondingtoMurtyetal.(2012)

andDakpoetal.(2017),enhancedwithFørsund’s(2018)proposal.Thisrepresentsatotaloffourmodels. 4. Empiricalapplication

4.1. Datasetandvariables

Theempiricalillustrationreliesonstate-leveldataintheUnitedStatesthatcomesfrommultipleagencies.Thedataset consistsofaggregatedfirmdataforeachstateas,unfortunately,andduetostatisticalconfidentialityreasons,wedonot haveaccesstotheindividualmicrodata.12ThemainsourceofdataistheU.S.DepartmentofAgriculture(USDA)Economic

12 Weperformamacro-levelanalysisinourempiricalapplication,assumingthattheDMUs(thestates)canbecompared.Amoresuitableanalysiswould

consistinestimatingameta-frontier(O’Donnelletal.,2008;Batteseetal.,2004)usingthedataforallthefirmsinallthestatesandthen,decomposing inefficiencyintowithin-stateinefficiencyandagapbetweenthetechnologyofeachstateandtheglobalfrontier.Thislinecouldbeagoodavenuefor furtherresearch.

(19)

Table1

Descriptivestatisticsofinput-outputdata(implicitrealquantities),2004.

Variable Mean SD Coefficientofvariation

Non-pollution-generatinginputs

Capitalservices(million$) 541.068 450.804 0.833 Landserviceflows(million$) 650.678 738.002 1.134 Laborservices(million$) 1,292.827 1,186.855 0.918 Pollution-generatinginputs

Energy(million$) 166.647 144.484 0.867

Pesticides(million$) 164.921 163.858 0.994

Goodoutputs

Livestockandproducts(million$) 2,103.076 1,997.443 0.950

Crops(million$) 2,819.480 3,419.130 1.213

Badoutputs

CO2emissions(tonsofCO2equivalents) 996,394.520 914,820.595 0.918

Pesticideexposures(number) 2,458.708 2,256.445 0.918 Notes:SD=Standarddeviation.

ResearchService(ERS),whichcompiledthedatanecessarytocalculateagriculturalproductivityintheUS,and,inparticular, thepriceindicesandimplicitquantitiesoffarmoutputsandinputsforeachofthe48continentalstatesfor1960−2004.The datasethasbeenvalidatedandusedextensivelyinpreviousresearch(forexample,inBalletal.,1999;ZofioandKnoxLovell, 2001;HuffmanandEvenson,2006;SabasiandShumway,2018).Acriticalreviewofthedatainlightofrecentdevelopments canbefoundinShumwayetal.(2015,2016).Toillustrateourmodels,weconsiderthemostrecentyearavailableinthe dataset(2004)andassumethattheproductionprocessischaracterizedbythefollowingthreenon-pollutinginputs(capital servicesexcludingland,landserviceflows,andlaborservices),twopollutinginputs(energyandpesticides),andtwogood outputs(livestockandcrops).ThepricesforthesevariablesweredirectlyobtainedfromtheERSdataset.Pricesindicesin theERSdatasetareconstructedusingtheTörnqvistformulation.13

Asfortheundesirableoutputproductiongeneratedbyenergyconsumption,weconsidercarbondioxide(CO2)emissions

fromtheagriculturalsectorassociatedwithfuelcombustion,alsofor2004(expressedintonsofCO2equivalents),obtained

fromtheU.S.EnvironmentalProtectionAgency(EPA).14ThepriceofCO

2emissionsisproxiedbythemarketclearingprice

setinthestateofCalifornia(priceofcarbonemissionsexpressedinthousandsofdollarspertonofCO2equivalents),since

ageneralmarketforCO2forthewholeUSdoesnotexist.Inparticular,thisisthepriceofcarbonfortradableallowances

withafuturescontractthatoriginatesfromtheCaliforniangreenhousegasestradingmarketundertheCaliforniaCapand TradeProgram,2019.Weconsidertheaverage2012priceanddeflateitto2004usingtheconsumerpriceindexinabsence ofasuitabledeflator(USBureauofLaborStatistics).15Themeasureofbadoutputrelatedtopesticidesisthenumberof

pesticideexposuresperstatefor2004obtainedfromtheCentersforDiseaseControlandPreventionattheUSDepartment ofHealth&HumanServices.Astheapproximationofthepriceofthisbadoutputweusethecostofhospitalizedtreatment ofpesticide-relatedpoisonings(inthousandsofdollars)asestimatedinPimentel(2005).Becausethiscostisprovidedfor 1995,wefurtherexpressitto2004pricesusingthepriceindexformedicalservicesasobtainedfromtheU.S.Bureauof LaborStatistics.16

Tables1and2summarizethedescriptivestatisticsofinput-outputquantitiesandtheircorrespondingprices,respectively, fortheUSstatesin2004.AppendixA.1.oftheonlinesupplementalmaterialaccompanyingthepaperpresentsthisdatafor eachstate.

4.2. Results

4.2.1. Technical,allocativeandprofitfrontiers

Whensolvingourfourreferenceeconomicmodels–thatis,Murtyetal.(2012)andDakpoetal.(2017),each com-plementedwithFørsund’s(2018)proposal−itisrelevanttodetermine,fromatechnologicalperspective,thenumberof

13ThedetailsonthemethodofconstructionofallvariablesarecontainedinthefollowingwebpageoftheUSDA-ERS:https://www.ers.usda.gov/

data-products/agricultural-productivity-in-the-us/methods/.

14Sincethesedataaregiveninoveralltermsforthewholecountry,wefurtherdisaggregateitbystate,usingforthatpurposethesharethateachstate

hasinfarmproductionexpensesforgasoline,fuels,andoils,asreportedbytheU.S.DepartmentofAgriculture,expressedinthousandsofdollars.

15California’sGHGemissionsprogramisthefourthlargestintheworldaftertheEuropeanUnion’sEmissionsTradingSystem,SouthKoreanEmissions

TradingSchemeandtheEmissionTradingSystemintheChineseprovinceofGuangdong.Fromitsbeginningin2012itcoveredthepowerandindustrial facilities,anditexpandedtonaturalgasandtransportationfuelsin2015,allowingittocoverapproximately85percentofCalifornia’sGHGemissions.

16Theconsiderationofthesemarketpricesforthebadoutputs,whichcanbeconsideredastheopportunitycostsofenvironmentaldamage,enablesthe

analysisofallocativeinefficiencywithrespecttotheenvironmentallyefficientfrontier.Marketpricescanbecomparedtotheshadowpricescorresponding tothemarginalrateoftransformationofbadoutputsforgoodoutputs,whichareobservedattheoptimalprojectionofthefirmonthetechnological frontier.Comparingbothsetsofpricescanhelpregulatorstoadoptspecificpollutingabatementinstrumentssuchastaxes,permits,oremissionstandards. Onthistopic,arecentandcomprehensivestudycomparingshadowpricecalculationsforcarbondioxideemissionsinChina,usingbothparametricand non-parametrictechniques,canbefoundinMaetal.(2019).

(20)

Table2

Descriptivestatisticsofpricesforinput-outputdata,2004.

Variable Mean SD Coefficientofvariation

Non-pollution-generatinginputs

Capitalservices(indicesrelativetoAlabama) 1.105 0.028 0.026 Landserviceflows(indicesrelativetoAlabama) 1.134 0.636 0.560 Laborservices(indicesrelativetoAlabama) 1.158 0.325 0.280 Pollution-generatinginputs

Energy(indicesrelativetoAlabama) 1.441 0.166 0.115 Pesticides(indicesrelativetoAlabama) 1.142 0.252 0.220 Goodoutputs

Livestockandproducts 1.245 0.197 0.158

Crops(indicesrelativetoAlabama) 1.067 0.156 0.146 Badoutputs

CO2emissions(thousand$pertonofCO2equivalents) 0.011 0 0

Pesticideexposures(thousand$) 6.222 0 0

Notes:SD=Standarddeviation.Pricesofinputsandgoodoutputsvaryacrossstatesandareexpressedinrelativetermswithrespecttothefirststate, Alabama,considering1996asthebaseyear.Pricesofbadoutputsareuniqueforallstatesandaredeflatedtothe2004referenceyear.

Table3

NumberofefficientUSstates.

Model Technical Allocative Profit

T T1 T2

Murtyetal. 6 19 11 4 4

Dakpoetal. 13 30 16 6 6

Murty&Førsund 10 19 24 4 4

Dakpo&Førsund 19 30 28 15 15

Fig.1. Averagetechnicalinefficienciesbymodels(absolutevalues).

observationsthatareefficient,therebydefiningthefrontieroftheglobalby-productiontechnologyT,consistingofboth theintendedproductionT1 technology,(4)(hereafter,conventionalorstandardtechnology)andthepollution-generating technologyT2,(5)(hereafter,pollutingtechnology).Table3showsthatthenumberofobservationsdefiningtheproduction frontierisgreaterintheconventionaltechnologyT1thaninthepollutingtechnologyT2,exceptinthecaseoftheMurtyetal. (2012)modelincorporatingFørsund’sproposal.Clearly,notalltechnicallyefficientstatesareallocative-efficientandthereby achieveprofitefficiency.California,Delaware,IowaandVermontareefficientinallmodels.Approximately10percentof USstates(fourorsixoutof48)arefullyefficient,exceptinDakpoetal.’sapproachenhancedwithFørsund’sassumption, wherethenumberofprofit-efficientstatesincreasesto31.25percent17.

4.2.2. Technicalinefficiency:resultswithinandbetweenmodels

Departingfromthisgeneralportraitofinefficiencyfrequenciesatthetechnical,allocative,andoverallprofitinefficiency levels,wenowfocusonthetechnologicalside,withFig.1portrayingtheaverageabsolutetechnicalefficiencyvaluesinT1,

T2andtheirglobalby-productionaggregateT,acrossthefourmodels.

Referenties

GERELATEERDE DOCUMENTEN

Dit wordt veroorzaakt doordat de vraag, die ontstaat bij Assemblage (vraag naar bepaald type plungers), niet wordt afgestemd met de productie van plungers. Zo blijken vaak

 Literature review – divisions in Corporate governance, IT governance, Corporate control and IT control sections – presents some of the most used and important

This article showed that the cub model, for which specialized software and developments have recently been proposed, is a restricted loglinear latent class model that falls within

Therefore, a series of studies was carried out in a uniform, highly productive arable landscape in the Netherlands with the following objectives: (1) assessing and explaining

Verschillen in bouwplan tussen de beide bedrijfstypen waren de enige verklarende factor voor de hogere dichtheden op biologische akkerbouwbedrijven.. Voor de kievit was dit ook

Hier hield hij zich bezig met een benchmark-project voor agrarische bedrijven en werkte hij mee aan het opzetten voor een monitoringsnetwerk voor stadsnatuur in Leiden.. In juli

De dichtheid van broedende veldleeuweriken is hoger op biologische akkerbouwbedrijven in vergelijking met gangbare akkerbouwbedrijven als gevolg van het hogere aandeel zomergraan