• No results found

Cover Page The handle http://hdl.handle.net/1887/22343 holds various files of this Leiden University dissertation

N/A
N/A
Protected

Academic year: 2022

Share "Cover Page The handle http://hdl.handle.net/1887/22343 holds various files of this Leiden University dissertation"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Cover Page

The handle http://hdl.handle.net/1887/22343 holds various files of this Leiden University dissertation

Author: Fulga, Ion Cosma

Title: Scattering theory of topological phase transitions

Issue Date: 2013-11-21

(2)

Scattering theory of

topological phase transitions

Proefschrift

ter verkrijging van

de graad vanDoctor aan de Universiteit Leiden, op gezag vanRector Magnificus

prof. mr. C. J. J. M. Stolker,

volgens besluit van hetCollege voor Promoties te verdedigen op donderdag 21 november 2013

klokke 16.15 uur

door

Ion Cosma Fulga

geboren teBoekarest, Roemenië in 1986

(3)

Promotiecommissie

Promotor: Prof. dr. C. W. J. Beenakker

Co-promotor: Dr. A. R. Akhmerov (Delft University of Technology) Overige leden: Prof. dr. E. R. Eliel

Dr. V. Vitelli

Prof. dr. F. Hassler (RWTH Aachen)

Prof. dr. C. M. Marcus (Kopenhagen University)

Casimir PhD Series, Delft-Leiden, 2013-27 ISBN 978-90-8593-167-6

Dit werk maakt deel uit van het onderzoekprogramma van de Stichting voor Fundamenteel Onderzoek der Materie (FOM), die deel uit maakt van de Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO).

This work is part of the research programme of the Foundation for Fun- damental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

Cover: Trajectories of zeros and poles of the reflection matrix determinant across a topological phase transition in class DIII. Compare with the top right panel of Fig. 3.5.

(4)

To my parents.

(5)
(6)

Contents

1 Introduction 1

1.1 Preface . . . 1

1.2 The scattering matrix . . . 3

1.3 Topological invariants . . . 5

1.4 Finite size scaling . . . 7

1.5 This thesis . . . 9

1.5.1 Chapter 2 . . . 9

1.5.2 Chapter 3 . . . 9

1.5.3 Chapter 4 . . . 10

1.5.4 Chapter 5 . . . 11

1.5.5 Chapter 6 . . . 11

1.5.6 Chapter 7 . . . 13

2 Scattering formula for the topological quantum number of a disordered multi-mode wire 19 2.1 Introduction . . . 19

2.2 Topological quantum number from reflection matrix . . . 20

2.3 Number of end states from topological quantum number . 23 2.3.1 Superconducting symmetry classes . . . 23

2.3.2 Chiral symmetry classes . . . 26

2.4 Superconducting versus chiral symmetry classes . . . 28

2.5 Application to dimerized polymer chains . . . 31

2.6 Appendix . . . 33

2.6.1 Calculation of the number of end states in class DIII 33 2.6.2 Computing the topological quantum number of a dimerized polymer chain . . . 34

(7)

vi CONTENTS

3 Scattering theory of topological insulators and superconductors 39

3.1 Introduction . . . 39

3.1.1 Dimensional reduction in the quantum Hall effect 40 3.1.2 Outline of the paper . . . 41

3.2 Scattering matrix from a Hamiltonian . . . 42

3.3 Dimensional reduction . . . 46

3.4 Results for one–three dimensions . . . 51

3.4.1 Topological invariant in 1D . . . 51

3.4.2 Topological invariant in 2D . . . 51

3.4.3 Topological invariant in 3D . . . 54

3.4.4 Weak invariants . . . 55

3.5 Applications and performance . . . 56

3.5.1 Performance . . . 56

3.5.2 Finite size effects . . . 56

3.5.3 Applications . . . 58

3.6 Conclusion . . . 60

3.7 Appendix . . . 61

3.7.1 Introduction to discrete symmetries . . . 61

3.7.2 Calculation of the number of poles . . . 66

4 Topological quantum number and critical exponent from con- ductance fluctuations at the quantum Hall plateau transition 71 4.1 Introduction . . . 71

4.2 Topological quantum number and conductance resonance 72 4.3 Numerical simulations in a disordered system . . . 75

4.4 Discussion and relation to the critical exponent . . . 77

4.5 Appendix . . . 78

4.5.1 Calculation of the topological quantum number . . 78

4.5.2 Calculation of the critical exponent . . . 81

5 Thermal metal-insulator transition in a helical topological su- perconductor 87 5.1 Introduction . . . 87

5.2 Chiral versus helical topological superconductors . . . 88

5.3 Class DIII network model . . . 91

5.3.1 Construction . . . 91

5.3.2 Vortices . . . 93

5.3.3 Vortex disorder . . . 94 5.4 Topological quantum number and thermal conductance . 94

(8)

CONTENTS vii

5.5 Topological phase transitions . . . 96

5.5.1 Phase diagram without disorder . . . 96

5.5.2 Scaling of the critical conductivity . . . 96

5.5.3 Phase diagram with disorder . . . 98

5.5.4 Critical exponent . . . 99

5.6 Conclusion . . . 100

5.7 Appendix . . . 102

5.7.1 Location of the critical point in the network model without disorder . . . 102

5.7.2 Finite-size scaling analysis . . . 103

6 Adaptive tuning of Majorana fermions in a quantum dot chain109 6.1 Introduction . . . 109

6.2 Generalized Kitaev chain . . . 112

6.3 System description and the tuning algorithm . . . 113

6.4 Testing the tuning procedure by numerical simulations . . 117

6.5 Conclusion . . . 121

6.6 Appendix . . . 121

6.6.1 System parameters in numerical simulations . . . . 121

7 Statistical Topological Insulators 129 7.1 Introduction . . . 129

7.2 Construction of an STI topological invariant . . . 131

7.3 STIs with reflection symmetry . . . 134

7.4 Numerical Simulations . . . 134

7.5 Conclusions and discussion . . . 138

7.6 Appendix . . . 138

7.6.1 Tight-binding construction for statistical topologi- cal insulators with reflection symmetry . . . 138

7.6.2 Localization on the Majorana triangular lattice by broken statistical reflection symmetry . . . 141

Samenvatting 145

Summary 147

List of Publications 151

Curriculum Vitæ 153

(9)

viii CONTENTS

Referenties

GERELATEERDE DOCUMENTEN

The topological quantum number in class D should give the parity of the number N of Majorana bound states at one end of the wire: N is even ( Q = 1) in the topologically trivial

On a more general level, the correspondence between the presence of a bulk insulating gap and conducting boundary states in topological insulators was initially understood in terms

Title: Generalized strictly periodic scheduling analysis, resource optimization, and implementation of adaptive streaming applications. Issue Date:

Title: The travel of ideas in the age of steam and print: The Ottoman Caliphate versus Wahhabism and Mahdism. Issue

Title: Clinically suspect arthralgia and early rheumatoid arthritis : advances in imaging and impact on daily life. Issue

Title: The quantification of growth hormone secretion : application of model-informed drug development in acromegaly. Issue

Title: Early intervention in children at high risk of future criminal behaviour: Indications from neurocognitive and neuroaffective mechanisms. Issue

Title: Volatile compounds from Actinobacteria as mediators of microbial interactions Issue