• No results found

University of Groningen Kinetics and thermodynamics of thermally reversible polymers Li, Jing

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Kinetics and thermodynamics of thermally reversible polymers Li, Jing"

Copied!
27
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Kinetics and thermodynamics of thermally reversible polymers Li, Jing

DOI:

10.33612/diss.136495889

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Li, J. (2020). Kinetics and thermodynamics of thermally reversible polymers: Based on the furan-maleimide DA reaction. University of Groningen. https://doi.org/10.33612/diss.136495889

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Abrams, D. S. and Prausnitz, J. M.: 1975, Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE Journal 21(1), 116–128.

URL: http://doi.wiley.com/10.1002/aic.690210115

Absood, A. H., Tutunji, M. S., Hsu, K.-Y. and Clever, H. L.: 1976, The density and enthalpy of mixing of solutions of acetonitrile and of dimethyl sulfoxide with several aromatic hydrocarbons, Journal of Chemical & Engineering Data 21(3), 304– 308.

URL: http://pubs.acs.org/doi/abs/10.1021/je60070a019

Alder, B. J. and Wainwright, T. E.: 1957, Phase Transition for a Hard Sphere System, The Journal of Chemical Physics 27(5), 1208–1209.

URL: http://aip.scitation.org/doi/10.1063/1.1743957

Alder, B. J. and Wainwright, T. E.: 1959, Studies in Molecular Dynamics. I. General Method, The Journal of Chemical Physics 31(2), 459–466.

URL: http://aip.scitation.org/doi/10.1063/1.1730376

Alonso, H., Bliznyuk, A. A. and Gready, J. E.: 2006, Combining docking and molecular dynamic simulations in drug design, Medicinal Research Reviews 26(5), 531–568.

URL: http://doi.wiley.com/10.1002/med.20067

Alperowicz, N.: 1995, Transforming Hoechst, chemical week p. 22.

Amarnath, V. and Amarnath, K.: 1995, Intermediates in the Paal-Knorr Synthesis of Furans, The Journal of Organic Chemistry 60(2), 301–307.

URL: https://pubs.acs.org/doi/abs/10.1021/jo00107a006

Amarnath, V., Anthony, D. C., Amarnath, K., Valentine, W. M., Wetterau, L. A. and Gra-ham, D. G.: 1991, Intermediates in the Paal-Knorr Synthesis of Pyrroles, Journal of Organic Chemistry 56(24), 6924–6931.

Anderson, T. F. and Prausnitz, J. M.: 1978, Application of the UNIQUAC Equation to Calculation of Multicomponent Phase Equilibria. 2. Liquid-Liquid Equilibria, Industrial & Engineering Chemistry Process Design and Development 17(4), 561–567.

(3)

Araya-Hermosilla, R., Broekhuis, A. A. and Picchioni, F.: 2014, Reversible polymer net-works containing covalent and hydrogen bonding interactions, European Polymer Journal 50(1), 127–134.

Asadzadeh, H. and Moosavi, A.: 2019, Investigation of the interactions between Melittin and the PLGA and PLA polymers: molecular dynamic simulation and binding free energy calculation, Materials Research Express 6(5), 055318.

URL: http://stacks.iop.org/2053-1591/6/i=5/a=055318?key=crossref.1a2e30fff5f055287caaf861f279be93

Bae, G.-T. and Aikens, C. M.: 2013, Improved ReaxFF Force Field Parameters for AuSCH Systems, The Journal of Physical Chemistry A 117(40), 10438–10446.

URL: https://pubs.acs.org/doi/10.1021/jp405992m

Baeurle, S. A., Hotta, A. and Gusev, A. A.: 2006, On the glassy state of multiphase and pure polymer materials, Polymer 47(17), 6243–6253.

Baker, S. L., Munasinghe, A., Kaupbayeva, B., Rebecca Kang, N., Certiat, M., Murata, H., Matyjaszewski, K., Lin, P., Colina, C. M. and Russell, A. J.: 2019, Transforming protein-polymer conjugate purification by tuning protein solubility, Nature Com-munications 10(1), 1–12.

Bale, C., B´elisle, E., Chartrand, P., Decterov, S., Eriksson, G., Hack, K., Jung, I.-H., Kang, Y.-B., Melanc¸on, J., Pelton, A., Robelin, C. and Petersen, S.: 2009, FactSage thermo-chemical software and databases - recent developments, Calphad 33(2), 295–311.

URL: https://www.sciencedirect.com/science/article/pii/S0364591608000965

Ballauf, F., Bayer, O. and Teichmann, L.: 1941, No Title.

Barnes, G. L. and Hase, W. L.: 2009, Transition state analysis: Bent out of shape, Nature Chemistry 1(2), 103–104.

URL: http://www.ncbi.nlm.nih.gov/pubmed/21378815

Barthel, M. J., Rudolph, T., Teichler, A., Paulus, R. M., Vitz, J., Hoeppener, S., Hager, M. D., Schacher, F. H. and Schubert, U. S.: 2013, Self-healing materials via re-versible crosslinking of poly(ethylene oxide)-block-poly(furfuryl glycidyl ether) (PEO-b-PFGE) block copolymer films, Advanced Functional Materials 23(39), 4921– 4932.

URL: http://doi.wiley.com/10.1002/adfm.201300469

Baumann, E.: 1872, Ueber einige Vinylverbindungen, in F. Wohler, J. Liebig, H. Kopp, E. Erlenmeyer and J. Volhard (eds), Annalen der Chemie und Pharmacie, Vol. 163, G. P. Wintersohe verlagshandlung, Leipzig und heidelberg, pp. 308–322.

URL: https://books.google.nl/books?id=HNXyAAAAMAAJ&pg=PA308&redir esc=y#v=onepage&q&f=false

Becke, A. D.: 1993, A new mixing of Hartree-Fock and local density-functional theories, The Journal of Chemical Physics 98(2), 1372–1377.

URL: http://aip.scitation.org/doi/10.1063/1.464304

Bergman, S. D. and Wudl, F.: 2008, Mendable polymers, Journal of Materials Chemistry

(4)

Berson, J. A., Hamlet, Z. and Mueller, W. A.: 1962, The Correlation of Solvent Effects on the Stereoselectivities of Diels-Alder Reactions by Means of Linear Free En-ergy Relationships. A New Empirical Measure of Solvent Polarity, Journal of the American Chemical Society 84(2), 297–304.

Berson, J. A., Reynolds, R. D. and Jones, W. M.: 1956, The Stereochemistry and Mecha-nism of the Diels-Alder Reaction. An Internal MechaMecha-nism for the Interconversion of endo-exo Isomers <sup>1,2</sup>, Journal of the American Chemical Society

78(23), 6049–6053.

URL: https://pubs.acs.org/doi/abs/10.1021/ja01604a027

Bhati, M. and Senftle, T. P.: 2019, Identifying Adhesion Properties at Si/Polymer Inter-faces with ReaxFF, Journal of Physical Chemistry C 123(44), 27036–27047.

Billiet, S., Hillewaere, X. K. D., Teixeira, R. F. A. and Du Prez, F. E.: 2013, Chemistry of Crosslinking Processes for Self-Healing Polymers, Macromolecular Rapid Commu-nications 34(4), 290–309.

URL: http://doi.wiley.com/10.1002/marc.201200689

Bitsanis, I. and Hadziioannou, G.: 1990, Molecular dynamics simulations of the struc-ture and dynamics of confined polymer melts, The Journal of Chemical Physics

92(6), 3827–3847.

URL: http://aip.scitation.org/doi/10.1063/1.457840

Bogdani´c, G.: 2001, The FV-UNIQUAC segmental interaction model for liquidliquid equilibrium calculations for polymer solutions: Part 2. Extension to solutions con-taining polystyrene, Fluid Phase Equilibria 191(1-2), 49–57.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0378381201006112

Bogdani´c, G. and Vidal, J.: 2000, A segmental interaction model for liquid-liquid equi-librium calculations for polymer solutions, Fluid Phase Equilibria 173(2), 241–252.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0378381200004325

Bower, D. I.: 2002, An Introduction to Polymer Physics, Cambridge University Press. Braun, D., Cherdron, H., Rehahn, M., Ritter, H. and Voit, B.: 2013, Introduction,

Poly-mer Synthesis: Theory and Practice, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–32.

URL: http://link.springer.com/10.1007/978-3-642-28980-4 1

Brinson, H. F. and Brinson, L. C.: 2015, Introduction, Polymer Engineering Science and Viscoelasticity, Springer US, Boston, MA, pp. 1–14.

URL: http://link.springer.com/10.1007/978-1-4899-7485-3 1

Brisebois, P. P., Kuss, C., Schougaard, S. B., Izquierdo, R. and Siaj, M.: 2016, New Insights into the Diels-Alder Reaction of Graphene Oxide, Chemistry - A European Journal 22(17), 5849–5852.

Brown, D. and Clarke, J. H.: 1986, Molecular dynamics computer simulation of poly-mer fibre microstructure, The Journal of Chemical Physics 84(5), 2858–2865.

(5)

Brown, I. and Fock, W.: 1956, Heats of mixing. II. Acetonitrile and nitromethane sys-tems, Australian Journal of Chemistry 9(2), 180.

URL: http://www.publish.csiro.au/?paper=CH9560180

Bruns(a), W. and Bansal, R.: 1981, Molecular dynamics study of a single polymer chain in solution, The Journal of Chemical Physics 74(3), 2064–2072.

URL: http://aip.scitation.org/doi/10.1063/1.441253

Bruns(b), W. and Bansal, R.: 1981, Molecular dynamics study of a single polymer chain in solution. II. Bead-spring model, The Journal of Chemical Physics 75(10), 5149– 5152.

URL: http://aip.scitation.org/doi/10.1063/1.441862

Budrugeac, P.: 2002, Differential Non-Linear Isoconversional Procedure for Evaluating the Activation Energy of Non-Isothermal Reactions, Journal of Thermal Analysis and Calorimetry 68(1), 131–139.

URL: http://link.springer.com/10.1023/A:1014932903582

Caramella, P., Quadrelli, P. and Toma, L.: 2002, An unexpected bispericyclic transi-tion structure leading to 4+2 and 2+4 cycloadducts in the endo dimerizatransi-tion of cyclopentadiene, Journal of the American Chemical Society 124(7), 1130–1131.

URL: https://pubs.acs.org/doi/abs/10.1021/ja016622h

Chen, G. L., Liu, X. J., Hui, X. D., Hou, H. Y., Yao, K. F., Liu, C. T. and Wadsworth, J.: 2006, Molecular dynamic simulations and atomic structures of amorphous mate-rials, Applied Physics Letters 88(20).

Chen, J. S., Houk, K. N. and Foote, C. S.: 1998, Theoretical Study of the Concerted and Stepwise Mechanisms of Triazolinedione DielsAlder Reactions, Journal of the American Chemical Society 120(47), 12303–12309.

URL: https://pubs.acs.org/doi/10.1021/ja982050y

Chen, X., Dam, M. A., Ono, K., Mal, A., Shen, H., Nutt, S. R., Sheran, K. and Wudl, F.: 2002, A thermally re-mendable cross-linked polymeric material, Science

295(5560), 1698–1702.

URL: http://www.ncbi.nlm.nih.gov/pubmed/11872836

Chen, X., Wudl, F., Mal, A. K., Shen, H. and Nutt, S. R.: 2003, New thermally remend-able highly cross-linked polymeric materials, Macromolecules 36(6), 1802–1807. Chenoweth, K., Cheung, S., van Duin, A. C. T., Goddard, W. A. and Kober, E. M.: 2005,

Simulations on the Thermal Decomposition of a Poly(dimethylsiloxane) Polymer Using the ReaxFF Reactive Force Field, Journal of the American Chemical Society

127(19), 7192–7202.

URL: https://pubs.acs.org/doi/10.1021/ja050980t

Chenoweth, K., van Duin, A. C. T. and Goddard, W. A.: 2008, ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation, The Journal of Physical Chemistry A 112(5), 1040–1053.

(6)

Choi, B. G., Sohn, Y. S. and Jeong, B.: 2007, Closed-loop sol-gel transition of PEG-PEC aqueous solution, Journal of Physical Chemistry B 111(27), 7715–7718.

URL: https://pubs.acs.org/doi/abs/10.1021/jp072970f

Clennan, E. L. and Earlywine, A. D.: 1987, Reactions of triazolinediones with alkoxy-substituted 1,3-butadienes. Rearrangements of 2 + 2 to 4 + 2 cycloadducts, Journal of the American Chemical Society 109(23), 7104–7110.

URL: https://pubs.acs.org/doi/abs/10.1021/ja00257a033

Constantinescu, D. and Gmehling, J.: 2016, Further Development of Modified UNIFAC (Dortmund): Revision and Extension 6, Journal of Chemical & Engineering Data

61(8), 2738–2748.

URL: http://pubs.acs.org/doi/10.1021/acs.jced.6b00136

Cordier, P., Tournilhac, F., Souli´e-Ziakovic, C. and Leibler, L.: 2008, Self-healing and thermoreversible rubber from supramolecular assembly, Nature 451(7181), 977– 980.

Cuvellier, A., Verhelle, R., Brancart, J., Vanderborght, B., Van Assche, G. and Rahier, H.: 2019, The influence of stereochemistry on the reactivity of the Diels-Alder cy-cloaddition and the implications for reversible network polymerization, Polymer Chemistry 10(4), 473–485.

Darwent, B. d. B. and Winkler, C. A.: 1943, The System n-Hexane-Methylcyclopentane-Aniline., The Journal of Physical Chemistry 47(6), 442–454.

URL: https://pubs.acs.org/doi/abs/10.1021/j150429a005

Dasgupta, N., Kyung Shin, Y., Fedkin, M. V. and van Duin, A. C.: 2020, ReaxFF molec-ular dynamics simulations on the structure and dynamics of electrolyte water sys-tems at ambient temperature, Computational Materials Science 172, 109349.

De Souza, R. M., De Siqueira, L. J. A., Karttunen, M. and Dias, L. G.: 2020, Molecu-lar Dynamics Simulations of Polymer-Ionic Liquid (1-Ethyl-3-methylimidazolium Tetracyanoborate) Ternary Electrolyte for Sodium and Potassium Ion Batteries, Journal of Chemical Information and Modeling 60(2), 485–499.

Demirors, M.: 2011, The history of polyethylene, ACS Symposium Series, Vol. 1080, American Chemical Society, pp. 115–145.

URL: https://pubs.acs.org/doi/pdf/10.1021/bk-2011-1080.ch009

Dewar, M. J. and Pierini, A. B.: 1984, Mechanism of the Diels-Alder Reaction. Studies of the Addition of Maleic Anhydride to Furan and Methylfurans, Journal of the American Chemical Society 106(1), 203–208.

URL: http://pubs.acs.org/doi/abs/10.1021/ja00313a041

Di Cave, S., De Santis, R. and Marrelli, L.: 1980, Excess enthalpies for mixtures of acetonitrile and aromatic hydrocarbons, Journal of Chemical & Engineering Data

25(1), 70–72.

(7)

Di Valentin, C., Freccero, M., Sarzi-Amad`e, M. and Zanaletti, R.: 2000, Reactivity and endo-exo Selectivity in Diels-Alder Reaction of o-Quinodimethanes. An Experi-mental and DFT Computational Study, Tetrahedron 56(16), 2547–2559.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0040402000001265

Diaz, M. M., Van Assche, G., Maurer, F. H. and Van Mele, B.: 2017, Thermophysical characterization of a reversible dynamic polymer network based on kinetics and equilibrium of an amorphous furan-maleimide Diels-Alder cycloaddition, Poly-mer 120, 176–188.

Dinsdale, A.: 1991, SGTE data for pure elements, Calphad 15(4), 317–425.

URL: https://www.sciencedirect.com/science/article/pii/036459169190030N

Domb, A. J., Kost, J., Wiseman, D., Kost, J. and Wiseman, D.: 1998, Handbook of Biodegradable Polymers, CRC Press, London.

URL: https://www.taylorfrancis.com/books/9780367802219

Domingo, L. R., Aurell, M. J., Arn ´o, M. and S´aez, J. A.: 2007, Toward an understand-ing of the acceleration of Diels-Alder reactions by a pseudo-intramolecular pro-cess achieved by molecular recognition. A DFT study, Journal of Organic Chemistry

72(11), 4220–4227. Drent, E.: 1984, EP 0121965. Drent, E.: 1986, EP 0181014.

Drent, E. and Keijsper, J. J.: 1993, Polyketone polymer preparation with tetra alkyl bis phosphine ligand and hydrogen.

URL: https://patents.google.com/patent/US5225523A/en

Durmaz, H., Sanyal, A., Hizal, G. and Tunca, U.: 2012, Double click reaction strategies for polymer conjugation and post-functionalization of polymers.

URL: www.rsc.org/polymers

Duval, A., Lange, H., Lawoko, M. and Crestini, C.: 2015, Reversible crosslinking of lignin via the furan-maleimide Diels-Alder reaction, Green Chemistry 17(11), 4991– 5000.

Elbro, H. S., Fredenslund, A. and Rasmussen, P.: 1990, A new simple equation for the prediction of solvent activities in polymer solutions, Macromolecules 23(21), 4707– 4714.

URL: https://pubs.acs.org/doi/abs/10.1021/ma00223a031

Erdi, P. and Toth, J.: 1989, Mathematical models of chemical reactions : theory and applica-tions of deterministic and stochastic models, Manchester University Press.

URL: https://books.google.nl/books?id=iDu8AAAAIAAJ&source=gbs navlinks s

Eriksson, G.: 1971, Thermodynamic Studies of High Temperature Equilibria. III. SOL-GAS, a Computer Program for Calculating the Composition and Heat Condition of an Equilibrium Mixture., Acta. Chem. Scand. 25, 2651.

(8)

Feldman, D.: 2008, Polymer History, Designed Monomers and Polymers 11, 1–15.

URL: https://iom3.tandfonline.com/action/journalInformation?journalCode=tdmp20

Feng, Y. H., Liu, J. L., Zhu, D. D., Hao, Y. Y. and Cuo, X. D.: 2020, Multiscale simulations of drug distributions in polymer dissolvable microneedles, Colloids and Surfaces B: Biointerfaces 189, 110844.

Flory, P. J.: 1942, Thermodynamics of High Polymer Solutions, The Journal of Chemical Physics 10(1), 51–61.

URL: http://aip.scitation.org/doi/10.1063/1.1723621

Fogleman, E. A., Yount, W. C., Xu, J. and Craig, S. L.: 2002, Modular, Well-Behaved Re-versible Polymers from DNA-Based Monomers, Angewandte Chemie International Edition 41(21), 4026–4028.

URL:

http://doi.wiley.com/10.1002/1521-3773%2820021104%2941%3A21%3C4026%3A%3AAID-ANIE4026%3E3.0.CO%3B2-E

Fortunato, G., Tatsi, E., Rigatelli, B., Turri, S. and Griffini, G.: 2020, Highly Transparent and Colorless Self-Healing Polyacrylate Coatings Based on Diels-Alder Chem-istry, Macromolecular Materials and Engineering p. 1900652.

URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201900652

Fredenslund, A., Jones, R. L. and Prausnitz, J. M.: 1975, Group-contribution estimation of activity coefficients in nonideal liquid mixtures, AIChE Journal 21(6), 1086–1099.

URL: http://doi.wiley.com/10.1002/aic.690210607

Fredenslund(a), A., Gmehling, J., Michelsen, M. L., Rasmussen, P. and Prausnitz, J. M.: 1977, Computerized Design of Multicomponent Distillation Columns Using the UNIFAC Group Contribution Method for Calculation of Activity Coefficients, In-dustrial & Engineering Chemistry Process Design and Development 16(4), 450–462.

URL: http://pubs.acs.org/doi/abs/10.1021/i260064a004

Fredenslund(b), A., Gmehling, J. and Rasmussen, P.: 1977, Vapor-liquid equilibria using UNIFAC : a group contribution method, first edit edn, Elsevier Scientific Pub. Co., Amsterdam.

Friedman, H. L.: 2007, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic, Journal of Polymer Science Part C: Polymer Symposia 6(1), 183–195.

URL: http://doi.wiley.com/10.1002/polc.5070060121

Froidevaux, V., Borne, M., Laborbe, E., Auvergne, R., Gandini, A. and Boutevin, B.: 2015, Study of the Diels-Alder and retro-Diels-Alder reaction between fu-ran derivatives and maleimide for the creation of new materials, RSC Adv.

5(47), 37742–37754.

URL: http://xlink.rsc.org/?DOI=C5RA01185J

Fuchs, R., Gipser, M. and Gaube, J.: 1983, Calculation of ternary vapor-liquid-liquid equilibria for design of three-phase distillation, Fluid Phase Equilibria 14, 325–334.

(9)

Gandini, A.: 2011, The irruption of polymers from renewable resources on the scene of macromolecular science and technology.

Gandini, A.: 2013, The furan/maleimide Diels-Alder reaction: A versatile click-unclick tool in macromolecular synthesis, Progress in Polymer Science 38(1), 1–29.

URL: https://www.sciencedirect.com/science/article/pii/S007967001200038X

Gandini, A., Coelho, D. and Silvestre, A. J.: 2008, Reversible click chemistry at the service of macromolecular materials. Part 1: Kinetics of the Diels-Alder reaction applied to furan-maleimide model compounds and linear polymerizations, Euro-pean Polymer Journal 44(12), 4029–4036.

URL: https://www.sciencedirect.com/science/article/pii/S0014305708005211

Geyer, R., Jambeck, J. R. and Law, K. L.: 2017, Production, use, and fate of all plastics ever made, Science Advances 3(7), e1700782.

URL: https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1700782

Gidron, O., Shimon, L. J., Leitus, G. and Bendikov, M.: 2012, Reactivity of long con-jugated systems: Selectivity of Diels-Alder cycloaddition in oligofurans, Organic Letters 14(2), 502–505.

Gillis, B. T. and Hagarty, J. D.: 1967, Reaction of 4-phenyl-1,2,4-triazoline-3,5-dione with conjugated dienes, The Journal of Organic Chemistry 32(2), 330–333.

URL: https://pubs.acs.org/doi/abs/10.1021/jo01288a016

Gmehling, J., Li, J. and Schiller, M.: 1993, A modified UNIFAC model. 2. Present pa-rameter matrix and results for different thermodynamic properties, Industrial & Engineering Chemistry Research 32(1), 178–193.

URL: http://pubs.acs.org/doi/abs/10.1021/ie00013a024

Gmehling, J., Lohmann, J., Jakob, A., Li, J. and Joh, R.: 1998, A Modified UNIFAC (Dortmund) Model. 3. Revision and Extension, Ind. Eng. Chem. Res. 37(12), 4876– 4882.

URL: https://pubs.acs.org/doi/10.1021/ie980347z.

Gmehling, J. and Rasmussen, P.: 1982, Flash points of flammable liquid mixtures using UNIFAC, Industrial & Engineering Chemistry Fundamentals 21(2), 186–188.

URL: http://pubs.acs.org/doi/abs/10.1021/i100006a016

Gmehling, J., Wittig, R., Lohmann, J. and Joh, R.: 2002, A Modified UNIFAC (Dort-mund) Model. 4. Revision and Extension, Ind. Eng. Chem. Res. 41(6), 1678–1688.

URL: https://pubs.acs.org/doi/10.1021/ie0108043

Goodarzi, F. and Zendehboudi, S.: 2019, Effects of Salt and Surfactant on Interfacial Characteristics of Water/Oil Systems: Molecular Dynamic Simulations and Dissi-pative Particle Dynamics, Industrial & Engineering Chemistry Research 58(20), 8817– 8834.

Gross, R. A. and Kalra, B.: 2002, Biodegradable polymers for the environment., Science (New York, N.Y.) 297(5582), 803–7.

(10)

Guggenheim, E. A.: 1952, Mixtures, Clarendon Press, Oxford.

URL: https://rug.on.worldcat.org/search?queryString=no%3A+1866289#/oclc/1866289

Guner, V., Khuong, K. S., Leach, A. G., Lee, P. S., Bartberger, M. D. and Houk, K. N.: 2003, A Standard Set of Pericyclic Reactions of Hydrocarbons for the Benchmark-ing of Computational Methods: The Performance of ab Initio, Density Functional, CASSCF, CASPT2, and CBS-QB3 Methods for the Prediction of Activation Barri-ers, Reaction Energetics, and, Journal of Physical Chemistry A 107(51), 11445–11459.

URL: https://pubs.acs.org/doi/abs/10.1021/jp035501w

Hamid, S. H.: 2000, Handbook of Polymer Degradation, CRC Press, Boca Raton.

URL: https://www.taylorfrancis.com/books/9781482270181

Hawkins, W. L.: 1984, Polymer Degradation and Stabilization, Vol. 8 of Polymers Properties and Applications, Springer-Verlag, Berlin, Heidelberg.

URL: http://link.springer.com/10.1007/978-3-642-69376-2

Helfand, E., Wasserman, Z. R. and Weber, T. A.: 1979, Brownian dynamics study of polymer conformational transitions, The Journal of Chemical Physics 70(4), 2016– 2017.

URL: http://aip.scitation.org/doi/10.1063/1.437628

Helm, M., Petermeier, M., Ge, B., Fiammengo, R. and J¨aschke, A.: 2005, Allosterically Activated Diels-Alder Catalysis by a Ribozyme, Journal of the American Chemical Society 127(30), 10492–10493.

URL: https://pubs.acs.org/doi/10.1021/ja052886i

Hermosilla, R. A. A. and Picchioni, F. F.: 2016, Thermally reversible thermoset materials based on the chemical modification of alternating aliphatic polyketones, University of Groningen.

Hildebrand, J. H. and Wood, S. E.: 1933, The Derivation of Equations for Regular Solu-tions, The Journal of Chemical Physics 1(12), 817–822.

URL: http://aip.scitation.org/doi/10.1063/1.1749250

Hillert, M.: 1981, Some viewpoints on the use of a computer for calculating phase diagrams, Physica B+C 103(1), 31–40.

URL: https://www.sciencedirect.com/science/article/pii/0378436381910007

Hillert, M.: 2007, Phase Equilibria, Phase Diagrams and Phase Transformations, second edi edn, Cambridge University Press, Cambridge.

Hillert, M., Jansson, B., Sundman, B. and ˚agren, J.: 1985, A two-sublattice model for molten solutions with different tendency for ionization, Metallurgical Transactions A 16(2), 261–266.

URL: http://link.springer.com/10.1007/BF02816052

Hillert, M. and Staffanson, L.-I.: 1970, The Regular Solution Model for Stoichiometric Phases and Ionic Melts, Acta. Chem. Scand. 24, 3618—-3626.

Hoffman, A. S.: 1987, Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics, Journal of Controlled Release 6(1), 297–305.

(11)

H ¨ohne, G. W. H., Hemminger, W. and Flammersheim, H.-J.: 1996, The DSC Curve, Differential Scanning Calorimetry, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 81–104.

URL: http://link.springer.com/10.1007/978-3-662-03302-9 5

Hong, M. and Chen, E. Y.-X.: 2017, Chemically recyclable polymers: a circular economy approach to sustainability, Green Chemistry 19(16), 3692–3706.

URL: http://xlink.rsc.org/?DOI=C7GC01496A

Hong, S. and van Duin, A. C. T.: 2016, Atomistic-Scale Analysis of Carbon Coating and Its Effect on the Oxidation of Aluminum Nanoparticles by ReaxFF-Molecular Dynamics Simulations, The Journal of Physical Chemistry C 120(17), 9464–9474.

URL: https://pubs.acs.org/doi/10.1021/acs.jpcc.6b00786

Houk, K. N.: 1973, Generalized Frontier Orbitals of Alkenes and Dienes. Regioselectiv-ity in Diels-Alder Reactions, Journal of the American Chemical Society 95(12), 4092– 4094.

URL: http://pubs.acs.org/doi/abs/10.1021/ja00793a069

Houk, K. N., Sims, J., Watts, C. R. and Luskus, L. J.: 1973, Origin of Reactivity, Regiose-lectivity, and Periselectivity In 1,3-Dipolar Cycloadditions, Journal of the American Chemical Society 95(22), 7301–7315.

URL: http://pubs.acs.org/doi/abs/10.1021/ja00803a018

Hu, D., Gu, X., Cui, B., Pei, J. and Zhang, Q.: 2020, Modeling the Oxidative Aging Kinetics and Pathways of Asphalt: A ReaxFF Molecular Dynamics Study, Energy & Fuels .

Huang, H. S., Ai, L. Q., Van Duin, A. C., Chen, M. and L ¨u, Y. J.: 2019, ReaxFF reactive force field for molecular dynamics simulations of liquid Cu and Zr metals, Journal of Chemical Physics 151(9), 094503.

URL: http://aip.scitation.org/doi/10.1063/1.5112794

Huggins, M. L.: 1942, Some Properties of Solutions of Long-chain Compounds., The Journal of Physical Chemistry 46(1), 151–158.

URL: https://pubs.acs.org/doi/abs/10.1021/j150415a018

Iglesias-Silva, G. A., Bonilla-Petriciolet, A., Eubank, P. T., Holste, J. C. and Hall, K. R.: 2003, An algebraic method that includes Gibbs minimization for performing phase equilibrium calculations for any number of components or phases, Fluid Phase Equilibria 210(2), 229–245.

URL: https://www.sciencedirect.com/science/article/pii/S0378381203001717

Ignatyev, I. A., Thielemans, W. and VanderBeke, B.: 2014, Recycling of Polymers: A Review, ChemSusChem 7(6), 1579–1593.

URL: http://doi.wiley.com/10.1002/cssc.201300898

Ilhan, F. and Rotello, V. M.: 1999, Thermoreversible polymerization. Formation of fullerene-diene oligomers and copolymers, Journal of Organic Chemistry

64(5), 1455–1458.

(12)

Irusta, L., Fern´andez-Berridi, M. J. and Aizpurua, J.: 2017, Polyurethanes based on isophorone diisocyanate trimer and polypropylene glycol crosslinked by thermal reversible diels alder reactions, Journal of Applied Polymer Science 134(9).

Islam, M. M., Bryantsev, V. S. and van Duin, A. C. T.: 2014, ReaxFF Reactive Force Field Simulations on the Influence of Teflon on Electrolyte Decomposition during Li/SWCNT Anode Discharge in Lithium-Sulfur Batteries, Journal of The Electro-chemical Society 161(8), E3009–E3014.

URL: https://iopscience.iop.org/article/10.1149/2.005408jes

Islam, M. M., Ostadhossein, A., Borodin, O., Yeates, A. T., Tipton, W. W., Hennig, R. G., Kumar, N. and van Duin, A. C. T.: 2015, ReaxFF molecular dynamics sim-ulations on lithiated sulfur cathode materials, Physical Chemistry Chemical Physics

17(5), 3383–3393.

URL: http://xlink.rsc.org/?DOI=C4CP04532G

ISO: 1997, Plastics-Differential scanning calorimetry (DSC)-Part 1: General principles.

URL: https://www.iso.org/standard/19310.html

Jakob, A., Grensemann, H., Lohmann, J. and Gmehling, J.: 2006, Further Development of Modified UNIFAC (Dortmund): Revision and Extension 5, Ind. Eng. Chem. Res.

45(23), 7924–7933.

URL: https://pubs.acs.org/doi/10.1021/ie060355c

J¨arvi, T. T., Van Duin, A. C., Nordlund, K. and Goddard, W. A.: 2011, Development of interatomic ReaxFF potentials for Au-S-C-H systems, Journal of Physical Chemistry A 115(37), 10315–10322.

URL: http://www.ncbi.nlm.nih.gov/pubmed/21780819

Jensen, F. and Foote, C. S.: 1987, Reaction of 4-Phenyl-1,2,4-triazoline-3,5-dione with Substituted Butadienes: A Nonconcerted Diels-Alder Reaction, Journal of the American Chemical Society 109(21), 6376–6385.

Jung, C. K., Braunwarth, L. and Jacob, T.: 2019, Grand Canonical ReaxFF Molecular Dynamics Simulations for Catalytic Reactions, Journal of Chemical Theory and Com-putation 15(11), 5810–5816.

Jursic, B. S.: 1999, The inertia principle and implementation in the cycloaddition reac-tion with aromatic heterocycles performed with AM1 semiempirical and density functional theory study, Journal of Molecular Structure: THEOCHEM 459(1-3), 215– 220.

Kang, H.-S., Lee, Y.-S. and Ree, T.-K.: 1983, Molecular Dynamics Study of the Self-Diffusion Coefficient and Velocity Autocorrelation Function of a Polymer Molecule in Solution, Bulletin of the Korean Chemical Society 4(5), 223–227.

URL: http://www.koreascience.or.kr/article/JAKO198313464448559.page

Kaufman, L. and Bernstein, H.: 1970, Computer Calculations of Phase Diagrams, Aca-demic Press, New York.

(13)

Kavitha, A. A. and Singha, N. K.: 2009, ”Click Chemistry” in Tailor-Made Poly-methacrylates Bearing Reactive Furfuryl Functionality: A New Class of Self-Healing Polymeric Material, ACS Applied Materials & Interfaces 1(7), 1427–1436.

URL: http://pubs.acs.org/doi/10.1021/am900124c

Keith, J. A., Fantauzzi, D., Jacob, T. and Van Duin, A. C.: 2010, Reactive forcefield for simulating gold surfaces and nanoparticles, Physical Review B - Condensed Matter and Materials Physics 81(23), 235404.

Kikic, I., Alessi, P., Rasmussen, P. and Fredenslund, A.: 1980, On the combinatorial part of the UNIFAC and UNIQUAC models, The Canadian Journal of Chemical Engineer-ing 58(2), 253–258.

URL: http://doi.wiley.com/10.1002/cjce.5450580218

Kim, S.-Y., van Duin, A. C. and Kubicki, J. D.: 2013, Molecular dynamics simulations of the interactions between TiO <sub>2</sub> nanoparticles and water with Na <sup>+</sup> and Cl <sup></sup> , methanol, and formic acid using a reactive force field, Journal of Materials Research 28(3), 513–520.

URL: https://www.cambridge.org/core/product/identifier/S0884291412003676/type/journal article

Kim, Y.-C., Kim, J.-D. and Kim, H.: 1996, Ternary liquid-liquid phase behavior by decorated-uniquac, Korean Journal of Chemical Engineering 13(5), 439–447.

URL: http://link.springer.com/10.1007/BF02705991

Kinloch, A. J.: 1985, Mechanics and mechanisms of fracture of thermosetting epoxy polymers, Advances in Polymer Science, Vol. 72, Springer, Berlin, Heidelberg, pp. 45–46.

URL: http://link.springer.com/10.1007/3-540-15546-5 2

Knall, A. C., Hollauf, M. and Slugovc, C.: 2014, Kinetic studies of inverse electron demand Diels-Alder reactions (iEDDA) of norbornenes and 3,6-dipyridin-2-yl-1,2,4,5-tetrazine, Tetrahedron Letters 55(34), 4763–4766.

Knorr, L.: 1884, Synthese von Furfuranderivaten aus dem Diacetbernsteins¨aureester, Berichte der deutschen chemischen Gesellschaft 17(2), 2863–2870.

URL: http://doi.wiley.com/10.1002/cber.188401702254

Koyanagi, J., Itano, N., Yamamoto, M., Mori, K., Ishida, Y. and Bazhirov, T.: 2019, Evaluation of the mechanical properties of carbon fiber/polymer resin interfaces by molecular simulation, Advanced Composite Materials 28(6), 639–652.

URL: https://www.tandfonline.com/doi/full/10.1080/09243046.2019.1630069

Kremer, K. and Grest, G. S.: 1990, Dynamics of entangled linear polymer melts: A molecular-dynamics simulation, The Journal of Chemical Physics 92(8), 5057–5086.

URL: http://aip.scitation.org/doi/10.1063/1.458541

Krishnan, R., Binkley, J. S., Seeger, R. and Pople, J. A.: 1980, Self-consistent molecu-lar orbital methods. XX. A basis set for correlated wave functions, The Journal of Chemical Physics 72(1), 650–654.

(14)

Kumar, A., Phalgune, U. D. and Pawar, S. S.: 2001, Salt solutions in different solvents and their effect on the stereoselectivity of products of Diels-Alder reaction, Journal of Physical Organic Chemistry 14(8), 577–582.

Kwart, H. and King, K.: 1968, The reverse diels-alder or retrodiene reaction, Chemical Reviews 68(4), 415–447.

Laidler, K.: 1981, symbolism and terminology in chemical kinetics, Pure and Applied Chemistry 53, 753–771.

URL: http://publications.iupac.org/pac/pdf/1981/pdf/5303x0753.pdf

Larsen, B. L., Rasmussen, P. and Fredenslund, A.: 1987, A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing, Indus-trial & Engineering Chemistry Research 26(11), 2274–2286.

URL: http://pubs.acs.org/doi/abs/10.1021/ie00071a018

Lauver, R. W.: 1979, KINETICS OF IMIDIZATION AND CROSSLINKING IN PMR POLYIMIDE RESIN., J Polym Sci Polym Chem Ed 17(8), 2529–2539.

Lee, C., Yang, W. and Parr, R. G.: 1988, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Physical Review B

37(2), 785–789.

URL: https://link.aps.org/doi/10.1103/PhysRevB.37.785

Lee, Y. S.: 1982, Molecular Dynamic Study of a Polymeric Solution (I). Chain-Length Effect, Bulletin of the Korean Chemical Society 3(2), 44–49.

URL: http://www.koreascience.or.kr/article/JAKO198213464447903.page

Li, K. and Gu, B.: 2020, Molecular dynamic simulations investigating the wetting and interfacial properties of acrylonitrile nanodroplets in contact with variously func-tionalized graphene sheets, Chemical Physics Letters 739, 137023.

Li, L., Cai, Z., Shen, B., Xin, Z. and Ling, H.: 2011, Intensification of cyclopentadi-ene dimerization by ultrasound irradiation, Chemical Engineering and Technology

34(9), 1468–1472.

URL: http://doi.wiley.com/10.1002/ceat.201000427

Li, X., Zhao, Y., Gu, H., Huang, S. and Li, W.: 2020, Coarse-grained molecular dynamic simulations of interactions of poly(amidoamine) with sodium octadecyl sulfate at the water/octane interface, Materials Research Express 6(12), 125359.

URL: https://iopscience.iop.org/article/10.1088/2053-1591/ab66a5

Lim, M.-Y., Oh, J., Kim, H. J., Kim, K. Y., Lee, S.-S. and Lee, J.-C.: 2015, Effect of an-tioxidant grafted graphene oxides on the mechanical and thermal properties of polyketone composites, European Polymer Journal 69, 156–167.

URL: https://www.sciencedirect.com/science/article/abs/pii/S0014305715003134

Lin, P. and Colina, C. M.: 2019, Molecular simulation of proteinpolymer conjugates. Liu, D., Liu, F., Zhou, W., Chen, F. and Wei, J.: 2020, Influence of Salts on Morphology of

Structures in Surfactant-Polymer Solutions Explored by Coarse Grained Dynamic Simulation, Mechanisms and Machine Science, Vol. 75, Springer, pp. 879–884.

(15)

Liu, X., Du, P., Liu, L., Zheng, Z., Wang, X., Joncheray, T. and Zhang, Y.: 2013, Ki-netic study of Diels-Alder reaction involving in maleimide-furan compounds and linear polyurethane, Polymer Bulletin 70(8), 2319–2335.

Liu, Y. L. and Chuo, T. W.: 2013, Self-healing polymers based on thermally reversible Diels-Alder chemistry.

Liu, Y. L., Hsieh, C. Y. and Chen, Y. W.: 2006, Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels-Alder reaction, Poly-mer 47(8), 2581–2586.

URL: https://www.sciencedirect.com/science/article/pii/S0032386106002242

long Xue, Y., Lau, C. H., Cao, B. and Li, P.: 2019, Elucidating the impact of polymer crosslinking and fixed carrier on enhanced water transport during desalination using pervaporation membranes, Journal of Membrane Science 575, 135–146.

Lorenz, C. D., Chandross, M., Matthew, J. and Lane, D.: 2010, Temperature control in molecular dynamic simulations of non-equilibrium processes Related content Nanotribology of water confined between hydrophilic alkylsilane self-assembled monolayers.

Lukas, H. L., Fries, S. G. and Sundman, B.: 2007, Computational Thermodynammics The Calphad method, Cambridge University Press.

URL:

http://www.cambridge.org/nl/academic/subjects/engineering/materials-science/computational-thermodynamics-calphad-method?format=HB&isbn=9780521868112#1kIWchB4uPFrWdzX.97 Lundberg, G. W.: 1964, Thermodynamics of Solutions XI. Heats of Mixing of

Hydro-carbons., Journal of Chemical & Engineering Data 9(2), 193–198.

URL: http://pubs.acs.org/doi/abs/10.1021/je60021a013

Luque, J., Santamaria, J. and Freire, J. J.: 1989, Molecular dynamics of chain molecules in solution. Static and dynamic properties, The Journal of Chemical Physics 91(1), 584–589.

URL: http://aip.scitation.org/doi/10.1063/1.457444

Macedo, E. A., Weidlich, U., Gmehling, J. and Rasmussen, P.: 1983, Vapor-liquid equi-libriums by UNIFAC group contribution. Revision and extension. 3, Industrial & Engineering Chemistry Process Design and Development 22(4), 676–678.

URL: http://pubs.acs.org/doi/abs/10.1021/i200023a023

Magnussen, T., Rasmussen, P. and Fredenslund, A.: 1981, UNIFAC parameter table for prediction of liquid-liquid equilibriums, Industrial & Engineering Chemistry Process Design and Development 20(2), 331–339.

URL: http://pubs.acs.org/doi/abs/10.1021/i200013a024

Margules, M.: 1895, ¨Uber die Zusammensetzung der ges¨attigten D¨ampfe von Mis-chungen, Sitzungsberichte / Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse 104, 1243–1278.

McCammon, J. A., Gelin, B. R. and Karplus, M.: 1977, Dynamics of folded proteins, Nature 267(5612), 585–590.

(16)

McElhanon, J. R., Zifer, T., Kline, S. R., Wheeler, D. R., Loy, D. A., Jamison, G. M., Long, T. M., Rahimian, K. and Simmons, B. A.: 2005, Thermally Cleavable Surfactants Based on Furan-Maleimide Diels-Alder Adducts, Langmuir 21(8), 3259–3266.

URL: https://pubs.acs.org/doi/10.1021/la047074z

Merinov, B. V., Mueller, J. E., van Duin, A. C. T., An, Q. and Goddard, W. A.: 2014, ReaxFF Reactive Force-Field Modeling of the Triple-Phase Boundary in a Solid Oxide Fuel Cell, The Journal of Physical Chemistry Letters 5(22), 4039–4043.

URL: https://pubs.acs.org/doi/10.1021/jz501891y

Mezei, P. D., Csonka, G. I. and K´allay, M.: 2015, Accurate Diels-Alder Reaction Ener-gies from Efficient Density Functional Calculations, Journal of Chemical Theory and Computation 11(6), 2879–2888.

Michalak, A. and Ziegler, T.: 2001, First-Principle Molecular Dynamic Simula-tions along the Intrinsic Reaction Paths, The Journal of Physical Chemistry A

105(17), 4333–4343.

URL: https://pubs.acs.org/doi/10.1021/jp0041297

MIPD: 2020, Polymers, Technical report, Seoul National University.

URL: http://mipd.snu.ac.kr/upload/ep11 2 1/soft matter 5.pdf

Monti, S., Corozzi, A., Fristrup, P., Joshi, K. L., Shin, Y. K., Oelschlaeger, P., Van Duin, A. C. and Barone, V.: 2013, Exploring the conformational and reactive dynamics of biomolecules in solution using an extended version of the glycine reactive force field, Physical Chemistry Chemical Physics 15(36), 15062–15077.

Morris, P. J. T.: 1990, Polymer Pioneers: A Popular History of the Science and Technology of Large Molecules, 2nd edn, Beckman center for the history of chemistry, Philadel-phia.

URL: https://books.google.nl/books?id=GjtJfmxvSWgC&pg=PA76&redir esc=y#v=onepage&q&f=false

Mueller, J. E., Van Duin, A. C. and Goddard, W. A.: 2010, Application of the ReaxFF reactive force field to reactive dynamics of hydrocarbon chemisorption and de-composition, Journal of Physical Chemistry C 114(12), 5675–5685.

Nagata, I. and Gotoh, K.: 1996, Thermodynamics of amine and acetonitrile solutions, Thermochimica Acta 274, 81–99.

URL: https://www.sciencedirect.com/science/article/pii/0040603195024336

Nagata, I. and Nakamura, S.: 1987, Prediction of vapor-liquid equilibrium from ternary liquid-liquid equilibrium data by means of local composition equations, Ther-mochimica Acta 115, 359–373.

URL: https://www.sciencedirect.com/science/article/pii/004060318788382X

Nagata, I., Tamura, K. and Tokuriki, S.: 1982, Excess enthalpies for the sys-tems acetonitrile-benzene-tetrachloromethane and acetonitrile-dichloromethane-tetrachloromethane at 298.15 K, Fluid Phase Equilibria 8(1), 75–86.

(17)

Nair, K. P., Breedveld, V. and Weck, M.: 2008, Complementary hydrogen-bonded thermoreversible polymer networks with tunable properties, Macromolecules

41(10), 3429–3438.

URL: https://pubs.acs.org/sharingguidelines

Nair, L. S. and Laurencin, C. T.: 2007, Biodegradable polymers as biomaterials, Progress in Polymer Science 32(8-9), 762–798.

URL: https://www.sciencedirect.com/science/article/pii/S0079670007000664

Nayir, N., Van Duin, A. C. and Erkoc, S.: 2019, Development of the ReaxFF Reactive Force Field for Inherent Point Defects in the Si/Silica System, Journal of Physical Chemistry A 123(19), 4303–4313.

Newsome, D. A., Sengupta, D., Foroutan, H., Russo, M. F. and van Duin, A. C. T.: 2012, Oxidation of Silicon Carbide by O <sub>2</sub> and H <sub>2</sub> O: A ReaxFF Reactive Molecular Dynamics Study, Part I, The Journal of Physical Chemistry C 116(30), 16111–16121.

URL: https://pubs.acs.org/doi/10.1021/jp306391p

Nicolaou, K. C., Snyder, S. A., Montagnon, T. and Vassilikogiannakis, G.: 2002, The Diels-Alder reaction in total synthesis, Angewandte Chemie - International Edition

41(10), 1668–1698.

URL:

http://doi.wiley.com/10.1002/1521-3773%2820020517%2941%3A10%3C1668%3A%3AAID-ANIE1668%3E3.0.CO%3B2-Z

Nie, B., Hasan, K., Greaves, M. D. and Rotello, V. M.: 1995, Reversible covalent attach-ment of C60 to a furan-functionalized resin, Tetrahedron Letters 36(21), 3617–3618. Noro, A., Matsushima, S., He, X., Hayashi, M. and Matsushita, Y.: 2013,

Thermore-versible supramolecular polymer gels via metal-ligand coordination in an ionic liquid, Macromolecules 46(20), 8304–8310.

URL: https://pubs.acs.org/sharingguidelines

Nurkowski, D., Klippenstein, S. J., Georgievskii, Y., Verdicchio, M., Jasper, A. W., Akroyd, J., Mosbach, S. and Kraft, M.: 2015, Ab initio Varia-tional Transition State Theory and Master Equation Study of the Reac-tion (OH)3SiOCH2+CH3(OH)3SiOC2H5, Zeitschrift f ¨ur Physikalische Chemie

229(5), 691–708.

URL: https://www.degruyter.com/view/j/zpch.2015.229.issue-5/zpch-2014-0640/zpch-2014-0640.xml

Oil Consumption: 2019.

URL: https://www.bpf.co.uk/Press/Oil Consumption.aspx

Ojwang, J. G. O., van Santen, R., Kramer, G. J., van Duin, A. C. T. and Goddard, W. A.: 2008, Modeling the sorption dynamics of NaH using a reactive force field, The Journal of Chemical Physics 128(16), 164714.

URL: http://aip.scitation.org/doi/10.1063/1.2908737

Olabisi, O., Robeson, L. M. and Shaw, M. T.: 1979, Polymer-polymer miscibility, Academic Press.

(18)

Oliveux, G., Dandy, L. O. and Leeke, G. A.: 2015, Current status of recycling of fi-bre reinforced polymers: Review of technologies, reuse and resulting properties, Progress in Materials Science 72, 61–99.

URL: https://www.sciencedirect.com/science/article/pii/S0079642515000316

Orozco, F., Li, J., Ezekiel, Unwana Niyazov, Z., Floyd, L., Lima, Guilherme M.R. Winkelman, Jos G.M. Moreno-Villoslada, I., Picchioni, F. and Bose, R. K.: 2020, Diels-Alder-based thermo-reversibly crosslinked polymers: Interplay of network mobility, kinetics and stereoisomerism, European Polymer Journal 135, 109882– 109890.

URL: http://www.sciencedirect.com/science/article/pii/S0014305720315962

Paal, C.: 1884, Ueber die Derivate des Acetophenonacetessigesters und des Acetony-lacetessigesters, Berichte der deutschen chemischen Gesellschaft 17(2), 2756–2767.

URL: http://doi.wiley.com/10.1002/cber.188401702228

Palmer, D. A. and Smith, B. D.: 1972, Thermodynamic excess property measurements for acetonitrile-benzene-n-heptane system at 45.deg., Journal of Chemical & Engi-neering Data 17(1), 71–76.

URL: http://pubs.acs.org/doi/abs/10.1021/je60052a037

Pazuki, G. R., Azimaie, R., Taghikhani, V. and Vossoughi, M.: 2009, Extension of the Wilson-NRF Gibbs Energy Model in Correlating Vapor-Liquid and Liquid-Liquid Phase Behavior of Polymer-Polymer Aqueous Two-Phase Systems, Journal of Dis-persion Science and Technology 30(4), 534–539.

URL: http://www.tandfonline.com/doi/abs/10.1080/01932690802553916

Pelton, A. D., Degterov, S. A., Eriksson, G., Robelin, C. and Dessureault, Y.: 2000, The modified quasichemical model I-Binary solutions, Metallurgical and Materi-als Transactions B 31(4), 651–659.

URL: http://link.springer.com/10.1007/s11663-000-0103-2

Peng, C. C. and Abetz, V.: 2005, A simple pathway toward quantitative modi-fication of polybutadiene: A new approach to thermoreversible cross-linking rubber comprising supramolecular hydrogen-bonding networks, Macromolecules

38(13), 5575–5580.

URL: https://pubs.acs.org/sharingguidelines

Plimpton, S.: 1995, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Jour-nal of ComputatioJour-nal Physics 117(1), 1–19.

URL: https://www.sciencedirect.com/science/article/pii/S002199918571039X

Polgar, L., Kingma, A., Roelfs, M., van Essen, M., van Duin, M. and Picchioni, F.: 2017, Kinetics of cross-linking and de-cross-linking of EPM rubber with thermore-versible Diels-Alder chemistry, European Polymer Journal 90, 150–161.

URL: https://www.sciencedirect.com/science/article/pii/S0014305716317396

Polgar, L. M., Fortunato, G., Araya-Hermosilla, R., van Duin, M., Pucci, A. and Pic-chioni, F.: 2016, Cross-linking of rubber in the presence of multi-functional cross-linking aids via thermoreversible Diels-Alder chemistry, European Polymer Journal

(19)

Polling, B. E., Prausnitz, J. M. and O’Connell, J. P.: 2001, The properties of gases and liquids, McGraw-Hill.

URL:

https://www.accessengineeringlibrary.com/browse/properties-of-gases-and-liquids-fifth-edition

Psofogiannakis, G. and van Duin, A. C.: 2016, Development of a ReaxFF reactive force field for Si/Ge/H systems and application to atomic hydrogen bombardment of Si, Ge, and SiGe (100) surfaces, Surface Science 646, 253–260.

URL: https://www.sciencedirect.com/science/article/pii/S0039602815002472?via%3Dihub

Qualizza, B. A. and Ciszek, J. W.: 2015, Experimental survey of the kinetics of acene Diels-Alder reactions, Journal of Physical Organic Chemistry 28(10), 629–634.

Rahaman, O., Van Duin, A. C., Goddard, W. A. and Doren, D. J.: 2011, Development of a ReaxFF reactive force field for glycine and application to solvent effect and tautomerization, Journal of Physical Chemistry B 115(2), 249–261.

Rahman, A.: 1964, Correlations in the Motion of Atoms in Liquid Argon, Physical Re-view 136(2A), A405–A411.

URL: https://link.aps.org/doi/10.1103/PhysRev.136.A405

Raju, M., Ganesh, P., Kent, P. R. C. and van Duin, A. C. T.: 2015, Reactive Force Field Study of Li/C Systems for Electrical Energy Storage, Journal of Chemical Theory and Computation 11(5), 2156–2166.

URL: https://pubs.acs.org/doi/10.1021/ct501027v

Ram´ırez-Gualito, K., L ´opez-Mora, N., Jim´enez-V´azquez, H. A., Tamariz, J. and Cuevas, G.: 2013, The role of supramolecular intermediates in the potential energy surface of the Diels-Alder reaction, Journal of the Mexican Chemical Society 57(4), 267–275. Rapaport, D. C.: 1978, Molecular dynamics simulation of polymer chains with

ex-cluded volume, Journal of Physics A: Mathematical and General 11(8), L213.

Redlich, O. and Kister, A. T.: 1948, Algebraic Representation of Thermodynamic Properties and the Classification of Solutions, Industrial & Engineering Chemistry

40(2), 345–348.

URL: https://pubs.acs.org/doi/abs/10.1021/ie50458a036

Renon, H. and Prausnitz, J. M.: 1968, Local compositions in thermodynamic excess functions for liquid mixtures, AIChE Journal 14(1), 135–144.

URL: http://doi.wiley.com/10.1002/aic.690140124

Riesen, R.: 2007, Choosing the right baseline, Thermal Analysis UserComs p. 23.

Rigby, D. and Roe, R. J.: 1988, Molecular dynamics simulation of polymer liquid and glass. II. Short range order and orientation correlation, The Journal of Chemical Physics 89(8), 5280–5290.

URL: http://aip.scitation.org/doi/10.1063/1.455619

Rigby1, D. and Roe, R. J.: 1990, Molecular Dynamics Simulation of Polymer Liquid and Glass. 4. Free-Volume Distribution, Macromolecules 23, 5312–5319.

(20)

Ritchie, H. and Roser, M.: 2020, Plastic Pollution, Our World in Data .

URL: https://ourworldindata.org/plastic-pollution

Rocha, S. A. and Guirardello, R.: 2009, An approach to calculate solid-liquid phase equilibrium for binary mixtures, Fluid Phase Equilibria 281(1), 12–21.

URL: https://www.sciencedirect.com/science/article/pii/S0378381209001071

Rodriguez, F., Cohen, C., Ober, C. K. and Archer, L.: 2003, Principles of polymer systems., CRC Press Taylor & Francis Group.

URL: https://www.crcpress.com/Principles-of-Polymer-Systems-Sixth-Edition/Rodriguez-Cohen-Ober-Archer/p/book/9781482223781

Rogers, F. E. and Quan, S. W.: 1973, Thermochemistry of the Diels-Alder reaction. III. Heat of addition of cyclopentadiene to maleic anhydride, The Journal of Physical Chemistry 77(6), 828–831.

URL: https://pubs.acs.org/doi/abs/10.1021/j100625a019

Rossi, C., Cardozo-Filho, L. and Guirardello, R.: 2009, Gibbs free energy minimization for the calculation of chemical and phase equilibrium using linear programming, Fluid Phase Equilibria 278(1-2), 117–128.

URL: https://www.sciencedirect.com/science/article/pii/S0378381209000223

Rozenberg, B. A., Dzhavadyan, E. A., Morgan, R. and Shin, E.: 2002, High-performance bismaleimide matrices: Cure kinetics and mechanism, Polymers for Advanced Tech-nologies 13(10-12), 837–844.

Rulisek, L., Sebek, P., Havlas, Z., Hrabal, R., Capek, P. and Svatos, A.: 2005, An Experimental and Theoretical Study of Stereoselectivity of Furan-Maleic Anhy-dride and Furan-Maleimide Diels-Alder Reactions, The Journal of Organic Chem-istry 70(16), 6295–6302.

URL: https://pubs.acs.org/doi/abs/10.1021/jo050759z

Sadeghi, R.: 2005, Extension of the Wilson model to multicomponent polymer solu-tions: applications to polymer-polymer aqueous two-phase systems, The Journal of Chemical Thermodynamics 37(1), 55–60.

URL: https://www.sciencedirect.com/science/article/pii/S0021961404001673

Saeki, S., Kuwahara, N., Nakata, M. and Kaneko, M.: 1976, Upper and lower critical solution temperatures in poly (ethylene glycol) solutions, Polymer 17(8), 685–689. Saeki, S., Namiki, T., Tsubokawa, M. and Yamaguchi, T.: 1987, Theoretical prediction of the upper and lower critical solution temperatures in aqueous polymer solutions based on the corresponding states theory, Polymer 28(1), 93–96.

Sakai, S.: 2000, Theoretical analysis of concerted and stepwise mechanisms of Diels-Alder reaction between butadiene and ethylene, Journal of Physical Chemistry A

104(5), 922–927.

Samieegohar, M., Sha, F., Clayborne, A. Z. and Wei, T.: 2019, ReaxFF MD Simulations of Peptide-Grafted Gold Nanoparticles, Langmuir 35(14), 5029–5036.

(21)

Sandler, S. I.: 1986, Chemical Engineering Thermodynamics: Education and Applica-tion, J. Non-Equilib. Thermodyn. 11, 67–84.

URL:

https://www.degruyter.com/downloadpdf/j/jnet.1986.11.issue-1-2/jnet.1986.11.1-2.67/jnet.1986.11.1-2.67.pdf

Sauer, J. A. and Hara, M.: 1990, Effect of molecular variables on crazing and fatigue of polymers, Crazing in Polymers Vol. 2, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 69–118.

URL: http://www.springerlink.com/index/D355L01P8R282118.pdf%5Cnhttp://www.springerlink.com/index/10.1007/BFb0018019

Sauer, J. and Sustmann, R.: 1980, Mechanistic Aspects of DielsAlder Reactions: A Crit-ical Survey, Angewandte Chemie International Edition in English 19(10), 779–807.

URL: http://doi.wiley.com/10.1002/anie.198007791

Saunders, N. and Miodownik, A. P.: 1998, CALPHAD (Calculation of Phase Diagrams) : a Comprehensive Guide., Oxford Pergamon Press.

Saxegaard, H.: 2003, Crack self-healing properties of asphalt concrete: laboratory sim-ulation, The International Journal on Hydropower & Dams (3), 106–109.

Scatchard, G.: 1931, Equilibria in Non-electrolyte Solutions in Relation to the Vapor Pressures and Densities of the Components., Chemical Reviews 8(2), 321–333.

URL: https://pubs.acs.org/doi/abs/10.1021/cr60030a010

Scheltjens, G., Diaz, M., Brancart, J., Van Assche, G. and Van Mele, B.: 2013, A self-healing polymer network based on reversible covalent bonding, Reactive and Func-tional Polymers 73(2), 413–420.

URL: https://www.sciencedirect.com/science/article/pii/S1381514812001861

Seltzer, S.: 1965, The Mechanism of the Diels-Alder Reaction of 2-Methylfuran with Maleic Anhydride <sup>1,2</sup>, Journal of the American Chemical Society

87(7), 1534–1540.

URL: https://pubs.acs.org/doi/abs/10.1021/ja01085a023

Senftle, T. P., Hong, S., Islam, M. M., Kylasa, S. B., Zheng, Y., Shin, Y. K., Junkermeier, C., Engel-Herbert, R., Janik, M. J., Aktulga, H. M., Verstraelen, T., Grama, A. and Van Duin, A. C.: 2016, The ReaxFF reactive force-field: Development, applications and future directions.

Sestak, J. and Berggren, G.: 1971, Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures, Thermochimica Acta 3(1), 1–12.

URL: https://www.sciencedirect.com/science/article/pii/0040603171850517

Sheehan, M. and Sharratt, P.: 1999, An Experimental Study of the Solvent Effect on Rate and Selectivity in a Concentrated Diels-Alder Reaction, Organic Process Research & Development 3(6), 471–475.

URL: https://pubs.acs.org/doi/10.1021/op990050s

Shu, Y., Zhang, S., Shu, Y., Liu, N., Yi, Y., Huo, J. and Ding, X.: 2019, Interactions and physical properties of energetic poly-(phthalazinone ether sulfone ketones) (PPESKs) and -hexanitrohexaazaisowurtzitane (-CL-20) based polymer bonded

(22)

explosives: a molecular dynamics simulations, Structural Chemistry 30(3), 1041– 1055.

Sienkiewicz, A., Krasucka, P., Charmas, B., Stefaniak, W. and Goworek, J.: 2017, Swelling effects in cross-linked polymers by thermogravimetry, Journal of Ther-mal Analysis and Calorimetry 130(1), 85–93.

URL: https://doi.org/10.1007/s10973-017-6131-9

Skjold-Jorgensen, S., Kolbe, B., Gmehling, J. and Rasmussen, P.: 1979, Vapor-Liquid Equilibria by UNIFAC Group Contribution. Revision and Extension, Industrial & Engineering Chemistry Process Design and Development 18(4), 714–722.

URL: http://pubs.acs.org/doi/abs/10.1021/i260072a024

Skjold-Jorgensen, S., Rasmussen, P. and Fredenslund, A.: 1980, On the temperature dependence of the UNIQUAC/UNIFAC models, Chemical Engineering Science

35(12), 2389–2403.

URL: https://www.sciencedirect.com/science/article/pii/0009250980850524

Skjold-Jorgensen, S., Rasmussen, P. and Fredenslund, A.: 1982, On the concentra-tion dependence of the UNIQUAC/UNIFAC models, Chemical Engineering Science

37(1), 99–111.

URL: https://www.sciencedirect.com/science/article/pii/0009250982800729

Slow, K. S., Delmas, G., Patterson, D., Davenport, J. A., Rowlinson, J. S., Saville, G. and Faraday, T.: 1972, Cloud-Point Curves in Polymer Solutions 29 Cloud-Point Curves in Polymer Solutions with Adjacent Upper and Lower Critical Solution Temperatures, Technical Report 1.

URL: https://pubs.acs.org/sharingguidelines

Srivastava, R. and Smith, B. D.: 1986, Total pressure vapor-liquid equilibrium data for benzene + acetonitrile, diethylamine + ethylacetate, and propylamine + diethy-lamine binary systems, Journal of Chemical & Engineering Data 31(1), 94–99.

URL: http://pubs.acs.org/doi/abs/10.1021/je00043a027

Stevens, M. P.: 1984, Dielsalder polymer of N-(2-anthryl)maleimide, Journal of Polymer Science: Polymer Letters Edition 22(9), 467–471.

URL: http://doi.wiley.com/10.1002/pol.1984.130220901

Stillinger, F. H. and Rahman, A.: 1974, Improved simulation of liquid water by molec-ular dynamics, The Journal of Chemical Physics 60(4), 1545–1557.

URL: http://aip.scitation.org/doi/10.1063/1.1681229

Stinson, S.: 1987, Discoverers of Polypropylene Share Prize, Chemical & Engineering News 65(10), 30.

URL: https://pubs.acs.org/doi/pdf/10.1021/cen-v065n010.p030

Strachan, A., Kober, E. M., Van Duin, A. C., Oxgaard, J. and Goddard, W. A.: 2005, Thermal decomposition of RDX from reactive molecular dynamics, Journal of Chemical Physics 122(5), 054502.

(23)

Strachan, A., van Duin, A. C., Chakraborty, D., Dasgupta, S. and Goddard, W. A.: 2003, Shock Waves in High-Energy Materials: The Initial Chemical Events in Nitramine RDX, Physical Review Letters 91(9), 098301.

URL: http://www.ncbi.nlm.nih.gov/pubmed/14525217

Sun, C. X., Van Der Mee, M. A., Goossens, J. G. and Van Duin, M.: 2006, Ther-moreversible cross-linking of maleated ethylene/propylene copolymers using hydrogen-bonding and ionic interactions, Macromolecules 39(9), 3441–3449.

URL: https://pubs.acs.org/sharingguidelines

Sun, J., Liu, P., Wang, M. and Liu, J.: 2020, Molecular Dynamics Simulations of Melt-ing Iron Nanoparticles with/without Defects UsMelt-ing a Reaxff Reactive Force Field, Scientific Reports 10(1), 3408.

URL: http://www.nature.com/articles/s41598-020-60416-5

Sundman, B. and ˚Agren, J.: 1981, A regular solution model for phases with several components and sublattices, suitable for computer applications, Journal of Physics and Chemistry of Solids 42(4), 297–301.

URL: https://www.sciencedirect.com/science/article/pii/002236978190144X

Sundman, B., Kattner, U. R., Palumbo, M. and Fries, S. G.: 2015, OpenCalphad - a free thermodynamic software, Integrating Materials and Manufacturing Innovation

4(1), 1–15.

URL: http://link.springer.com/10.1186/s40192-014-0029-1

Sundman, B., Lu, X.-G. and Ohtani, H.: 2015, The implementation of an algorithm to calculate thermodynamic equilibria for multi-component systems with non-ideal phases in a free software, Computational Materials Science 101, 127–137.

URL: https://www.sciencedirect.com/science/article/pii/S0927025615000361

Sustmann, R.: 1971, A simple model for substituent effects in cycloaddition reactions. I. 1,3-dipolar cycloadditions, Tetrahedron Letters 12(29), 2717–2720.

URL: https://www.sciencedirect.com/science/article/pii/S0040403901969618

Sustmann, R.: 1974, Orbital energy control of cycloaddition reactivity, Pure and Applied Chemistry 40(4), 569–593.

URL: https://www.degruyter.com/view/j/pac.1974.40.issue-4/pac197440040569/pac197440040569.xml

Szalai, M. L., McGrath, D. V., Wheeler, D. R., Zifer, T. and McElhanon, J. R.: 2007, Dendrimers based on thermally reversible furan-maleimide Diels-Alder adducts, Macromolecules 40(4), 818–823.

Taffn, C., Kreutler, G., Bourgeois, D., Clot, E. and P´erigaud, C.: 2010, Diels-Alder re-action of vinylene carbonate and 2,5-dimethylfuran: Kinetic vs. thermodynamic control, New Journal of Chemistry 34(3), 517–525.

URL: http://xlink.rsc.org/?DOI=b9nj00536f

Takeuchi(a), H. and Okazaki, K.: 1990, Molecular dynamics simulation of diffusion of simple gas molecules in a short chain polymer, The Journal of Chemical Physics

92(9), 5643–5652.

(24)

Takeuchi(b), H., Roe, R. J. and Mark, J. E.: 1990, Molecular dynamics simulation of diffusion of small molecules in polymers. II. Effect of free volume distribution, The Journal of Chemical Physics 93(12), 9042–9048.

URL: http://aip.scitation.org/doi/10.1063/1.459194

Talley, P. K., Sangster, J., Pelton, A. D. and Bale, C. W.: 1992, Prediction of vapor-liquid equilibria and thermodynamic properties for a quinary hydrocarbon system from optimized binary data using the kohler method, Calphad 16(1), 93–106.

URL: https://www.sciencedirect.com/science/article/abs/pii/036459169290043W

Talreja, R.: 1999, Damage mechanics and fatigue life assessment of composite materi-als, International Journal of Damage Mechanics 8(4), 339–354.

URL: http://journals.sagepub.com/doi/10.1177/105678959900800404

Teramoto, N., Arai, Y. and Shibata, M.: 2006, Thermo-reversible Diels-Alder poly-merization of difurfurylidene trehalose and bismaleimides, Carbohydrate Polymers

64(1), 78–84.

Theodorou, D. N. and Suter, U. W.: 1985, Detailed Molecular Structure of a Vinyl Poly-mer Glass, Macromolecules 18(7), 1467–1478.

Tian, Q., Yuan, Y. C., Rong, M. Z. and Zhang, M. Q.: 2009, A thermally remendable epoxy resin, Journal of Materials Chemistry 19(9), 1289.

URL: http://xlink.rsc.org/?DOI=b811938d

Toncelli, C., De Reus, D. C., Picchioni, F. and Broekhuis, A. A.: 2012, Properties of Reversible Diels-Alder Furan/Maleimide Polymer Networks as Function of Crosslink Density, Macromolecular Chemistry and Physics 213(2), 157–165.

URL: http://doi.wiley.com/10.1002/macp.201100405

Toohey, K. S., Sottos, N. R., Lewis, J. A., Moore, J. S. and White, S. R.: 2007, Self-healing materials with microvascular networks, Nature Materials 6(8), 581–585.

Truong, T. T., Nguyen, H. T., Phan, M. N. and Nguyen, L. T. T.: 2018, Study of Diels-Alder reactions between furan and maleimide model compounds and the prepa-ration of a healable thermo-reversible polyurethane, Journal of Polymer Science, Part A: Polymer Chemistry 56(16), 1806–1814.

Urban, M. W.: 2015, Self-Repairing Polymeric Materials, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 1–36.

URL: http://doi.wiley.com/10.1002/0471238961.koe00003

Van Broekhoven, J. A. M. and Drent, E.: 1987, EP 0235865.

Van Broekhoven, J. A. M., Drent, E. and Klei, E.: 1987, EP 0213671.

Van Duin, A. C., Dasgupta, S., Lorant, F. and Goddard, W. A.: 2001, ReaxFF: A reactive force field for hydrocarbons, Journal of Physical Chemistry A 105(41), 9396–9409. van Duin, A. C. T., Strachan, A., Stewman, S., Zhang, Q., Xu, X. and Goddard, W. A.:

2003, ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems, The Journal of Physical Chemistry A 107(19), 3803–3811.

(25)

van Laar, J. J.: 1910, ¨Uber Dampfspannungen von bin¨aren Gemischen (The vapor pres-sure of binary mixtures), Zeitschrift f ¨ur Physikalische Chemie 72, 723–751.

van Laar, J. J.: 1913, Zur Theorie der Dampfspannungen von bin¨aren Gemischen. Er-widerung an Herrn F. Dolezalek (Theory of vapor pressure of binary mixtures. Reply to Mr. F. Dolezalek, Zeitschrift f ¨ur Physikalische Chemie 83, 599–608.

Vasenkov, A., Newsome, D., Verners, O., Russo, M. F., Zaharieva, R. and Van Duin, A. C.: 2012, Reactive molecular dynamics study of Mo-based alloys under high-pressure, high-temperature conditions, Journal of Applied Physics 112(1), 013511.

URL: http://aip.scitation.org/doi/10.1063/1.4731793

Vashisth, A., Ashraf, C., Zhang, W., Bakis, C. E. and van Duin, A. C. T.: 2018, Acceler-ated ReaxFF Simulations for Describing the Reactive Cross-Linking of Polymers, The Journal of Physical Chemistry A 122(32), 6633–6642.

URL: https://pubs.acs.org/doi/10.1021/acs.jpca.8b03826

Vyazovkin, S. and Dollimore, D.: 1996, Linear and Nonlinear Procedures in Isocon-versional Computations of the Activation Energy of Nonisothermal Reactions in Solids, Journal of Chemical Information and Computer Sciences 36(1), 42–45.

URL: http://pubs.acs.org/doi/abs/10.1021/ci950062m

Walter, R. and August, M.: 1951, Polyketones made by reaction of from carbon monox-ide with aliphatic unsaturated compounds.

URL: https://patents.google.com/patent/US2577208A/en

Wang, G. W., Chen, Z. X., Murata, Y. and Komatsu, K.: 2005, [60]Fullerene adducts with 9-substituted anthracenes: Mechanochemical preparation and retro Diels-Alder reaction, Tetrahedron 61(20), 4851–4856.

Weber, T. A.: 1978, Simulation of n-butane using a skeletal alkane model, The Journal of Chemical Physics 69(6), 2347–2354.

URL: http://scitation.aip.org/content/aip/journal/jcp/69/6/10.1063/1.436863

Weber, T. A.: 1979, Relaxation of a n-octane fluid, The Journal of Chemical Physics

70(9), 4277–4284.

URL: http://aip.scitation.org/doi/10.1063/1.438001

Weidlich, U. and Gmehling, J.: 1987, A modified UNIFAC model. 1. Prediction of VLE, hE, and .gamma..infin., Industrial & Engineering Chemistry Research 26(7), 1372– 1381.

URL: http://pubs.acs.org/doi/abs/10.1021/ie00067a018

Weismiller, M. R., Duin, A. C., Lee, J. and Yetter, R. A.: 2010, ReaxFF reactive force field development and applications for molecular dynamics simulations of am-monia borane dehydrogenation and combustion, Journal of Physical Chemistry A

114(17), 5485–5492.

White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N. and Viswanathan, S.: 2001, Autonomic healing of polymer compos-ites, Nature 409(6822), 794–797.

(26)

Wilson, G. M.: 1964, Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing, Journal of the American Chemical Society 86(2), 127–130.

URL: http://pubs.acs.org/doi/abs/10.1021/ja01056a002

Wool, R. P.: 2008, Self-healing materials: A review, Soft Matter 4(3), 400–418.

Wouters, M., Craenmehr, E., Tempelaars, K., Fischer, H., Stroeks, N. and van Zanten, J.: 2009, Preparation and properties of a novel remendable coating concept, Progress in Organic Coatings 64(2-3), 156–162.

Wu, D. Y., Meure, S. and Solomon, D.: 2008, Self-healing polymeric materials: A review of recent developments.

Wu, W., Zou, Z., Yang, S., Wu, Q., Li, W., Ding, Q., Guan, Z. and Zhu, W.: 2020, Coarse-Grained Molecular Dynamic and Experimental Studies on Self-Assembly Behavior of Nonionic F127/HS15 Mixed Micellar Systems, Langmuir p. acs.langmuir.9b03936.

URL: https://pubs.acs.org/doi/10.1021/acs.langmuir.9b03936

Xie, L., Shao, Y., Zhong, W., Ben, H. and Li, K.: 2019, Molecular dynamic simulation on the oxidation process of coal tar pitch, Fuel 242, 50–61.

Yahaya, G. O., Ahdab, A. A., Ali, S. A., Abu-Sharkh, B. F. and Hamad, E. Z.: 2001, Solution behavior of hydrophobically associating water-soluble block copolymers of acrylamide and N-benzylacrylamide, Polymer 42(8), 3363–3372.

Yameen, B., Rodriguez-Emmenegger, C., Preuss, C. M., Pop-Georgievski, O., Verveni-otis, E., Trouillet, V., Rezek, B. and Barner-Kowollik, C.: 2013, A facile avenue to conductive polymer brushes via cyclopentadienemaleimide DielsAlder ligation, Chemical Communications 49(77), 8623–8625.

URL: https://pubs.rsc.org/en/content/articlehtml/2013/cc/c3cc44683b https://pubs.rsc.org/en/content/articlelanding/2013/cc/c3cc44683b

Yan, S., Xia, D., Zhang, X. and Jiang, B.: 2019, A complete depolymerization of scrap tire with supercritical water participation: A molecular dynamic simulation study, Waste Management 93, 83–90.

Yang, S. and Qu, J.: 2012, Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations, Polymer 53(21), 4806–4817.

Yang, Y. and Urban, M. W.: 2013, Self-healing polymeric materials, Chemical Society Reviews 42(17), 7446.

URL: http://xlink.rsc.org/?DOI=c3cs60109a

Zhang, W. and van Duin, A. C. T.: 2017, Second-Generation ReaxFF Water Force Field: Improvements in the Description of Water Density and OH-Anion Diffusion, The Journal of Physical Chemistry B 121(24), 6021–6032.

URL: https://pubs.acs.org/doi/10.1021/acs.jpcb.7b02548

Zhang, W. and van Duin, A. C. T.: 2018, Improvement of the ReaxFF Description for Functionalized Hydrocarbon/Water Weak Interactions in the Condensed Phase, The Journal of Physical Chemistry B 122(14), 4083–4092.

(27)

Zhang, W., Zhou, Z., Li, Q. and Chen, G. X.: 2014, Controlled dielectric properties of polymer composites from coating multiwalled carbon nanotubes with octa-acrylate silsesquioxane through Diels-Alder cycloaddition and atom transfer rad-ical polymerization, Industrial and Engineering Chemistry Research 53(16), 6699– 6707.

URL: https://pubs.acs.org/sharingguidelines

Zhang, Y.: 2008, Chemical modifications and applications of alternating aliphatic polyeketones, PhD thesis, University of Groningen.

Zhang, Y., Broekhuis, A. A. and Picchioni, F.: 2009, Thermally self-healing poly-meric materials: The next step to recycling thermoset polymers?, Macromolecules

42(6), 1906–1912.

Zhang(c), L., Zybin, S. V., Van Duin, A. C., Dasgupta, S., Goddard, W. A. and Kober, E. M.: 2009, Carbon cluster formation during thermal decomposition of octahydro-l,3,5,7-tetranitro-l,3,5,7-tetrazocine and l,3,5-triamino-2,4,6- trini-trobenzene high explosives from ReaxFF reactive molecular dynamics simula-tions, Journal of Physical Chemistry A 113(40), 10619–10640.

URL: https://pubs.acs.org/doi/10.1021/jp901353a

Zhao, Y., Bai, Y., Liu, A., Li, W., An, M., Bai, Y. and Chen, G.: 2020, Polymer electrolyte with dual functional groups designed via theoretical calculation for all-solid-state lithium batteries, Journal of Power Sources 450, 227614.

Zhao, Y. and Truhlar, D. G.: 2011, Density functional theory for reaction energies: Test of meta and hybrid meta functionals, range-separated functionals, and other high-performance functionals, Journal of Chemical Theory and Computation 7(3), 669–676.

URL: http://pubs.acs.org/doi/abs/10.1021/ct1006604

Zheng, Y., Hong, S., Psofogiannakis, G., Rayner, G. B., Datta, S., van Duin, A. C. and Engel-Herbert, R.: 2017, Modeling and in Situ Probing of Surface Reactions in Atomic Layer Deposition, ACS Applied Materials & Interfaces 9(18), 15848–15856.

URL: https://pubs.acs.org/doi/10.1021/acsami.7b01618

Zhong, Q., Zhang, Y., Shabnam, S., Mao, Q., Xiao, J., van Duin, A. C. and Mathews, J. P.: 2019, ReaxFF MD simulations of petroleum coke CO2 gasification examining the S/N removal mechanisms and CO/CO2 reactivity, Fuel 257, 116051.

Zhong, Y., Wang, X., Zheng, Z. and Du, P.: 2015, Polyether-maleimide-based crosslinked self-healing polyurethane with Diels-Alder bonds, Journal of Applied Polymer Science 132(19), n/a–n/a.

URL: http://doi.wiley.com/10.1002/app.41944

Zhou, L. G. and Shi, S. Q.: 2002, Molecular dynamic simulations on tensile mechanical properties of single-walled carbon nanotubes with and without hydrogen storage, Computational Materials Science, Vol. 23, pp. 166–174.

Zhu, C., Monti, S. and Mathew, A. P.: 2020, Evaluation of nanocellulose interaction with water pollutants using nanocellulose colloidal probes and molecular dy-namic simulations, Carbohydrate Polymers 229, 115510.

Referenties

GERELATEERDE DOCUMENTEN

Subject headings: polymers / glass dynamics / molecular relaxation / glass transition / strain hardening / deformation / polystyrene / polycarbonate / molecular dynamics method

The vapour-solvated polymer brush simulations using the Kremer-Grest model show that the sorption behaviour can be predicted based on the polymer self-affinity and the

plicit kinetic model to evaluate the kinetic parameters of thermally reversible reactions and to predict their potential surfaces that can be applied to explain the experimental data

Besides the energy of the transition state, its structure is also crucial to verify a force field. Figure 4.15 illustrates the structure of the transition state of endo-DCPD, which

Solid lines: cal- culated by OpenCalphad software with parameters assessed in this work, see Ta- ble 5.3; dash lines: calculated with parameters assessed by literature (Anderson

De methode gentro- duceerd in hoofdstuk 2 en 3 is een combinatie van metingen en een serie van mod- elberekeningen, wat een geschikte manier is voor het bestuderen van de kinetiek

I want to thank Huala Wu and Yehan Tao for the lovely Chinese new year dinner, and Duligengaowa Wuergezhen for the time we shared.. The Jazz trip to Den Haag stands out

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.. Downloaded