• No results found

Nature and nurture in galaxy formation simulations Haas, M.R.

N/A
N/A
Protected

Academic year: 2021

Share "Nature and nurture in galaxy formation simulations Haas, M.R."

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Nature and nurture in galaxy formation simulations

Haas, M.R.

Citation

Haas, M. R. (2010, December 7). Nature and nurture in galaxy formation simulations. Retrieved from https://hdl.handle.net/1887/16207

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16207

Note: To cite this publication please use the final published version (if applicable).

(2)

If you thought that science was certain - well, that is just an error on your part.

Richard P. Feynman

(3)
(4)

Nature and Nurture in

Galaxy Formation Simulations

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof.mr. P.F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op dinsdag 7 december 2010 klokke 11.15 uur

door

Marcel Richard Haas

geboren te Oosterhout in 1983

(5)

Promotiecommissie

Promotor: Prof. dr. Marijn Franx Co-promotor: Dr. Joop Schaye Overige leden: Dr. Jarle Brinchmann

Prof. Dr. Koenraad Kuijken Prof. Dr. Simon Portegies Zwart Prof. Dr. Huub R ¨ottgering

Prof. Dr. Scott Trager (Rijksuniversiteit Groningen) Prof. Dr. Frank van den Bosch (Yale University)

(6)

Contents

1 Introduction 1

1.1 Galaxy formation . . . 2

1.2 Numerical simulations . . . 7

1.3 The OverWhelmingly Large Simulations . . . 10

1.4 Thesis summary . . . 10

1.5 The (near) future . . . 12

2 Physical properties of simulated galaxies from varying input physics 13 2.1 Introduction . . . 14

2.2 Numerical techniques . . . 16

2.3 Cosmology . . . 28

2.4 Metal-line cooling . . . 30

2.5 Reionization variations . . . 33

2.6 The polytropic equation of state for high density gas . . . 35

2.7 The star formation law . . . 35

2.8 The stellar initial mass function . . . 38

2.9 Supernova feedback . . . 43

2.10 AGN feedback . . . 55

2.11 Conclusions . . . 58

2.A Numerical convergence tests . . . 62

2.B The energy and momentum in momentum driven wind models . . 66

3 Disentangling galaxy environment and host halo mass 69 3.1 Introduction . . . 70

3.2 Popular environmental parameters . . . 72

3.3 Environmental parameters and their relation to halo mass . . . 75

3.4 Environment as a measure of halo mass . . . 84

3.5 Environment independent of halo mass . . . 87

3.6 Conclusions . . . 96

3.A Obtaining the halo mass from environmental parameters . . . 98

4 The simulated galaxy luminosity function: input physics, dust attenu- ation and galaxy selection 105 4.1 Introduction . . . 106

4.2 Simulations . . . 108

4.3 Population synthesis . . . 111

4.4 Dust attenuation . . . 116

4.5 Mock images and galaxy selection . . . 120

v

(7)

CONTENTS

4.6 Conclusions . . . 127

4.A Column densities in SPH simulations . . . 129

5 Variations in Integrated Galactic Initial Mass Functions due to Sam- pling Method and Cluster Mass Function 141 5.1 Introduction . . . 142

5.2 The underlying mass functions . . . 144

5.3 Sampling techniques . . . 146

5.4 Integrated galactic initial mass functions . . . 150

5.5 The number of O-stars in the Milky Way . . . 158

5.6 Galaxy evolution models . . . 162

5.7 Conclusions . . . 167

6 Nederlandstalige samenvatting 171

Bibliography 182

Publications 193

Currriculum vitae 194

Nawoord 195

vi

Referenties

GERELATEERDE DOCUMENTEN

colour gradient varies with wavelength (from ∇ g−r to ∇ g−H ) for six subsamples split by overall Sérsic index and galaxy colour, and then consider the luminosity dependence of

We found that, unless the maximum occurring stellar mass is not limited by the cluster mass, or the minimum cluster mass is higher than the maximum stellar mass, the IGIMF is

Simulaties zoals die in het OWLS project leren ons veel over de naturkundige processen die belangrijk zijn voor de evolutie van sterrenstelsels, maar veel van die ingredi¨enten zijn

As my inter- ests moved from stellar scales to bigger, I obtained my Master of Science degree in Astrophysics (cum Laude) after finishing a study of extragalactic star clusters in

The distribution of stellar masses in a galaxy could contain more massive stars in comparison to low mass stars than the initial mass function in separate star forming regions,

This LF is well described by a Schechter function with a faint-end slope α  −0.4 (derived using the ALMA data at z  2) that displays a combination of rising-then-falling

We provide the radii within which the average density equals 200 (500) times the critical, and 200 times the mean, density; the total mass enclosed in these radii, as well as

Even by eye, we see that the evolving Schechter function fits are in extremely poor agreement with the u and g band non-parametric (SWML and 1/V max ) estimates in the highest