• No results found

And there was light : Voronoi-Delaunay radiative transfer and cosmic reionisation

N/A
N/A
Protected

Academic year: 2021

Share "And there was light : Voronoi-Delaunay radiative transfer and cosmic reionisation"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

And there was light : Voronoi-Delaunay radiative transfer and cosmic reionisation

Paardekooper, J.P.

Citation

Paardekooper, J. P. (2010, December 16). And there was light : Voronoi-Delaunay radiative transfer and cosmic reionisation. Retrieved from https://hdl.handle.net/1887/16247

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16247

Note: To cite this publication please use the final published version (if applicable).

(2)

And there was light

Voronoi-Delaunay radiative transfer and cosmic reionisation

(3)
(4)

Voronoi-Delaunay radiative transfer and cosmic reionisation

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op donderdag 16 december 2010 te klokke 10:00 uur

door

Jan-Pieter Paardekooper

geboren te Alphen aan den Rijn in 1982

(5)

Promotiecommissie

Promotor: Prof. dr. V. Icke

Referent: Prof. dr. G. Mellema (Stockholm University) Overige leden: Dr. A. Ferrara (SISSA, Trieste)

Prof. dr. K. Kuijken

Prof. dr. S. Portegies Zwart Dr. J. Schaye

Prof. dr. P. Shapiro (University of Texas at Austin) Dr. E. Tolstoy (Universiteit Groningen) Prof. dr. R. van de Weygaert (Universiteit Groningen)

(6)

Earth and moon and sun and stars Planets and comets with tails blazing All are there forever falling Falling lovely and amazing Nick Cave

(7)

Omslagontwerp door IlonaH

(8)

Contents

1 Introduction 1

1.1 The formation of galaxies . . . 1

1.1.1 The Hot Big Bang model . . . 1

1.1.2 Structure formation . . . 2

1.2 The physics of cosmic reionisation . . . 4

1.3 Observational constraints on cosmic reionisation . . . 5

1.4 Simulations of cosmic reionisation . . . 6

1.4.1 Computational requirements . . . 6

1.4.2 Radiative transfer . . . 7

1.5 This thesis . . . 8

Part I: Numerical Method 13

2 SimpleX2: Radiative transfer on an unstructured, dynamic grid 15 2.1 Introduction . . . 16

2.2 The SimpleX method . . . 17

2.2.1 Grid calculation . . . 17

2.2.2 Radiation Transport . . . 23

2.3 Parallellisation strategy . . . 26

2.3.1 Domain decomposition . . . 27

2.3.2 Parallel radiative transfer . . . 27

2.3.3 Scaling tests . . . 28

2.4 Radiative transfer of ionising radiation . . . 30

2.4.1 Cosmological radiative transfer equation . . . 31

2.4.2 Ionisation processes . . . 31

2.4.3 Assigning sources . . . 32

2.4.4 Interaction . . . 34

2.4.5 Solving the photoionisation rate equation . . . 35

2.4.6 Time stepping . . . 35

2.4.7 Solving for the temperature state of the gas . . . 36

2.5 Summary . . . 38

(9)

viii And there was light

3 Creating the SimpleX grid 41

3.1 Introduction . . . 42

3.2 Sampling the density distribution . . . 43

3.2.1 The sampling function . . . 43

3.2.2 Sampling a cosmological density field . . . 45

3.2.3 The result of undersampling . . . 45

3.3 Creating the point distribution . . . 48

3.3.1 Regular input grid . . . 48

3.3.2 Particle-based input . . . 51

3.4 Assigning density values . . . 53

3.4.1 Mesh-based interpolation . . . 54

3.4.2 Particle-based interpolation . . . 55

3.4.3 Tesselation-based interpolation . . . 55

3.5 Summary . . . 56

4 Towards radiation hydrodynamics with SimpleX 59 4.1 Introduction . . . 60

4.2 Updating the Delaunay triangulation . . . 60

4.2.1 QHull . . . 60

4.2.2 A parallel dynamic and kinetic Delaunay triangulation algorithm . . . . 62

4.2.3 Performance . . . 63

4.3 Radiation hydrodynamics with SimpleX . . . 66

4.3.1 SimpleX and Eulerian hydrodynamics . . . 67

4.3.2 SimpleX and smoothed particle hydrodynamics . . . 67

4.3.3 Hydrodynamics on the Voronoi grid . . . 68

4.4 SimpleX in AMUSE . . . 68

4.5 Summary . . . 69

Part II: Application to the Epoch of Reionisation 71

5 SimpleX2: Cosmological tests 73 5.1 Introduction . . . 74

5.2 Basic physics . . . 74

5.3 Test 1: Isothermal H ii region expansion . . . 75

5.3.1 Ballistic transport . . . 76

5.3.2 Direction conserving transport . . . 78

5.3.3 Combined transport . . . 79

5.4 Test 2: H ii region expansion, the temperature state . . . 81

5.4.1 Ballistic transport . . . 81

5.4.2 Combined transport . . . 83

5.5 Test 3: Shadowing behind a dense cloud . . . 87

5.5.1 Ballistic transport . . . 87

5.5.2 Combined transport . . . 88

5.6 Test 4: Multiple sources in a cosmological density field . . . 91

(10)

Contents ix

5.6.1 Constant temperature . . . 92

5.6.2 The temperature state . . . 96

5.6.3 Comparison to other codes . . . 101

5.7 Summary . . . 105

6 The escape of ionising radiation from high-redshift dwarf galaxies 109 6.1 Introduction . . . 110

6.2 Method . . . 114

6.2.1 Initial conditions . . . 114

6.2.2 The two-phase nature of the ISM . . . 116

6.2.3 Star formation and feedback . . . 117

6.2.4 Radiative transfer . . . 118

6.2.5 Dust . . . 118

6.2.6 Calculation of the escape fraction . . . 120

6.3 Results . . . 120

6.3.1 Galaxy morphologies . . . 120

6.3.2 Star formation rates . . . 125

6.3.3 Escape fractions . . . 131

6.3.4 Observational consequences . . . 135

6.4 Numerical constraints . . . 135

6.4.1 Escape of radiation from massive sources only . . . 136

6.4.2 Resolution study . . . 139

6.4.3 Local gas clearing . . . 140

6.5 Implications for reionisation models . . . 142

6.6 Discussion . . . 144

6.6.1 Resolution . . . 144

6.6.2 The interplay of radiation and gas . . . 144

6.6.3 Physical processes . . . 145

6.6.4 Galaxy morphologies . . . 146

6.7 Conclusions . . . 147

7 Recombination photons in the Epoch of Reionisation 153 7.1 Introduction . . . 154

7.2 The photoionisation of a pure hydrogen gas . . . 155

7.3 The OTS approximation in numerical methods . . . 157

7.4 Recombination radiation in the SimpleX method . . . 159

7.5 H ii region around a Lyman limit source . . . 160

7.5.1 The contribution of diffuse photons to total radiation field . . . 160

7.5.2 The OTS approximation and the evolution of the H ii region . . . 162

7.6 The effect of the density profile . . . 163

7.6.1 The contribution of diffuse photons to total radiation field . . . 164

7.6.2 The OTS approximation and the evolution of the H ii region . . . 165

7.7 The effect of the source spectrum . . . 167

7.7.1 The contribution of diffuse photons to total radiation field . . . 167

7.7.2 The OTS approximation and the evolution of the H ii region . . . 167

(11)

x And there was light

7.8 Shadowing effects . . . 170

7.9 The OTS approximation in reionisation simulations . . . 172

7.9.1 Density field . . . 172

7.9.2 The OTS approximation and reionisation on large scales . . . 173

7.9.3 The OTS approximation and reionisation on smaller scales . . . 175

7.10 Conclusions . . . 176

Nederlandse Samenvatting 178

Curriculum Vitae 187

Nawoord 189

Referenties

GERELATEERDE DOCUMENTEN

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden Downloaded.

Despite the di fficulties in simulating the evolution of the cosmological density field, the biggest challenge for numerical simulations of cosmic reionisation is presented by

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden. Downloaded

Photons that were sent out by a source travel in one radiative transfer time step from grid point to grid point, where an interaction with the medium takes place.. (2.26) is

The kinetic theory in the diffusion approximation is applied to the super-Poissonian noise due to photon bunching and to the excess noise due to beating of incident radiation with

A semiclassical kinetic theoiy is presented for the fluctuating photon flux emitted by a disordered medmm in thermal equilibnum The kinetic equation is the optical analog of

Since the self-coupling of a cell at high optical depth is the bottle- neck that slows down convergence in Lambda Iteration codes, this removal of the local self-coupling by

All of this eventually results in a large, sparse matrix, and replaces the question of solving the radiation equation to finding the stationary distribution vector, the eigenvector