• No results found

Stars and planets at high spatial and spectral resolution Albrecht, S.

N/A
N/A
Protected

Academic year: 2021

Share "Stars and planets at high spatial and spectral resolution Albrecht, S."

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Stars and planets at high spatial and spectral resolution

Albrecht, S.

Citation

Albrecht, S. (2008, December 17). Stars and planets at high spatial and spectral resolution.

Retrieved from https://hdl.handle.net/1887/13359

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13359

Note: To cite this publication please use the final published version (if applicable).

(2)

Stars and planets

at high

spatial and spectral resolution

(3)
(4)

Stars and planets

at high

spatial and spectral resolution

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus prof. mr. P.F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op woensdag 17 december 2008 klokke 15.00 uur

door

Simon Albrecht

geboren te Osnabrück

(5)

Promotiecommissie

Promotor: Prof. dr. A. Quirrenbach Co-promotor: Dr. I. A. G. Snellen

Referent: Dr. M. Fridlund (European Space Agency, ESTEC, Noordwijk) Overige leden: Dr. M. Hogerheijde

Prof. dr. K. H. Kuijken Dr. J. Lub

Prof.dr. E. F. van Dishoeck

(6)

Für meine Mutter

(7)

Sunset as seen by NASA’s Mars Rover Spirit on May 19th, 2005. The floor of the Gusev crater is visible in the distance, and the Sun is setting behind its wall some 80 km away. One can see the scatter of sunlight by dust particles in the Martian atmosphere (NASA JPL). Thanks to the rover team for building these wonderful spacecrafts and making the photos publically available. Cover made by Sebastian Heimann.

(8)

Contents vii

Contents

Page

Chapter1. Introduction 1

1.1 The formation of stars and planets in a nutshell . . . 2

1.1.1 Formation of high-mass stars . . . 2

1.1.2 Stellar binaries . . . 3

1.1.3 Planets . . . 5

1.2 This thesis . . . 6

1.3 Summary and outlook . . . 8

Chapter 2. Combination of optical interferometers and high-resolution spectro- graphs 11 2.1 Introduction . . . 12

2.2 Scientific case . . . 13

2.2.1 Stellar diameters and limb-darkening . . . 13

2.2.2 Interferometric Doppler Imaging . . . 14

2.2.3 Pulsations and asteroseismology . . . 14

2.2.4 Interpretation of radial-velocity variations . . . 15

2.2.5 Cepheids and distance ladder . . . 15

2.2.6 Orientation of stellar rotation axes . . . 15

2.2.7 Differential stellar rotation . . . 16

2.2.8 Circumstellar matter . . . 16

2.3 Instrument and infrastructure. . . 17

2.3.1 Telescopes . . . 17

2.3.2 Longitudinal dispersion compensation . . . 17

2.3.3 Fringe tracker . . . 21

2.3.4 Beam Combiner. . . 21

2.3.5 Connection to the spectrograph. . . 23

2.4 An illustrative example: UVES-I . . . 23

2.4.1 VLTI Auxiliary Telescopes . . . 24

2.4.2 Fringe tracking with PRIMA . . . 24

2.4.3 Dispersion compensation for UVES-I . . . 27

2.4.4 Beam combiner for UVES-I . . . 28

2.4.5 UVES instrument on UT-2 . . . 29

2.4.6 Performance . . . 30

2.5 Other interferometer-spectrograph pairings . . . 31

2.6 Conclusion . . . 32

Chapter3. MWC 349A 37 3.1 Introduction MWC 349A . . . 38

(9)

viii Contents

3.2 MIDI Observations . . . 39

3.3 Results . . . 44

3.3.1 The circumstellar disk . . . 44

3.3.2 Hydrogen lines . . . 51

3.3.3 Forbidden lines . . . 54

3.4 Discussion . . . 55

3.5 Summary and future work . . . 57

Chapter4. Spin axes in V1143 Cyg 61 4.1 Introduction . . . 62

4.2 Observations . . . 64

4.3 Analysis and results . . . 64

4.3.1 Method 1: The BF’s center . . . 67

4.3.2 Method 2: Variation of the BF profile . . . 69

4.4 Discussion . . . 70

4.4.1 Orbital parameters . . . 70

4.4.2 Stellar parameters . . . 72

4.4.3 Orientation of the rotation axes . . . 74

4.5 Conclusions . . . 76

4.6 Data . . . 78

Chapter5. Misaligned spin axes in the DI Herculis system 81 5.1 Introduction . . . 82

5.2 Data . . . 83

5.3 Results . . . 84

5.4 Discussion . . . 93

5.4.1 Robustness of the results . . . 93

5.4.2 Implications of the misaligned rotation axes . . . 95

5.5 Conclusion . . . 96

Chapter6. The atmosphere of HD 209458b 99 6.1 Introduction . . . 100

6.2 UVES VLT observations . . . 100

6.3 Transmission spectroscopy . . . 101

6.3.1 Sodium . . . 103

6.3.2 Sodium results . . . 109

6.3.3 Potassium . . . 110

6.4 Discussion . . . 112

6.5 Conclusions . . . 115

Nederlandse samenvatting 117

Curriculum vitae 123

Nawoord 125

Referenties

GERELATEERDE DOCUMENTEN

One can correct for both effects, after conducting the transmission spectroscopy by correlating the strength of the strong telluric water lines around 7000 Å with the measured

For the eclipsing binary system V1143Cyg, which was observed at the Lick Observatory using the Hamilton high-resolution Echelle spectrograph, it is shown in Chapter 4 that the

For example using a fiber with a core diameter of 100 μm, the fiber whose transmission is shown in Figure 2.5, and with re-imaging optics changing the F/3 fiber output beam into the

In this chapter we aim to understand the massive young stellar object MWC 349A better, by studying the structure of its disk, the structure of the region from where the

For the successful observation and interpretation of the rotation effect in a planetary system, the required S/N and precision in radial velocity are significantly higher than

Our best fitting model with parallel spin axes in the DI Herculis system ( β ≡ 0 ◦ ) is displayed along the observed spectra, but this time for the secondary eclipse.. the

For stars with an intrinsic mechanism causing the observed radial velocity variations the shape of the spectral lines will change, due to the changing contributions of each

Radial velocity variations in red giant stars : pulsations, spots and planets..