• No results found

Photo-CIDNP MAS NMR Studies on photosynthetic reaction centers Diller, A.

N/A
N/A
Protected

Academic year: 2021

Share "Photo-CIDNP MAS NMR Studies on photosynthetic reaction centers Diller, A."

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Photo-CIDNP MAS NMR Studies on photosynthetic reaction centers

Diller, A.

Citation

Diller, A. (2007, September 18). Photo-CIDNP MAS NMR Studies on photosynthetic reaction centers. Retrieved from https://hdl.handle.net/1887/12365

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/12365

Note: To cite this publication please use the final published version (if applicable).

(2)

Photo-CIDNP MAS NMR Studies on

Photosynthetic Reaction Centers

Anna Diller

(3)

ISBN 978-90-9022218-9

(4)

Photo-CIDNP MAS NMR Studies on

Photosynthetic Reaction Centers

PROEFSCHRIFT

ter verkrijging van de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magnificus Prof. mr. P. F. van der Heijden, volgens besluit van het College voor Promoties

te verdedigen op dinsdag 18 september 2007 klokke 16.15 uur

door Anna Diller

geboren te Lichtenfels, Duitsland in 1977

(5)

Promotiecommissie

Promotor: Prof. dr. H. J. M. de Groot Copromotor: Dr. J. Matysik

Referent: Prof. dr. W. Lubitz, Max-Planck-Institut f¨ur Bioanorganische Chemie, M¨ulheim/Ruhr Overige Leden: Prof. dr. J. Brouwer

Prof. dr. W. J. de Grip Dr. P. Gast

Gef¨ordert von der Volkswagen-Stiftung

(F¨orderinitiative ”Intra- und intermolekulare Elektronen¨ubertragung”, I/78010)

(6)

”When you think outside the box, the box goes away.”

Richard R. Reisman

F¨ur meine Eltern

(7)

List of abbreviations

1D One-dimensional 2D Two-dimensional

a absorptive

e emissive

ALA δ-Aminolevulinic acid ATP Adenosine triphosphate

ATPase Adenosine triphosphate synthase BChl Bacteriochlorophyll

BPhe,φ Bacteriopheophytin

CIDNP Chemically induced dynamic nuclear polarization Chl Chlorophyll

CP Cross polarization

CSA Chemical shift anisotropy DD Differential decay

DFT Density functional theory DNP Dynamic nuclear polarization DR Differential relaxation

EDTA Ethylene diamino tetra acetate ENDOR Electron nuclear double resonance EPR Electron paramagnetic resonance

ESEEM Electron spin echo envelope modulation FWHH Full width at half height

hf hyperfine

hfi hyperfine interaction His Histidine

HOMO Highest Occupied Molecular Orbital

LDAO LauryldimethylamineN -oxide N,N-dimethyldodecyl- amine-N-oxide

LH Light harvesting

LUMO Lowest Occupied Molecular Orbital MAS Magic-angle spinning

MAOSS Magic-angle oriented sample spinning n.a. natural abundance

(8)

List of abbreviations

NADP+ Nicotinamide adenine dinucleotide phosphate (oxidized form)

NADPH Nicotinamide adenine dinucleotide phosphate (reduced form)

NMR Nuclear magnetic resonance

n.s. number of scans

OD Optical density

ODV Optical density per volume

P Electron donor

Phe Pheophytin

Photo-CIDNP Photochemically induced dynamic nuclear polarization

ppm parts per million

PS I Photosystem I

PS II Photosystem II

PSU Photosynthetic unit

Q Ubiquinone

Rb. Rhodobacter

RC Reaction center

rf radio frequency

Rps. Rhodopseudomonas

S/N signal-to-noise

SLF Separated Local Field ppm parts per million

TPPM Two pulse-phase modulation

TSM Electron-electron-nuclear three spin mixing

w/v weight per volume

WT Wildtype

(9)
(10)

Contents

1 Introduction 1

1.1 Photosynthesis . . . 1

1.1.1 Photosystems . . . 2

1.1.2 Bacterial reaction centers . . . 2

1.1.3 Photosystem I . . . 4

1.1.4 Photosystem II . . . 6

1.1.5 Electron transfer in photosystem II . . . 7

1.1.6 Redox potential of photosystem II . . . 10

1.2 Photo-CIDNP MAS NMR . . . 11

1.2.1 The Photo-CIDNP effect . . . 12

1.2.2 Photo-CIDNP mechanisms in solids . . . 13

1.3 Aim and scope of the thesis . . . 15

2 Signals in solid-state photochemically induced dynamic nuclear polarization recover faster than with the lon- gitudinal relaxation time 27 2.1 Introduction . . . 28

2.2 Experimental section . . . 29

2.3 Theory . . . 32

2.3.1 Source and drain terms in photo-CIDNP build- up kinetics . . . 32

2.3.2 NMR signal recovery as a function of repetition time . . . 37

2.3.3 Estimate of loss factors . . . 38

2.4 Results . . . 39

2.4.1 Recovery experiments on photosynthetic reac- tion centers . . . 41

2.4.2 Analysis of the recovery kinetics . . . 43

2.5 Discussion . . . 46

2.5.1 T1 relaxation of aromatic carbons . . . 46

2.5.2 Comparison with earlier studies on photo-CIDNP build-up . . . 47

2.5.3 Mechanism of fast recovery . . . 47

(11)

2.5.4 Maximum polarization and signal-to-noise en-

hancement . . . 49

2.6 Conclusions . . . 51

3 Photo-CIDNP solid-state NMR on Photosystems I and II: what makes P680 special? 57 3.1 Introduction . . . 58

3.2 Materials and methods . . . 59

3.3 Results . . . 59

3.4 Discussion . . . 60

3.4.1 The photo-CIDNP effect . . . 60

3.4.2 The ground-state electronic structure . . . 62

3.4.3 The electronic structure of the radical pair . . . 64

4 15N-photo-CIDNP MAS NMR analysis of the electron donor of photosystem II 71 4.1 Introduction . . . 72

4.2 Material and Methods . . . 74

4.2.1 Sample preparation . . . 74

4.2.2 MAS NMR measurements . . . 74

4.3 Results and Discussion . . . 75

4.3.1 15N photo-CIDNP MAS NMR on PS I . . . 75

4.3.2 15N photo-CIDNP MAS NMR on PS II . . . 78

4.3.3 Matrix involvement . . . 81

4.3.4 The hinge model of the donor of PS II . . . 82

5 13C photo-CIDNP MAS NMR on chromatophores and cells of Rhodobacter sphaeroides allows for spectral editing 89 5.1 Introduction . . . 90

5.2 Materials and Methods . . . 93

5.2.1 Culturing of Rhodobacter sphaeroides . . . . 93

5.2.2 Incorporation of isotope labels . . . 93

5.2.3 Preparation of cells, chromatophores and RCs . 94 5.2.4 MAS NMR measurements . . . 96

5.3 Results and Discussion . . . 96

(12)

5.3.1 13C photo-CIDNP MAS NMR experiments on purified RCs . . . 96 5.3.2 13C photo-CIDNP MAS NMR experiments on

chromatophores . . . 97 5.3.3 The possibility of centrifugal orientation of chro-

matophores . . . 100 5.3.4 The possibility of magnetic field-orientation of

chromatophores . . . 102 5.3.5 13C photo-CIDNP MAS NMR experiments on

entire cells . . . 103 5.3.6 Possible origin of sign-change of the donor signals104 5.4 Conclusions . . . 106

6 Current view and Outlook 111

6.1 The donor of photosystem II . . . 111 6.2 Photo-CIDNP as a tool for functional screening of RCs

and spectral editing . . . 113 6.3 Orientational effects in Photo-CIDNP MAS NMR . . . 114

Summary 125

Samenvatting 129

Zusammenfassung 133

Publications 137

Curriculum vitae 139

Nawoord 140

(13)

Referenties

GERELATEERDE DOCUMENTEN

dichte-Verteilung in Photosystem I, abgesehen davon, dass sie ¨ uber 2 Chl molek¨ ule verteilt ist, keine St¨ orung aufzeigt, w¨ ahrend das Muster der Elektronenspindichte-Verteilung

At the 1 st Interna- tional Workshop on Expression, Structure and Function of Membrane Proteins (2006) in Firenze, the meeting of the NMR discussion group (2006) in Oss, the

6) Photosynthesis is a process which follows Carnot efficiency rules, while ex- hibiting negative entropy in its molecular details.

The photo-CIDNP spectral pattern at lower magnetic fields (4.7 Tesla), appear to be both positive and negative, which is similar to the pattern observed in the RCs of plant PSII

Biological diversity of photosynthetic reaction centers and the solid- state photo-CIDNP effect..

The bacteria capable of photosynthesis are purple sulphur bacteria, purple non-sulphur bacteria, green sulphur bacteria, green non-sulphur bacteria, obligate aerobic

acceptor Chl a are similar in the ground state but different in the radical pair state, the intensity pattern provides additional information with respect to the assignment of

The simulations thus indicate that the change in the magnetic field dependence of solid-state photo-CIDNP between bacterial RCs and plant PSI can be traced back to an increase of the